RESTORING TRUST IN PASSWORDS
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This document is intended for technical audiences to provide a complete description of the BlindHashing
process as well as implementation details of each individual component in the processing pipeline. The
following sections will identify all the steps required for both client and server to complete a
BlindHashing request.

This document should allow a third party to implement a BlindHashing client library capable of securely
performing BlindHashing to protect password verifiers from offline attack. This document should also
allow a third party to create a matching or ‘compliant’ BlindHashing implementation which, provided
the same data pool and application tokens, can then generate for any ‘Hash1’ input, the same exact
‘Salt2’ output as BlindHash’d own servers. Test vectors showing expected inputs/outputs for a given
application token against a known data pool can be provided.

Areas which this document will not address are the design, management, and operation of the
underlying compute, network, and storage systems themselves. Operational concerns such as
datacenter logistics, network design, system hardening, software deployment, patch management,
resource monitoring, event logging, intrusion detection, failover and load balancing, etc. are not
addressed by this document.

The systems and procedures described in this document are the intellectual property of TapLink, Inc.
and protected by US Patent 9,021,269 and additional patent(s) pending. This document does not
constitute a license of any kind to make, use, or sell BlindHashing services.

The “client” is a customer’s machine which is performing password authentication for a user login. The
client machine will perform some hashing of the user’s password with a secure random salt, in order to
generate a ‘Hash1’ value. A BlindHashing request containing a client identifier (AppID), ‘Hash1’ value,
and a ‘Version ID’ is sent from the client to the BlindHashing server via HTTPS.

A ‘Request Handler’ receives a client request, and parses the request to determine the Client IP, ‘ApplD’,
‘Hashl’, and ‘Version’ values. The request is authorized based on the ‘AppID’ and Client IP, and then
dispatched to the appropriate ‘Data Pool Handler’ via a single-packet UDP request over a dedicated
secure channel (‘spiped’).

Data Pool Handlers receive UDP packets containing data pool read requests from the Request Handlers
and calculate the necessary indices to read from the data pool volumes. As reads are completed, they
are transformed from raw data pool bits into the so-called ‘virtual private data pool’ bits using HMAC
with a 64-byte key associated with the specified AppID. The Data Pool Handler then assembles the
transformed reads into a buffer for a final hashing step. Once all reads are complete, the final hash is
performed and the resulting digest (‘Salt2’) is returned to the ‘Request Handler’ via UDP over a
dedicated secure channel.
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The ‘Request Handler’, upon receiving the UDP response from the ‘Data Pool Handler’, assembles a
JSON-formatted response to be returned to the client, and then returns the response to the client via
the existing TLS channel.

The client, upon receiving the JSON response with the ‘Salt2’ value, performs the final HMAC with
‘Hash1’ and ‘Salt2’ in order to calculate the desired ‘Hash2’ value, and then compares the calculated
‘Hash2’ against the stored ‘Hash2’ value to determine if the supplied password is a match.

The following sections will describe the specific implementation and design considerations for each of
these steps in detail.

A client performing password based authentication of a user’s credentials receives a username and
password over a web form submitted via HTTPS using a secure TLS channel. The client queries a back-
end database with the username to determine if an account exists, and if so retrieves the associated
‘Saltl’, ‘Hash?2’, and hashing meta-data for that username.

Hashing meta-data stored with the user record may specify the desired hashing function and cost
factors used by this pre-hashing step. The meta-data may also include a 32-bit integer version number
which must be included in the BlindHashing request.

The client first performs a pre-hashing step using the ‘Salt1’ and ‘Password’ in order to calculate ‘Hash1’.
Next, a BlindHashing request is dispatched to BlindHash’s servers by making an HTTPS request including
the client’s ApplD as a 64-byte hex encoded string, the ‘Hash1’ value as a hex-encoded string, and the
BlindHashing Version ID.

The JSON-encoded response is parsed to retrieve a 64-byte hex encoded ‘Salt2’, as well as an optional
decimal ‘Version ID’, decimal ‘New Version ID’, and a 64-byte hex encoded ‘New Salt2’. The ‘Salt2’ value
is converted to 64-byte binary value and HMAC ed with the 64-byte binary ‘Hash1’ to calculate a
‘Hash2’, which is compared against the ‘Hash2’ stored in the user database. If the ‘Hash2’ values are
equal, then the user is successfully authenticated.

If ‘New Version ID’ and ‘New Salt2’ values are included in the BlindHashing response, and only if the user
is successfully authenticated, then the ‘New Salt2’ value is converted to a 64-byte binary value and
HMAC’ed with the 64-byte binary ‘Hash1’ to calculate a new ‘Hash?2’ value which is saved in the user
database in place of the existing ‘Hash2’ value, along with the ‘New Version ID’ integer, in place of any
existing ‘Version ID’ stored with the hashing meta-data.

