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Online Appendix A: Computation of the parameter 𝑴𝑽 

This appendix presents the formulation for computing the value of the parameter 𝑀𝑉, which is an upper 

bound on the number of sites, in addition to the depot, that can be included in any route whose maximal 

duration is 𝐿. The notation follows from Section 3: 

𝑀𝑎𝑥 ∑𝑣𝑖
𝑖∈𝑁

   
(18) 

𝑠. 𝑡.   

∑ 𝑥0𝑗𝑗∈𝑃 = 1   (19) 

∑ 𝑥𝑖0𝑖∈𝐷 = 1   (20) 

∑ 𝑥𝑖𝑗𝑗∈𝑁0 = ∑ 𝑥𝑗𝑖𝑗∈𝑁0   ∀𝑖 ∈ 𝑁 (21) 

𝑣𝑖 = ∑ 𝑥𝑖𝑗𝑗∈𝑁0   ∀𝑖 ∈ 𝑁 (22) 

∑ ∑ ℓ𝑖𝑗𝑥𝑖𝑗𝑗∈𝑁0,𝑖≠𝑗𝑖∈𝑁0 + ∑ 𝑝𝑖𝑣𝑖𝑖∈𝑁 ≤ 𝐿   (23) 

𝑢𝑖 − 𝑢𝑗 + (|𝑁
0| + 1)𝑥𝑖𝑗 ≤ |𝑁

0|  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (24) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁0 (25) 

𝑣𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁 (26) 

 

The objective function (18) maximizes the number of sites that are visited. Constraints (19)-(22), (23)-

(26) are equivalent to constraints (2)-(5), (12)-(15) in the MILP for the H-PDSP in Section 3. They 

make sure that a valid route is obtained, i.e., that each site is visited at most once; that the depot is 

followed by a pickup site and preceded by a delivery site; that the total traveling time is not exceeded; 

and that no subtours are included in the solution.  

Although optimal values to this integer program were obtained within several minutes to the 

instances from all of the datasets described in Section 8, the problem can be shown to be NP-Hard 

through a reduction from the TSP.  
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Online Appendix B: The Lorenz Curve and the Gini Index 

Many inequality measures are based on the Lorenz curve, initially developed by Lorenz (1905) to 

represent the inequality of wealth distribution. Each point (𝑥, 𝑦), 𝑥, 𝑦 ∈ [0,1] on the curve (see Figure 

2) indicates that 100x% of the population with the least amount of wealth has 100𝑦% of the wealth. 

Naturally, the points (0,0) and (1,1) are on the plot. A perfectly equal distribution of wealth occurs when 

every person has the same amount of wealth, which is represented by the straight line 𝑦 = 𝑥, also called 

the Line of Equality. By contrast, in a perfectly non-equitable distribution, one person has all the wealth, 

thus creating a Lorenz curve where 𝑦 = 0 ∀𝑥 ≠ 1 and 𝑦 = 1 for 𝑥 = 1. 

In his original paper, Gini (1912) defined the Coefficient of Concentration based on the area 

between the Lorenz curve and the Line of Equality. This area, referred to by Gini as the Area of 

Concentration, ranges between 0 and 0.5, and the coefficient was defined to be twice this area (to scale 

it to values between 0, representing perfect equality, and 1, representing perfect inequality). Since then, 

other approaches for the calculation of the Gini coefficient have been suggested, based on more 

algebraic interpretations of the measure, as described next.  

 

Figure 2: The Lorenz Curve 

Suppose we consider some allocation to 𝑁 individuals �⃗� = (𝑌1, 𝑌2, … , 𝑌𝑁) such that the 

individuals are labeled in non-decreasing order of their wealth: 𝑌1 ≤ 𝑌2 ≤ ⋯ ≤ 𝑌𝑁. Let �̅� be the mean 

allocation: �̅� =
∑ 𝑌𝑖
𝑁
𝑖=1

𝑁
. Let 𝐹𝑖 be the cumulative population share up to individual 𝑖 and 𝜙𝑖 be the 

cumulative wealth share up to individual 𝑖. We also define 𝐹0 = 𝜙0 = 0. Thus, 𝐹𝑖 =
𝑖

𝑁
, 𝜙𝑖 =

∑ 𝑌𝑗
𝑖
𝑗=1

𝑁�̅�
,  

𝑖 = 0,1, … ,𝑁,  and 𝐹𝑖 − 𝐹𝑖−1 =
1

𝑁
, 𝜙𝑖 − 𝜙𝑖−1 =

𝑌𝑖

𝑁�̅�
,    𝑖 = 1,2,… ,𝑁.    
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Kendall and Stuart (1963) were the first to suggest that the Gini coefficient could also be 

calculated algebraically as one half of the Relative Mean Difference of the individual allocations 

𝑌1, 𝑌2, … , 𝑌𝑁, denoted by ∆=
∑ ∑ |𝑌𝑖−𝑌𝑗|

𝑁
𝑗=1

𝑁
𝑖=1

𝑁2�̅�
. 

Claim B.1: The Gini coefficient of the allocation �⃗�  is equal to 
∆

2
. 

