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Policy Analytics (moving past the 1900’s)

The Effect of Corporate Governance on Investment 363

Table 5 m Firm value as a function of governance.

Dependent
Variable: Firm q (1) 03} 3) @) )
Proper 0.497 0.418 0.412 0.382
(14.33)* (7.64)* (7.16)*  (10.44)**
EBITDA 0.403 0.456 0.444 0.444 0.163
(5.1 (5.00)** (7.21)™
UPREIT —0.023 —0.018
(0.36)
Interest Coverage 0.043 —0.004
(0.63) (0.15)
Mkt Cap 0.087 0.014
(1.96) (0.39)
Excess Comp 0.000 ~0.020
(0.01) (0.85)
Instl Ownership 0.078 0.101
(1.48) (2.55)
Block Ownership —0.046 0.013
(1.38) (0.59)
D&O Ownership 0.106 0.072
(1.57) (2.08)*
Ln(Board Size) —0.097
(2.86)""
Outside Board 0.021
.75 (0.93)
Maryland —0.026
(0.53)
Fixed Effects? No No No No Yes
Observations 882 882 882 882 882
R? 0.53 0.55 0.56 0.56 0.60
p value from F test of 0.61 0.21 0.50 0.00"*

null that all
governance
coefficients are
zero




Moving from this...
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Moving from this...
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Regularization and Confounding in Linear
Regression for Treatment Effect Estimation

P. Richard Hahn*, Carlos M. Carvalho®, David Puelz, and Jingyu He*

Abstract. This paper investigates the use of regularization priors in the con-
text of treatment effect estimation using observational data where the number of
control variables is large relative to the number of observations. First, the phe-
nomenon of “regularization-induced confounding” is introduced, which refers to
the tendency of regularization priors to adversely bias treatment effect estimates
by over-shrinking control variable regression coefficients. Then, a simultaneous re-
gression model is presented which permits regularization priors to be specified in a
way that avoids this unintentional “re-confounding”. The new model is illustrated
on synthetic and empirical data.

Keywords: causal inference, observational data, shrinkage estimation.
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... to that!

y=1Ff(Z,X)+e

Today:

e a general, “default” framework

e a rich output that allows you to ask lots of different questions



Our setting

We'll assume:

Observational and experimental data

Conditional unconfoundedness/ignorability (we've measured all
the factors causally influencing treatment and response),

Covariate-dependent treatment effects (individuals can have
different responses to treatment according to their covariates)

Binary treatments



Our assumptions, more formally

Strong ignorability:
Yi(0), Yi(1) L Zi | Xi = x;,

Positivity:
0<Pr(Zi=1|X;=x;)<1

for all i. Therefore

E(Yi(2) | ) = E(Y; | xi, Zi = 2),

so the conditional average treatment effect (CATE) is

7(xi) : = E(Yi(1) = Yi(0) | xi)

E
E(Y ‘X,, i = 1)—E(Y, ‘ X,',Z,'ZO).



Modeling assumptions

We write
E(Y; | xi, zi) = f(xi, zi),

so that
T(X,‘) = f(X,‘, 1) — f(X,‘, 0)
We assume iid Gaussian errors:

Yi=f(xi,zi) + €, €~ N(O,az)

nb: Strong ignorability means ¢; L Z; | x;.

How do we regularize estimates of f? (What prior on f7)



Regression Trees

Tree Ty

g(X, Th7 Mh)

Hh2

[> X3 g Hh1

Hh3

X1
Leaf/End node parameters
My = (pm, pn2s Hn3)

&(X, Thy Mh) = pipe if x € Ape (for 1 < t < bp).

Partition Ap = {Ap1, An2, Ap3}



Bayesian Additive Regression Trees (BART)

Bayesian additive regression trees (Chipman, George, & McCulloch,
2008):

Yi = f(X,‘,Z,') + €, €~ N(0,0’z)

f(X,Z) = Zg(xvz7 Th7 Mh)
h=1

Hill (2011) proposes adopting Bayesian additive regression trees (BART)
for causal inference.



Making BART great for causal inference

BART is great as a prior over regression functions! It also works great for
causal inference, but in some settings it can be problematic:

1. With strong confounding, estimates of individual/average treatment
effects from BART can exhibit severe bias.

2. With homoegenous effects/moderate heterogeneity, BART's
treatment effect estimates are highly variable.

We can fix both of these!
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Problem 1: Strong confouding can lead to high bias

Suppose that:

e Y': measure of heart distress,
e /: took heart medication,

e x; and x, are blood pressure measurements.

Let's make this easy: p =2, n = 1,000, with homogeneous treatment
effects (7 = 1).
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Problem 1: Strong confouding can lead to high bias

Assume the true model:

Yi = p(xi) = Zi + €i,
w(x;) = 1if x;1 < x;2, —1 otherwise.

Pr(Z; =1 xi1, xi2) = ®(u(xi)),

€j If’g N(O, 0.72), Xi1, Xj2 lfl\l/j N(O7 1)

This example demonstrates targeted selection into treatment:
Patients with xj; < xj» are 5 times as likely to receive the new drug
precisely because they are more likely to have higher levels of heart
distress.