The ‘Application ID’ or ApplID is a 64-byte randomly generated token assigned to the client by the
BlindHashing server. Each client may have one or more ApplIDs under their account, where an AppID
identifies the client making the request, as well as a set of configuration parameters associated with the
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AppID. The ApplID is considered a shared secret between the client and BlindHashing server and is used
to authenticate the client.

A given client may configure multiple ‘Applications’ and be issued separate ApplDs for each one.
Separate ApplDs can be used to provide a degree of separation in terms of authenticating, authorizing,
and accounting for any BlindHashing requests.

The configurable settings of an AppID include most importantly, the size the of the data pool used for
any BlindHashing requests. Additional settings include, for example, an IP whitelist of allowed clients,
rate limits, rate notification thresholds, and preferred server lists.

After retrieving the user’s ‘Saltl’ and ‘Hash?2’ values from the database and before dispatching the
BlindHashing Request, the client must perform a pre-hashing step. This pre-hashing is intended to
ensure the ‘Hash1’ value sent to the BlindHashing server is an independent and identically distributed
uniformly random value, which cannot be used on its own to distinguish a user’s password, or perform a
dictionary attack against the user’s password, regardless of the entropy of the password itself.

At a minimum, the pre-hashing step must use a cryptographically secure hashing algorithm, and
generally will combine the user’s password with the secure random salt using the HMAC construct.

The ‘Saltl’ value must be at least 16 bytes of CS-PRNG output which is uniquely generated for each user
at the time the password was set. The recommended hashing function to perform this initial step is
single iteration of HMAC-SHA512.

There may also be some key stretching applied at this time, for example using ‘scrypt’, ‘bcrypt’, or
‘PBKDF2’.

Beyond a minimal single HMAC invocation, the client may also perform some amount of key stretching
in the process of calculating the ‘Hash1’ value. This key stretching may be in place purely as a historical
feature, in other words, key stretching which was performed to calculate ‘Hash1’ values before
BlindHashing was even introduced.

Any amount of key stretching may be performed in the process of generating ‘Hash1’ as long as a
minimum of 128 bits of entropy are present in the final hash (salt plus password).

When upgrading an existing database of hashed passwords with BlindHashing, as long as the existing
Hash1 values are at least 128-bits, and were calculated using a secure random salt with at least 128-bits,
the Hash1 values can be used as-is, allowing the Hash1 values to be blinded offline (without the user’s
password).

A typical formulation of BlindHashing with key stretching would be;

Hash1 = KeyStretch(Salt1, password, costFactor)
Salt2 = BlindHash(AppID, Hash1)
Hash2 = HMAC(Salt2, Hash1)
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In this case, key stretching is completed prior to issuing the BlindHashing request. This means that total
latency is the sum of key stretching latency with BlindHashing latency.

An alternative structure performs key stretching asynchronously while the BlindHashing request is being
issued, which reduces the latency to the slower of the key stretching latency or the BlindHashing
latency.

Hash1 = KeyStretch(Salt1, password, costFactor)
Hash1’ = HMAC-SHA512(Salt1, password)

Salt2 = BlindHash(AppID, Hash1’)

Hash2 = HMAC(Salt2, Hash1)

In this case the Hash1’ used for issuing the BlindHashing request is the unstretched HMAC of password
and salt, and then the BlindHashing request can be made while the key stretching is still completing.
Once both key stretching and BlindHashing are complete, the final Hash2 value is the HMAC of Salt2 and
the stretched Hash1.

The primary advantage of this approach is to allow any key stretching which is deemed necessary by the
customer to occur concurrently with the BlindHashing request. A disadvantage of this approach is that
the un-stretched hash is sent over the network, providing somewhat less protection against a
compromised TLS channel. One caveat with performing asynchronous key-stretching is that it cannot be
used when upgrading existing hashes with BlindHashing. In other words, if you have a set of existing
Hash1 values and you must perform an offline upgrade of those existing hashes with BlindHashing, then
by definition this will mean the key stretching must be run prior to the BlindHashing request.

A BlindHashing request specifies a 64-byte AppID, an up-to 64-byte Hash1 value, and optionally a 32-bit
integer version number. The ApplID is a static token, which is randomly generated by the BlindHashing
server when the ‘Application’ is first created.

The version number is a value returned from a previously completed BlindHashing which indicates the
configured size of the data pool at the time the request was made.

The request can be formatted as an HTTPS GET request against a BlindHashing server, with the URL path
of “/<AppID>/<Hash1>" or “/<AppID>/<Hash1>/<Version>". The AppID and Hash1 values are hex-
encoded, and the Version is decimal encoded.