Proof (based on Anand, 1983): Because each pair of indices is counted twice in the summation, the 

following is true: 

∆

2
=
∑ ∑ |𝑌𝑖 − 𝑌𝑗|

𝑁
𝑗=1

𝑁
𝑖=1

2𝑁2�̅�
=
∑ ∑ |𝑌𝑖 − 𝑌𝑗|

𝑖
𝑗=1

𝑁
𝑖=1

𝑁2�̅�
 

The individuals are ordered by their amount of wealth; hence, |𝑌𝑖 − 𝑌𝑗| = 𝑌𝑖 − 𝑌𝑗 for 𝑗 ≤ 𝑖. Therefore, 

∆

2
=

1

𝑁2�̅�
∑∑(𝑌𝑖 − 𝑌𝑗)

𝑖

𝑗=1

𝑁

𝑖=1

=
1

𝑁2�̅�
∑(𝑖 ⋅ 𝑌𝑖 −∑𝑌𝑗

𝑖

𝑗=1

)

𝑁

𝑖=1

=
1

𝑁2�̅�
∑(𝑖 ⋅ 𝑌𝑖 −𝑁�̅�𝜙𝑖)

𝑁

𝑖=1

= 

=∑(
𝑖

𝑁
⋅
𝑌𝑖

𝑁�̅�
−
𝜙𝑖
𝑁
) =

𝑁

𝑖=1

∑[𝐹𝑖 ⋅ (𝜙𝑖 − 𝜙𝑖−1) −
𝜙𝑖
𝑁
] =

𝑁

𝑖=1

 

=∑[𝜙𝑖 (𝐹𝑖 −
1

𝑁
) − 𝐹𝑖𝜙𝑖−1]

𝑁

𝑖=1

=∑[𝜙𝑖𝐹𝑖−1 − 𝐹𝑖𝜙𝑖−1]

𝑁

𝑖=1

= 

= ∑[𝜙𝑖+1𝐹𝑖 − 𝐹𝑖+1𝜙𝑖] =

𝑁−1

𝑖=0

∑[𝜙𝑖+1𝐹𝑖 − 𝐹𝑖+1𝜙𝑖]

𝑁−1

𝑖=0

+ 1 − ∑[𝜙𝑖+1𝐹𝑖+1 − 𝐹𝑖𝜙𝑖]

𝑁−1

𝑖=0

 

The last step is correct since we add to the first expression 1 and subtract 

 ∑ [𝜙𝑖+1𝐹𝑖+1 − 𝐹𝑖𝜙𝑖]
𝑁−1
𝑖=0 = 𝐹𝑁𝜙𝑁 − 𝐹0𝜙0 = 1. So: 

∆

2
= 1 − ∑[𝜙𝑖+1𝐹𝑖+1 − 𝐹𝑖𝜙𝑖 − 𝜙𝑖+1𝐹𝑖 + 𝐹𝑖+1𝜙𝑖]

𝑁−1

𝑖=0

= 1 − ∑(𝐹𝑖+1 − 𝐹𝑖)(𝜙𝑖+1 + 𝜙𝑖)

𝑁−1

𝑖=0

= 

= 2 ⋅ [
1

2
−
1

2
∑(𝐹𝑖+1 − 𝐹𝑖)(𝜙𝑖+1 + 𝜙𝑖)

𝑁−1

𝑖=0

] 

Now note that 
1

2
(𝐹𝑖+1 − 𝐹𝑖)(𝜙𝑖+1 + 𝜙𝑖) is the area of the light trapezoid shown in Figure 2 such 

that 
1

2
−
1

2
∑ (𝐹𝑖+1 − 𝐹𝑖)(𝜙𝑖+1 + 𝜙𝑖)
𝑛−1
𝑖=0  is the area between the Lorenz curve and the Line of Equality, 

which means that 
∆

2
 is equal to the Gini coefficient, by definition. ∎ 

It is also worth mentioning that the definition provided here for the Gini coefficient relies on the 

assumption that there are 𝑛 individuals, but in our problem there are 𝑛 groups (agencies) of different 

sizes sharing the wealth. This problem requires an additional adaptation of the definition, proposed by 

Mandell (1991). The definition is based on the fact that if group 𝑖 is made up of 𝑛𝑖 individuals 

(∑ 𝑛𝑖
|𝐷|
𝑖=1 = 𝑁), then each of them receives 

𝑌𝑖

𝑛𝑖
 units. The Gini coefficient is therefore 
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𝐺 =

∑ ∑ 𝑛𝑖𝑛𝑗 |
𝑌𝑖
𝑛𝑖
−
𝑌𝑗
𝑛𝑗
|

|𝐷|
𝑗=1

|𝐷|
𝑖=1

2𝑁2 (
∑ 𝑌𝑖
𝑁
𝑖=1
𝑁 ) 

=

∑ ∑ 𝑛𝑖𝑛𝑗 |
𝑛𝑗𝑌𝑖 − 𝑛𝑖𝑌𝑗
𝑛𝑖𝑛𝑗

|𝑗>𝑖
|𝐷|
𝑖=1

𝑁∑ 𝑌𝑖
𝑁
𝑖=1  

=
∑ ∑ |𝑛𝑗𝑌𝑖 − 𝑛𝑖𝑌𝑗|𝑗>𝑖
|𝐷|
𝑖=1

𝑁∑ 𝑌𝑖
𝑁
𝑖=1  

= 

=
∑ ∑ |

𝑛𝑗𝑌𝑖 − 𝑛𝑖𝑌𝑗
𝑁 |𝑗>𝑖

|𝐷|
𝑖=1

∑ 𝑌𝑖
𝑁
𝑖=1  

=
∑ ∑ |𝑞𝑗𝑌𝑖 − 𝑞𝑖𝑌𝑗|𝑗>𝑖
|𝐷|
𝑖=1

∑ 𝑌𝑖
𝑁
𝑖=1  

 

where we recall that 𝑞𝑖 =
𝑛𝑖

𝑁
 is the proportion of the population served by agency 𝑖. 
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Online Appendix C: Alternative Objective Functions 

As stated in the literature review, several other functions have been suggested (in various settings) to 

address the question of how to model the trade-off between effectiveness and equity. We briefly present 

two of the more commonly used schemes and subsequently discuss their adaptation to the setting of the 

H-PDSP. For this purpose, we denote an allocation vector for 𝑛 identical agents by 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