Despite low noise, low dimension, and homogeneous effects, BART has
problems...
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BART is badly biased here

Across 250 simulated datasets with n = 1000, BART is badly biased:

Prior Bias Coverage RMSE
BART 0.14 31% 0.15

This is due to a pheonomenon called regularization induced
confounding (see Hahn, Carvalho, Puelz and He, 2018).
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Targeted selection induces regularization induced confounding

Why is BART biased in this example?

e 7(x) = Pr(Z =1 x) is a noisy function of u(x), so p(x) “looks
like" 7(x), and u(x) is hard to approximate with trees

1.0

0.5
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0.0
1

-0.5

-1.0

14



Targeted selection induces regularization induced confounding

Why is BART biased in this example?

e 7(x) = Pr(Z =1]x) is a noisy function of u(x), so u(x) “looks
like” m(x), and p(x) is hard to approximate with trees

e Strong confounding means Z =~ 7(x), and targeted selection means
u(x) is a function of m(x), so p(x) is can be approximated by a tree
that splits on Z

e The BART prior over f penalizes the total number of splits, so to fit
1(x) BART would rather split on Z once than x; and x, many times
— confusing confounding for treatment effects: regularization
induced confounding (Hahn et al (2016))
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A fix: Propensity Score BART

We can fix this by estimating m(x) = Pr(Z =1 | x) (here using BART)
and including 7(x) as an extra predictor variable

Prior Bias Coverage RMSE
BART 0.14 31% 0.15
Oracle BART 0.00 98%  0.05
ps-BART 0.06 85%  0.08

(With an ensemble estimate of @, ps-BART~Oracle BART)
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Problem 2: Naive priors give high variance estimates

In the model
S f(X,’,ﬁ'(X,’),Z,‘) + €

a BART prior on f provides no direct mechanism to regularize the
treatment effect function 7(x)

30

20

10

ps-BART is in pink; our fix is in grey
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The fix: Bayesian causal forests

Reparameterize!
f(xi, zi) = p(xi, £(x;)) + 7(xi)zi,

where m and 7 have independent BART priors.

Now the treatment effect is
7(x;)

and we can “shrink towards homogeneity” with stronger regularization

on 7, independent of regularization on m

17



Tweaking priors in BCF

Several adjustments to the BART prior on 7:

e Higher probability on smaller 7 trees (than BART defaults)
e Higher probability on “stumps” (all stumps = homogeneous effects)

e NT(0,v) Hyperprior on the scale of leaf parameters in 7

18



RIC in the wild: 2017 ACIC Data Analysis Challenge

Treatment-response pairs were simulated according to 32 distinct data
generating processes (DGPs), given fixed covariates (n = 4,302, p = 58)
from an empirical study.

We varied three parameters among two levels
e High or Low noise level,

e Strong or Weak confounding,

e Small or Large effect size.
The error distributions were one of four types

e Additive, homoskedastic, independent,
e Nonadditive, homoskedastic, independent,

e Additive, heteroskedastic, independent.

To assess coverage, 250 replicate data sets were generated for each DGP.

19



esults: Inference for CATE on h
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Results: Estimation for homoskedastic DGPs
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Results: Inference for CATE on difficult homoskedastic

Difficult (homosked) DGPs (18)
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Results: Estimation on difficult homoskedastic DGPs

Difficult (homosked) DGPs (18)
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After our a preprint of our paper the ACIC 2016 challenge organizers ran

ps-BART...
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ACIC 2016 Redux

Adding BCF and causal RF:

Cov IL Bias  (SD) |Bias| (SD) PEHE (SD)

BCF 082 0.026 -0.0009 (0.01) 0.008 0.010 033 0.18
ps-BART 088 0.038 -0.0011 (0.01) 0010 0011 034 0.16
)
)

BART 0.81 0.040 -0.0016 (0.02) 0.012 0.013 036 0.19
Causal RF 0.58 0.055 -0.0155 (0.04) 0.029 0.027 045 0.21

Average differences relative to BCF, pairwise permutation test p-value:

Diff Bias p  Diff |Bias| p Diff PEHE p
ps-BART  -0.00020 0.146 0.0011 < 1le7® 0010 <1le®
BART -0.00070 < le~® 0.0031 < 1le7® 0.037 <1le®

Causal R -0.01453 < 1le~*® 0.0204 < 1le7® 0.125 < 1le®

25



In observational data regularization-induced confounding can adversely
bias treatment effect estimates from any method that uses
regularization. Explicitly modeling selection is necessary for robust
inference.

BART is an impressive response surface method for causal inference; our
new BCF models improve on “vanilla” BART in key respects:
e Propensity score estimates as covariates mitigate RIC

e Reparameterization allows regularization to be imposed robustly and
directly on the estimand of interest.

e It also facilitates extensions to multilevel models!