(1) The 𝜶-fairness social welfare function – This function, first suggested by Atkinson (1970), 

assumes that a central decision maker maximizes the total social utility, which consists of the sum 

of the individual utilities, while considering an inequity aversion parameter 𝛼 > 0. This approach 

is similar to the risk aversion concept from the field of decision theory. Let 𝑈𝛼
𝑖 (𝑥𝑖) denote the utility 

function of individual 𝑖. Thus, each individual considers only the amount allocated to himself, 

regardless of his "envy" of other individuals' allocations. The 𝛼-fairness utility functions are 

suggested to be the following: 

𝑈𝛼
𝑖 (𝑥𝑖) =

{
 

 
𝑥𝑖
1−𝛼

1 − 𝛼
, 𝛼 > 0, 𝛼 ≠ 1

ln(𝑥𝑖) , 𝛼 = 1

 

These functions are known in the economic literature as iso-elastic functions. They are increasing 

and concave functions and thus exhibit a diminishing marginal utility. The function to be 

maximized is the total social utility, denoted by 𝑈𝛼(𝑥1, 𝑥2, … , 𝑥𝑛), which consists of the sum of the 

individual utilities, i.e., 𝑈𝛼(𝑥1, 𝑥2, … , 𝑥𝑛) ≡ ∑ 𝑈𝛼
𝑖 (𝑥𝑖)

𝑛
𝑖=1 .  

This scheme includes as special cases several important solution concepts: (a) For 𝛼 = 0, the 

scheme represents the utilitarian principle, where the central decision maker is inequality neutral and 

consequently maximizes the total units allocated; (b) for 𝛼 = 1, we obtain the proportional fairness, 

which is a generalization of the Nash solution for a two-player game (Nash, 1950) that was also 

considered as a "fair" objective function (e.g., Bertsimas et al., 2012); and (c) for 𝛼 → ∞, the function 

becomes max-min fairness.  

The 𝛼-fairness function was first applied as an objective function by Mo and Warland (2000) in 

a data network resource allocation problem, and has since been used in several allocation problems: 

Bertsimas et al. (2012) studied the efficiency-fairness trade-off for this function and demonstrated its 

use in air traffic flow management problems; McCoy and Lee (2014) incorporated it in a humanitarian 

healthcare application; and Iancu and Trichakis (2014) applied it in a joint optimization of the trading 

activities and cost splitting of multiple portfolios. Adapting the function to the setting of the H-PDSP, 

where the agents are of different size, leads to the following objective function: 

Maximize  𝑈𝛼(𝑌1, 𝑌2, … , 𝑌|𝐷|) =

{
 
 

 
 
∑𝑛𝑖 ⋅

(
𝑌𝑖
𝑛𝑖
)
1−𝛼

1 − 𝛼
𝑖∈𝐷

, 𝛼 > 0, 𝛼 ≠ 1

∑𝑛𝑖 ⋅ ln(
𝑌𝑖
𝑛𝑖
)

𝑖∈𝐷

, 𝛼 = 1
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However, the disadvantages of using this function in our setting are the following:  

1. The inequality-averseness parameter 𝛼 may not have a conclusive value, and different measurement 

approaches might yield diverse estimates. From a decision theory point of view, the parameter can 

be assessed by "behavioral" experiments (see Wakker (2008) and the references therein). 

Alternatively, Bertsimas et al. (2012) use bounds on the "price of fairness" and the "price of 

efficiency" such that the value chosen for the parameter 𝛼 guarantees a bound on the maximal 

degradation in fairness or efficiency, respectively. As another option, the authors propose choosing 

the value of 𝛼 that balances the prices of fairness and efficiency.   

2. If the “appropriate” value for 𝛼 is larger than 1, the function may not be defined for welfare agencies 

that receive zero allocation. We note that such a case is quite probable in realistic instances of the 

H-PDSP because it may not be feasible or optimal to visit all sites under the time limitation. 

Ignoring delivery sites that receive nothing may be misleading because the utility of a certain 

agency may have a negative value.   

3. Using this function requires maximizing a non-linear term over a discrete solution space (the 

routing part of the problem), which imposes computational difficulties. 

Nevertheless, because the 𝛼-fairness function is widely accepted in the decision theory community, 

we next investigate the differences between the solutions obtained by this function and our 

suggested function. 

(2) Lexicographic max-min (LMM) – This function, suggested as a solution concept by Ogryczak 

(2007) and used by Luss (2012) and Orgyczak (2014) in location, data network and resource 

allocation problems, is a generalization of the well-known max-min function. The latter aims to 

maximize the minimum value allocated to all agents; thus, its solution only takes into account one 

extreme value. The lexicographic max-min function starts with the max-min function and then 

repeats the process for the next lowest value, etc. Hence, another possible objective function for the 

H-PDSP is the following: Lexicographically Maximize  min
𝑖∈𝐷

{
𝑌𝑖

𝑛𝑖
}.   

The main disadvantage of this approach is that improving the minimal value only slightly may 

require a considerable sacrifice in terms of the effectiveness of the allocation. The lexicographic max-

min allocation is considered to be "the most equitable solution" (Kostreva and Ogryczak, 1999), but 

this is not necessarily desirable for the H-PDSP because no consideration to the effectiveness objective 

is given. In addition, this approach requires sequential solution procedures, which may prove to be 

intractable even for medium-sized instances. 

Despite the mentioned disadvantages of the abovementioned alternative functions, they do satisfy 

the following important property: 

Claim C.1: The 𝛼-fairness and 𝐿𝑀𝑀 objective functions are component-wise increasing and satisfy 

the principle of transfers.  
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Proof: Both properties are satisfied for the 𝐿𝑀𝑀 by definition of the lexicographic order. 

𝑈𝛼(𝑌1, 𝑌2, … , 𝑌|𝐷|) is strictly increasing in 𝑌𝑖 ∀𝛼 > 0, 𝑖 ∈ 𝐷 by definition. To prove the principle of 

transfers, consider an allocation 𝑌1⃗⃗ ⃗⃗  in which a certain agency 𝑖 ∈ 𝐷 is better off than agency 𝑗 ∈ 𝐷, and 

suppose 𝑌𝑖
1 + 𝑌𝑗

1 = 𝑆. Now suppose a transfer is to be made from agency 𝑖 to agency 𝑗. Because the 

amounts allocated to all other agencies remain unchanged, the change in the value of  𝑈𝛼 following this 

transfer results from changes to agencies 𝑖 and 𝑗 only. We prove that the principle of transfers is satisfied 

by proving an even stronger result, which is based on finding the best transfer size: 

 For 𝛼 > 0, 𝛼 ≠ 1:  

𝑈𝛼(𝑌𝑖) = 𝑈𝑖(𝑌𝑖) + 𝑈𝑗(𝑆 − 𝑌𝑖) = 𝑛𝑖
(
𝑌𝑖
𝑛𝑖
)
1−𝛼

1−𝛼
+ 𝑛𝑗

(
𝑆−𝑌𝑖
𝑛𝑗

)

1−𝛼

1−𝛼
. 

𝑑𝑈𝛼
𝑑𝑌𝑖

= (
𝑌𝑖
𝑛𝑖
)
−𝛼

− (
𝑆 − 𝑌𝑖
𝑛𝑗

)

−𝛼

= (
𝑌𝑖
𝑛𝑖
)
−𝛼

⋅ (
𝑆 − 𝑌𝑖
𝑛𝑗

)

−𝛼

⋅ [(
𝑆 − 𝑌𝑖
𝑛𝑗

)

𝛼

− (
𝑌𝑖
𝑛𝑖
)
𝛼

] 

𝑑𝑈𝛼
𝑑𝑌𝑖

= 0 → (
𝑆 − 𝑌𝑖
𝑛𝑗

)

𝛼

− (
𝑌𝑖
𝑛𝑖
)
𝛼

= 0 →
𝑆 − 𝑌𝑖
𝑛𝑗

=
𝑌𝑖
𝑛𝑖
→ 𝑌𝑖

∗ =
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑆 

𝑑2𝑈𝛼

𝑑𝑌𝑖
2 = −𝛼

1

𝑛𝑖
(
𝑌𝑖
𝑛𝑖
)
−𝛼−1

− 𝛼
1

𝑛𝑗
(
𝑆 − 𝑌𝑖
𝑛𝑗

)

−𝛼−1

< 0 

 For 𝛼 = 1: 

𝑈𝛼(𝑌𝑖) = 𝑈𝑖(𝑌𝑖) + 𝑈𝑗(𝑆 − 𝑌𝑖) = 𝑛𝑖ln (
𝑌𝑖

𝑛𝑖
) + 𝑛𝑗ln (

𝑆−𝑌𝑖

𝑛𝑗
). 

𝑑𝑈𝛼
𝑑𝑌𝑖

=
𝑛𝑖
𝑌𝑖
−

𝑛𝑗

𝑆 − 𝑌𝑖
 

𝑑𝑈𝛼
𝑑𝑌𝑖

= 0 →
𝑛𝑖
𝑌𝑖
−

𝑛𝑗

𝑆 − 𝑌𝑖
= 0 →

𝑆 − 𝑌𝑖
𝑛𝑗

=
𝑌𝑖
𝑛𝑖
→ 𝑌𝑖

∗ =
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑆 

𝑑2𝑈𝛼

𝑑𝑌𝑖
2 = −

𝑛𝑖

𝑌𝑖
2 −

𝑛𝑗
(𝑆 − 𝑌𝑖)

2
< 0 

 

It follows that 𝑈𝛼 is higher when a transfer is performed, and that the closer the allocation is to the 

proportional allocation, the higher its value is. Hence, the principle of transfers is satisfied. ∎ 

 

A direct result of Claims 5.6 and C.1 is the following: 

Corollary C.1: Consider a variant of the H-PDSP, in which the objective function is replaced with the 

𝛼-fairness or the 𝐿𝑀𝑀 objective function. The RH algorithm solves to optimality the ASP sub-problem 

of these problems. 

Building on this result, we conducted an experiment aimed at analyzing how our objective 

function balances effectiveness and equity, compared with the frequently used 𝛼-fairness objective 

function. An important question is how far off a central decision maker (the food bank), who believes 

in the 𝛼-fairness function, would be if our proposed objective function would be used instead of the 𝛼-
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fairness function. Another important question is what degree of "inequality-averseness" is expressed by 

the solution obtained when using our function. For the purpose of answering these questions, we denote 

by 𝑍(�⃗� ) and 𝑈𝛼(�⃗� ) the values of the allocation vector �⃗�  under the 𝑍 objective function (our function) 

and the 𝛼-fairness objective function with a specific value of the parameter 𝛼, respectively. We refer to 

the following allocation vectors: �⃗� 𝑍
∗
is the optimal allocation vector under the 𝑍 objective value; �⃗� 𝑈𝛼

∗
 is 

the optimal allocation vector under the 𝛼-fairness function for a specific value of 𝛼; and �⃗� 𝑍𝑏  is the best 

allocation vector, in terms of the 𝑍 objective value, among the set of allocation vectors that are optimal 

for some value of the parameter 𝛼, i.e., �⃗� 𝑍𝑏 = argmax
�⃗� 𝑈𝛼

∗
{𝑍(�⃗� 𝑈𝛼

∗
)} (note that this vector may not be 

unique). Thus, a relevant measure for the analysis of the first question is 
𝑈𝛼(�⃗� 

𝑍∗)

𝑈𝛼(�⃗� 
𝑈𝛼
∗
)
. Values close to 1 

establish the similarity of the solutions that both functions choose. The second question can be answered 

by the range of values for the parameter 𝛼 that corresponds to the set of all vectors which satisfy the 

definition of �⃗� 𝑍𝑏 .  