26



Multilevel BCF: The National Study of Learning Mindsets

MINDSET SEARCH Q
SCHOLARS
NETWORK About Us About Mindsets Research & Resources Mindsets in the News Blog

Mindsets Matter ~

How might learning environments influence students' mindsets?

LATEST RESEARCH

Reducing Racial Gaps in Mindset Programs That Parent Practices & Children's
School Suspensions a Improve College Outcomes Mindsets
Brief Intervention to Encourage Teaching a Lay Theory Before What Predicts Children's Fixed
Empathic Discipline Cuts College Narrows Achievement and Growth Intelligence Mind-
Suspension Rates in Half Gaps at Scale sets? Not Their Parents' Views of
Among Adolescents READ MORE > Intelligence But Their Parents’
READ MORE > Views of Failure

READ MORE >
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Answering Questions, Working Toward Solutions



National Study of Learning Mindsets

National Study of Learning Mindsets (Yeager et. al., 2017):
Randomized controlled trial of a low-cost mindset intervention

Probability sample of 76 schools (= 14,000 students)

Specifically designed to assess treatment effect heterogeneity

Preregistration plan included specific subgroups of interest, and a
blinded exploratory analysis of heterogeneity

28



National Study of Learning Mindsets

Desiderata for our analysis:

e Avoid model selection/specification search

e School-level effect heterogeneity explained and unexplained by
covariates

e Interpretable model summaries for communicating results

29



Multilevel Linear Models for
Heterogeneous Treatment Effects

School-specific School-specific
intercepts/fixed/random effects “unexplained” heterogeneity

/ /

p k
Yij = 0 + Z Brxin + ZTewz‘je + 5 | Zij T €ij

h=1 / {=1 \

Controls at the Moderators at the
student and/or school student and/or school
level level
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Coloring outside the lines:
Multilevel Bayesian Causal Forests

We replace linear terms with Bayesian additive
regression trees (BART)

I ™\

Yij = o + B(Xij) + [T(Wiz) + 5] zij + €5

31



Coloring outside the lines:
Multilevel Bayesian Causal Forests

BART in causal inferece: Hill
We replace linear terms with Bayesian additive (2011), Green & Kern (2012), ...

regression trees (BART)

Parameterizing treatment effect
heterogeneity with BART is due to
Hahn, Murray and Carvalho (2017)

Yij = o + B(xij) + [T(Wiz) + 4] zij + €5

32



Coloring outside the lines:
Multilevel Bayesian Causal Forests

BART in causal inferece: Hill
We replace linear terms with Bayesian additive (2011), Green & Kern (2012), ...

regression trees (BART)

Parameterizing treatment effect
heterogeneity with BART is due to
Hahn, Murray and Carvalho (2017)
Yij = o5 + B(Xiz) + [T(Wiz) + 75 265 + €35

...while carefully regularizing estimates with
prior distributions (shrinkage toward additive
structure and discouraging implausibly large

treatment effects)

Allows for complicated functional forms
(nonlinearity, interactions, etc) without
pre-specification...



Analyzing data with ML BCF

» Obtain posterior samples for all the parameters, compute treatment
effect estimates for each unit/school/etc.

* The challenge: How do we summarize these complicated objects?
* “Roll up” treatment effect estimates to ATE
» Subgroup search

» Counterfactual treatment effect predictions/“partial effects of
moderators”

34



Inference for the Average Treatment Effect

density

20

10

95% uncertainty interval
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0.050
ATE

0.075
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Subgroup search

¢ Obtain posterior mean of treatment effects

* Use recursive partitioning (CART) on the posterior mean to find
moderator-determined subgroups with high variation across
subgroup ATE

« Statistically kosher! We use the data once (prior -> posterior)

* Can be formalized as the Bayes estimate under a particular loss
function

36



High Achieving
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Counterfactual treatment effect predictions

>V Yo‘.m

* How do estimated treatment
effects change in lower
achieving/low norm schools if
norms increase, holding
constant school minority
comp & achievement?

¢ Not a formal causal mediation
analysis (roughly, we would
need “no unmeasured
moderators correlated with
norms”)

High Achieving
CATE = 0.016
n = 5023

< y \Ci.53

Lower Achieving
Low Norm
CATE = 0.032
n = 3253

Lower Achieving
High Norm
CATE = 0.073
n = 3265
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11QR = 0.6 extra problems
on worksheet task

igh Norm/Lower Ach

Increase | |+051QR| |+11aR[ |+10%[ |orig  Group [_]Low Norm/Lower Ach

Original ©.032 (-0.011 ©.876)
+10% 0.050 (0.005, 0.097)
+Half IQR ©.051 (0.005, 0.099)
+Full IQR ©.059 (0.009, ©.114)

0.0
CATE
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Conclusion

» Flexible models + careful regularization + posterior summarization is a
winning combination

» Our approach takes the best parts of linear models with lots of
researcher degrees of freedom and “black box” machine learning
methods that only afford bankshot regularization and summarization

* Many “degrees of freedom” in the summarization step, but these
depend on the data only through the posterior

* Unlike many ML methods, we can handle multilevel structure and
prior knowledge with ease
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Thank you!