Hence, for the purpose of this experiment, we were required to obtain the optimal allocations for 

given instances under both objective functions. To avoid the ambiguity of the 𝛼-fairness objective value 

with respect to zero allocations, the parameter 𝛼 was only tested with the values 0.01𝑖 for 𝑖 = 0,1, … ,99. 

Because of the nonlinear nature of the 𝛼-fairness function, the solutions with respect to this objective 

function were obtained by a complete enumeration of all routes of the considered instances. For each 

feasible route, the optimal allocation was found with the RH algorithm, and its objective value �⃗� 𝑈𝛼
∗
 was 

computed for each value of 𝛼. However, this approach restricted us to instances that were small enough 

such that all routes could be generated. The HFB dataset was used for this purpose because the number 

of sites included in it is quite limited. In addition, we recall that the feasibility of routes is determined 

by the value of the maximal traveling time parameter (𝐿). Hence, the value chosen for this parameter 

was small enough such that a full enumeration could be conducted, but not so small that the 

combinatorial nature of the problem would not lose its essence (there were still over 11 million routes, 

approximately 700,000 of them feasible). Because the value of 𝐿 was fixed (which left us with 4 

instances from the HFB dataset), we created 16 more instances based on the HFB's real data, leading to 

a total of 20 instances.  

The results are shown in Table 5. For each instance, we report several measures: (1) the average 

proportion 
𝑈𝛼(�⃗� 

𝑈𝛼
∗
)

𝑈𝛼(�⃗� 
𝑍∗)

 over all values of 𝛼; (2) the proportion 
𝑍(�⃗� 𝑍𝑏)

𝑍(�⃗� 𝑍
∗
)
; and (3) the range of values of 𝛼 

[𝛼𝑙𝑜𝑤, 𝛼ℎ𝑖𝑔ℎ] that correspond to �⃗� 𝑍𝑏 . We note several important observations: For the first measure, 

the lowest proportion obtained in any instance for any value of 𝛼 was 87%, and the average value was 

95.65%. For the second measure, in only 3 of the 20 instances �⃗� 𝑍𝑏  was not an optimal solution under 

our objective function, and even in these cases, the lowest proportion obtained was 96.7% (average 

proportion: 99.68%). Finally, the range of 𝛼 values corresponding to �⃗� 𝑍𝑏  tended to be quite extensive, 
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(with average interval length of 0.49) and quite central (e.g., only one instance did not include the value 

0.5). Two key conclusions can be derived from these results. The first is that the objective functions are 

quite interchangeable. In other words, a food bank considering which objective function should be 

incorporated into the H-PDSP model can use our objective function even if it believes the 𝛼-fairness 

objective function is the "true" one, and vice versa. The second conclusion is that our objective function 

tends to balance effectiveness and equity in a manner that does not apportion an exaggerated amount of 

weight to any of these two components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparison of the results from the 𝒁 objective function and 𝜶-fairness scheme 

Instance 𝐚𝐯𝐠
𝛂

𝑼𝜶(�⃗⃗� 
𝑼𝜶
∗
)

𝑼𝜶(�⃗⃗� 
𝒁∗)

 
𝒁(�⃗⃗� 𝒁𝒃)

𝒁(�⃗⃗� 𝒁
∗
)
 𝜶𝒍𝒐𝒘 𝜶𝒉𝒊𝒈𝒉 

1 96.53% 100.00% 0.15 0.61 

2 97.89% 100.00% 0.25 0.81 

3 96.48% 100.00% 0.13 0.61 

4 96.61% 100.00% 0.03 0.51 

5 95.38% 100.00% 0.44 0.76 
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6 93.41% 100.00% 0.48 0.89 

7 97.05% 100.00% 0.43 0.90 

8 96.18% 100.00% 0.10 0.54 

9 98.33% 100.00% 0.27 0.92 

10 97.64% 100.00% 0.11 0.72 

11 96.33% 100.00% 0.20 0.76 

12 96.52% 96.76% 0.36 0.92 

13 95.20% 100.00% 0.42 0.77 

14 93.27% 100.00% 0.17 0.51 

15 89.85% 96.86% 0.52 0.91 

16 91.92% 100.00% 0.14 0.53 

17 94.77% 100.00% 0.44 0.92 

18 95.18% 100.00% 0 0.59 

19 96.70% 100.00% 0.11 0.62 

20 97.80% 99.94% 0.27 0.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Online Appendix D: NP-Hardness Proof for the H-PDSP  

The decision version of the TSP is defined as follows: "Given a complete graph 𝐺 = (𝑉, 𝐸) with 

distance matrix 𝑑𝑖𝑗, is there a tour that visits each node exactly once with total distance at most 𝑏?"  

We define the decision version of the H-PDSP with the same input as the optimization version 

presented in Section 3. The question to be answered is as follows: “Is there a feasible solution, i.e., a 
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feasible route and an allocation that corresponds to this route, such that the value of the objective 

function is at least 𝛽?”. 

Let us define the following instance of the H-PDSP: 𝑃 = {1},𝐷 = {2,… , |𝑉|}, and the depot is 

in the same location as site 1; that is, ℓ𝑖𝑗 = 𝑑𝑖𝑗 , ℓ0𝑗 = 𝑑1𝑗, ℓ𝑗0 = 𝑑𝑗1  ∀𝑖, 𝑗 ∈ 𝑁. The supply in the pickup 

site is 𝑆1 = 𝑄 > 0, the population in each delivery site 𝑖 ∈ 𝐷 is 𝑛𝑖 = 1 and the vehicle capacity is 

infinite. There are no loading/unloading times, i.e., 𝑝𝑖 = 0  ∀𝑖 ∈ 𝑁, and the time limit imposed is 𝐿 =

𝑏, and 𝛽 = 𝑄.  

Because site 1 is the only pickup site and because no time is required to travel to it from the 

depot, surely the first stop visited by the vehicle will be site 1. Therefore, if it is possible to visit all 

delivery sites and return to the depot under the time limitation, then the optimal allocation is  

𝑌𝑖 =
1

|𝐷|
𝑄  ∀𝑖 ∈ 𝐷, i.e., a perfectly equitable allocation (with 1 − 𝐺 = 1), and its objective value would 

be 𝑄. Otherwise, the objective value would necessarily be lower than 𝑄. Hence, the answer to the TSP 

is "Yes" if and only if the answer to the H-PDSP is “Yes”.  

Note that a similar reduction applies for variants of the H-PDSP, in which the objective function 

is one of the alternatives presented in Appendix C, with the following changes: 

 𝑼𝜶: 𝛽 = |𝐷|
(
𝑄

|𝐷|
)
1−𝛼

1−𝛼
 for 𝛼 > 0, 𝛼 ≠ 1 or |𝐷| ln (

𝑄

|𝐷|
) for 𝛼 = 1.  

 LMM: Because this objective function is not defined by a single value, the decision version of the 

problem becomes “Is there a feasible solution, i.e., a feasible route and an allocation that corresponds 

to this route, such that the value of the maximal wealth of any agency is at least 𝛽1, the second 

highest wealth of any agency is 𝛽2, and so on for all 𝛽𝑖, ∀𝑖 ∈ 𝐷?”. Consider the same instance 

described above except that 𝛽𝑖 =
𝑄

|𝐷|
   ∀𝑖 ∈ 𝐷. Therefore, the answer to the TSP is "Yes" if and only 

if the answer is "Yes" to the instance of the H-PDSP. 
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Online Appendix E: Pseudocode of the Robin Hood Algorithm for the allocation sub-problem 

Algorithm RH  

1 𝐵[𝑔] =
𝑆[𝑔]

𝑁𝑆[𝑔]
,   𝐼[𝑔] = 0 

2 For 𝑖 = 𝑔 − 1 to 1: 

3  If  
𝑆[𝑖]

𝑁𝑆[𝑖]
≤ 𝐵[𝑖+1]: 

4   𝐵[𝑖] =
𝑆[𝑖]

𝑁𝑆[𝑖]
 

5 continue 

6  𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑆[𝑖] 

7 𝑟 = 𝑚𝑖𝑛{the index of the left-most blocking segment, the last segment + 1} 

8 𝐽 = argmin
𝑘∈{𝑖+1,…,𝑟−1}

{𝐵𝑘} //the set of poorest segments  

9 𝑗 = max (𝐽) //segments i+1,…,j are the sub-sequence of poorest segments 

10 𝐵[𝑖] = 𝐵[𝑗] 

11  𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑠𝑢𝑝𝑝𝑙𝑦 − 𝐵[𝑖] ⋅ 𝑁𝑆[𝑖] 

12  While 𝑠𝑢𝑝𝑝𝑙𝑦 > 0: 

13   // First bound for maximal increase: the supply that is still available 

14  Δ1 =
𝑠𝑢𝑝𝑝𝑙𝑦

∑ 𝑁𝑆[𝑘]
𝑗
𝑘=𝑖

 

15 // Second bound for maximal increase: the wealth of next sub-sequence 

16 Δ2 = {
∞, 𝑖𝑓  𝑗 = 𝑟 − 1

𝐵[𝑗+1] −𝐵[𝑗], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

17 // Third bound for maximal increase: the wealth increase that causes blockage 

18 Δ3 = min
𝑘=𝑖+1,…,𝑗

{
𝐶 − 𝐼[𝑘] − 𝑆[𝑘]

∑ 𝑁𝑆[𝑥]
𝑗
𝑥=𝑘

} 

19 Δ = min{Δ1, Δ2, Δ3} 

20 𝐵[𝑘] = 𝐵[𝑘] + Δ   ∀𝑘 = 𝑖, 𝑖 + 1,… , 𝑗 

21 𝑠𝑢𝑝𝑝𝑙𝑦 = 𝑠𝑢𝑝𝑝𝑙𝑦 − Δ ⋅∑𝑁𝑆[𝑘]

𝑗

𝑘=𝑖

 

22 𝐼[𝑘] = 𝐼[𝑘] + Δ ⋅ ∑𝑁𝑆[𝑥]

𝑗

𝑥=𝑘

   ∀𝑘 = 𝑖 + 1, 𝑖 + 2,… , 𝑗 

23 // update r,J,j 

24 𝑟 = 𝑚𝑖𝑛{the index of the left-most blocking segment, the last segment+1} 

25 𝐽 = argmin
𝑘∈{𝑖,…,𝑟−1}

{𝐵𝑘} //the segments that can be considered for an improving transfer 

26 𝑗 = max (𝐽) //segments i+1,…,j are the sub-sequence of poorest segments 
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Online Appendix F: Details on the Computation of 𝑼𝑩𝟓  

The computation of the bound relies on three optimization problems as a backbone, each solved as a 

MILP. If any of them cannot be solved to optimality due to limited computational resources, the upper 

bound from the MILP solver can be used as a valid bound.  

 

MILP 1 - Obtaining 𝑴𝑺 

We recall that 𝑀𝑆 represents the maximal number of segments in a route whose maximal duration is 𝐿. 

It can be obtained by solving the following MILP (the notation follows from Section 3): 

𝑀𝑎𝑥  𝑍 =∑∑𝑥𝑖𝑗
𝑗∈𝐷𝑖∈𝑃

  
(27) 

𝑠. 𝑡.   

∑ 𝑥0𝑗𝑗∈𝑃 = 1   (28) 

∑ 𝑥𝑖0𝑖∈𝐷 = 1   (29) 

∑ 𝑥𝑖𝑗𝑗∈𝑁0 = ∑ 𝑥𝑗𝑖𝑗∈𝑁0   ∀𝑖 ∈ 𝑁 (30) 

∑ ∑ ℓ𝑖𝑗𝑥𝑖𝑗𝑗∈𝑁0,𝑖≠𝑗𝑖∈𝑁0 + ∑ 𝑝𝑖𝑣𝑖𝑖∈𝑁 ≤ 𝐿   (31) 

𝑢𝑖 − 𝑢𝑗 + (𝑀𝑉 + 1)𝑥𝑖𝑗 ≤ 𝑀𝑉  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (32) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁0 (33) 

𝑢𝑖 ≥ 0 ∀𝑖 ∈ 𝑁 (34) 
 

The objective function (27) maximizes the number of times the vehicle moves from a pickup site to a 

delivery site, which defines a segment. Constraints (28)-(34) are identical to constraints (1)-(3), (12)-

(14), (16) from the formulation in Section 3. This problem can be shown to be NP-Hard through a 

reduction from the TSP.  

 

MILP 2 - Obtaining 𝑴𝑽(𝒎𝒔) 

𝑀𝑉(𝑚𝑠) can be obtained by adding the following constraint to the 𝑀𝑉 problem presented in Appendix 

A: 

∑∑𝑥𝑖𝑗
𝑗∈𝐷𝑖∈𝑃

= 𝑚𝑠 

Clearly, this problem is also NP-Hard.  

 

MILP 3 - The Segment Sequencing Sub-problem 

We recall that the input of the Segment Sequencing sub-problem (SSP) includes a subset of pickup 

(delivery) sites that need to be visited, denoted by 𝑆𝑝 ⊆ 𝑃 (𝑆𝑑 ⊆ 𝐷), and the number of segments that 

are defined by these sites, denoted by 𝑚𝑠. We can formulate the sub-problem as follows: 

𝑀𝑎𝑥  𝑍 =∑𝑌𝑖
𝑖∈𝑃

−∑ ∑ 𝐸𝑖𝑗
𝑗∈𝐷,𝑗>𝑖𝑖∈𝐷

  (35) 

𝑠. 𝑡.   
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∑ 𝑥𝑗𝑖𝑗∈(𝑆𝑝∪𝑆𝑑) = 1  ∀𝑖 ∈ 𝑆𝑝 ∪ 𝑆𝑑 (36) 

∑ 𝑥𝑖𝑗𝑗∈(𝑆𝑝∪𝑆𝑑) = 1  ∀𝑖 ∈ 𝑆𝑝 ∪ 𝑆𝑑 (37) 

∑ 𝑥0𝑗𝑗∈𝑆𝑝 = 1   (38) 

∑ 𝑥𝑖0𝑖∈𝑆𝑑 = 1   (39) 

𝑄𝑖 ≤ 𝑆𝑖  ∀𝑖 ∈ 𝑆𝑝 (40) 

𝐼0𝑗 = 0  ∀𝑗 ∈ 𝑆𝑝 ∪ 𝑆𝑑 (41) 

𝑄𝑖 = ∑ 𝐼𝑖𝑗𝑗∈(𝑆𝑝∪𝑆𝑑∪{0}) − ∑ 𝐼𝑗𝑖𝑗∈(𝑆𝑝∪𝑆𝑑∪{0})   ∀𝑖 ∈ 𝑆𝑝 (42) 

𝑌𝑖 = ∑ 𝐼𝑗𝑖𝑗∈(𝑆𝑝∪𝑆𝑑∪{0}) − ∑ 𝐼𝑖𝑗𝑗∈(𝑆𝑝∪𝑆𝑑∪{0})   ∀𝑖 ∈ 𝑆𝑑 (43) 

𝑌𝑖 = 0 ∀𝑖 ∈ 𝑁\𝑆𝑑 (44) 

𝐼𝑖𝑗 ≤ 𝐶 ⋅ 𝑥𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝑆𝑝 ∪ 𝑆𝑑 ∪ {0}

∈ 𝑁0 

(45) 

∑ ∑ 𝑥𝑖𝑗
𝑗∈𝑆𝑑𝑖∈𝑆𝑝

= 𝑚𝑠 

 

 (46) 

𝐸𝑖𝑗 ≥ 𝑞𝑖𝑌𝑗 − 𝑞𝑗𝑌𝑖  ∀𝑖, 𝑗 ∈ 𝐷 (47) 

𝐸𝑖𝑗 ≥ 𝑞𝑖𝑌𝑗 − 𝑞𝑗𝑌𝑖  ∀𝑖, 𝑗 ∈ 𝐷 (48) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑆𝑝 ∪ 𝑆𝑑 ∪ {0} (49) 

𝑄𝑖 ≥ 0 ∀𝑖 ∈ 𝑆𝑝 (50) 

𝑌𝑖 ≥ 0 ∀𝑖 ∈ 𝐷 (51) 

𝐼𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ 𝑆𝑝 ∪ 𝑆𝑑 ∪ {0} (52) 

 

This objective function (35) is identical to that of the H-PDSP, and similarly the related 

constraints (47)-(48). Constraint (46) is the same constraint as the one used in MILP 2, restricting the 

number of segments to a given value. All other constraints are identical to those that appear in the 

formulation of the H-PDSP, except that the sets 𝑆𝑝 and 𝑆𝑑 replace the sets 𝑃 and 𝐷, respectively. Note 

that a sub-tour elimination constraint is not required in this formulation since there are no cost or time 

considerations. This problem can be shown to be NP-Hard by a reduction from the Partitioning Problem.  
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Online Appendix G: Comparison of the Food Bank Benchmark Algorithm and the LNS 

 

Table 4: Comparison of the results obtained per day 

 FB LNS  

Day 𝑭𝑭𝑩 𝟏 − 𝑮𝑭𝑩 𝒁𝑭𝑩 𝑭𝑳𝑵𝑺 𝟏 − 𝑮𝑭𝑩𝑳𝑵𝑺 𝒁𝑳𝑵𝑺 
𝒁𝑳𝑵𝑺 − 𝒁𝑭𝑩

𝒁𝑭𝑩
 

  0 16,806.71 0.17 2,856.10 16,806.71 0.35 5,886.32 106.10% 

1 7,558.11 0.12 925.34 7,558.11 0.22 1,642.65 77.52% 

2 8,137.555 0.11 857.73 8,137.55 0.14 1,131.80 31.95% 

3 3,013.38 0.09 266.74 3,101.37 0.20 617.94 131.66% 

4 1,555.25 0.14 212.43 1,555.25 0.25 396.19 86.50% 

5 13,370.93 0.07 956.45 13,370.93 0.10 1,287.42 34.60% 

6 4,617.512 0.09 418.74 4,724.22 0.12 565.29 35.00% 

7 20,351.81 0.12 2,521.18 20,351.81 0.36 7,276.95 188.63% 

8 35,801.83 0.10 3,693.66 35,801.83 0.16 5,770.43 56.23% 

9 24,723.55 0.11 2,730.00 24,723.55 0.13 3,183.45 16.61% 

10 8,444.161 0.18 1,515.72 8,444.16 0.38 3,171.90 109.27% 

11 5,355.028 0.11 565.60 5,355.03 0.18 966.28 70.84% 

12 8,679.625 0.03 218.14 8,679.62 0.12 1,039.03 376.31% 

13 4,495.2 0.09 383.88 4,495.20 0.37 1,652.74 330.54% 

14 5,224.977 0.06 316.23 5,224.98 0.16 825.86 161.16% 

15 7,767.471 0.06 501.97 7,767.47 0.25 1,910.39 280.58% 

16 6,035.341 0.13 765.47 6,035.34 0.14 847.64 10.73% 

17 18,186.52 0.15 2,691.86 18,186.52 0.17 3,050.83 13.34% 

18 6,256.472 0.07 415.60 6,256.47 0.19 1,166.26 180.62% 

19 7,681.255 0.09 665.04 7,681.25 0.23 1,750.17 163.17% 
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Table 5: Comparison of the results across agencies 

   FB LNS     FB LNS 

Agency 𝒏𝒊 𝒘𝒊 
# 

Visits 

Total 

Allocation 

# 

Visits 

Total 

Allocation 

 
Agency 𝒏𝒊 𝒘𝒊 # Visits Total Allocation 

# 

Visits 

Total 

Allocation 

9 71 1 3 1,983.95 3 192.47  40 270 2 2 3,605.96 2 710.76 

10 150 1 2 476.19 2 264.34  41 3,500 4 6 7,715.51 6 28,435.19 

11 500 3 3 4,281.01 4 3,672.77  42 45 1 1 45.66 2 82.12 

12 600 3 4 4,149.58 4 1,687.21  43 172 1 2 1,228.23 2 1,058.89 

13 912 4 6 16,259.97 6 17,765.03  44 350 2 3 6,137.22 3 4,559.99 

14 550 3 4 5,508.50 4 4,557.22  45 480 3 4 2,091.48 4 1,604.59 

15 300 2 3 2,823.32 3 3,047.80  46 600 3 4 13,927.73 4 4,717.31 

16 620 3 4 4,538.71 4 5,999.50  47 600 3 4 4,760.77 4 5,294.74 

17 120 1 3 794.73 3 851.16  48 1,200 4 6 11,790.21 6 15,806.23 

18 5,000 4 7 6,452.86 7 21,735.19  49 160 1 1 642.85 1 161.59 

19 140 1 2 541.44 2 413.68  50 250 2 2 212.83 2 214.50 

20 400 3 4 2,231.33 4 3,027.73  51 360 2 2 761.84 2 876.16 

21 250 2 2 1,365.55 2 704.43  52 260 2 3 6,829.83 3 1,107.46 

22 70 1 1 642.85 2 102.95  53 60 1 1 822.25 2 529.12 

23 30 1 2 2,826.16 2 153.82  54 250 2 3 1,137.42 3 999.95 

24 125 1 1 1,620.58 2 363.73  55 230 2 3 1,676.70 3 960.22 

25 210 2 2 2,152.61 2 1,851.91  56 100 1 2 434.20 2 402.94 

26 350 2 3 3,587.38 3 1,557.82  57 120 1 0 0.00 2 349.18 

27 250 2 3 1,142.93 3 1,837.59  58 370 2 3 2,068.07 2 664.88 

28 200 2 2 213.48 2 319.98  59 400 3 4 4,994.46 4 3,287.90 

29 300 2 3 2,557.77 3 2,697.31  60 350 2 2 2,190.82 2 1,049.45 

30 300 2 2 1,180.52 3 2,205.11  61 120 1 2 541.44 2 312.38 

31 130 1 1 79.68 2 161.60  62 400 3 4 2,284.08 4 1,022.91 

32 200 2 2 2,183.96 3 337.44  63 160 1 2 818.14 2 134.77 

33 4,000 4 5 9,089.42 6 26,067.50  64 220 2 3 2,404.08 3 607.49 

34 1,000 4 6 13,965.35 7 9,991.16  65 245 2 1 275.06 2 522.80 

35 380 2 3 2,613.48 3 1,118.57  66 100 1 2 894.39 2 114.38 

36 250 2 3 4,064.73 3 1,006.09  67 350 2 2 2,005.51 2 851.82 

37 1,250 4 6 9,554.68 6 10,298.97  68 200 2 3 1,123.23 3 2,020.64 

38 500 3 4 4,547.81 4 4,409.80  69 1,000 4 6 7,742.56 6 4,452.50 

39 330 2 2 2,973.13 2 214.87  70 250 2 3 6,496.47 3 2,729.76 

          Sum 184 214,062.69 197 214,257.38 

          𝟏 − 𝑮  0.55  0.70 

          𝒁  116,153.68  150,984.01 
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