A BlindHashing response for a successfully completed request will indicate an HTTP status of ‘200 OK’,
and a JSON-encoded response body. Each response contains a 64-byte hex encoded ‘Salt2’, and a 32-bit
integer ‘Version ID’".

A successful response may optionally contain an additional 64-byte hex encoded ‘New Salt2’, and a 32-
bit integer ‘New Version ID’. See: * " for details about these fields.

A request may be unsuccessful for a number of reasons;
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* Malformed HTTP request

*  Missing, malformed, or invalid ‘AppID’

* Unauthorized request for a valid ‘AppID’
* Missing, malformed, or invalid ‘Hash1’

* Internal server error

* Network failure

An unsuccessful request will result in either an HTTPS response with a 5xx status code, or a timeout
waiting for a response.

Given a ‘Salt2’ value from a completed BlindHashing request, the final hashing step will key the hash
based on ‘Salt2’ to ensure that the stored hash value is not useable to verify a password without the
‘Salt2’ value. In this case, we can use a single iteration of HMAC-SHA512(‘Salt2’, ‘Hash1’) to key the
hash.

Note that we are using ‘Salt2’ to key the ‘Hash1’ value, rather than the password string itself. There are
operational advantages to using ‘Hash1’ instead of ‘Password’ for the final hashing step. First, it allows
the client to clear the user’s password from memory as soon as ‘Hash1’ is calculated and before
dispatching the BlindHashing request. Second, it allows applying a Blind Hash offline (where the user
password is not present) to an existing database of ‘Hash1’ values.

However, by calculating ‘Hash?2’ purely using ‘Hash1’ and ‘Salt2’, this means that the BlindHashing
server, knowing both ‘Hash1’ and ‘Salt2’ itself, also could know the ‘Hash2’ value which is stored in the
client database. Alternatively, we could include the ‘Salt1’ value as part of the final hashing step, e.g.
HMAC-SHA512(‘Salt2’, ‘Salt1’ | | ‘Hash1’), or similar, which would ensure the BlindHashing server would
not have any knowledge of the client’s stored ‘Hash2’ value, but it is not clear what potential attack this
would be defending against.

As the data pool stored by the BlindHashing server is expanded, the maximum configurable size of the
data pool for any given ApplD is likewise increased. The configured data pool size for a given AppID may
then be increased either automatically, or manually at some later date. When the configured data pool
size of an ApplID is changed, the new data pool size is stored associated with a monotonically
incrementing version number.

For example, if the current data pool is 16TB, all newly created AppIDs will start with a configured data
pool size of 16TB and a Version ID counter equal to 1. If in the future the physical data pool is expanded
to 32TB, the existing ApplIDs can now be configured with a data pool size up to 32TB. When an ApplID is
reconfigured to actually use the new 32TB maximum size, the Version ID for that AppID is incremented,
and the new data pool size is stored for that AppID associated with the new Version ID. So, in this
example, the ApplID’s configured set of data pool sizes would be: { “1 16TB”, “2 32TB" }.

If no Version ID is specified in a BlindHashing request, or the Version ID that was specified in the request
matches the latest configured version for that AppID, then the BlindHashing request is processed only
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using the latest configured size of the data pool, and the response will include only a single ‘Salt2’ result,
along with the ‘Version ID’ of the latest configured data pool size.

Generally, only new or first-time BlindHashing requests will be sent without a version number (e.g.
upgrading existing hashes, enrolling a new user, or storing a password change or password reset). All
other BlindHashing requests must specify the Version ID which they were initially run against, in order to
ensure a consistent ‘Salt2’ response.

If a VersionlD is specified in the request which is not the latest version configured for that ApplID, then
the BlindHashing request is processed both against the specified version, as well the latest existing
version configured for that ApplD — effectively two requests processed concurrently by the server. The
response will then include both the ‘Salt2’ and ‘Version ID’ for the requested version, as well as a ‘New
Salt2’ and ‘New Version ID’ values corresponding to the latest configured settings for that ApplID.

The ‘New Salt2’ and ‘New Version ID’ fields in the response indicate to the client that a new (presumably
larger) data pool size has been configured since the original Blind Hash was performed. Only if the client
is successfully authenticated using the first ‘Salt2’ value to arrive at the expected ‘Hash2’ result, then the
‘New Salt2’ value can then be used to re-blind the hash, and finally, the new ‘Hash2’ and ‘Version ID’
values for the authenticated user can be updated in the client database.

Customers have expressed concern with lock-in to the BlindHashing service — in other words, they desire
an ability to un-blind their hashes without requiring the user’s password in memory, and without having
to reset passwords. Customers, in essence, want the ability to recover the original ‘Hash1’ value for the
user’s password if needed.

To keep the ‘Hash1’ value in a database would undermine the entire security premise of BlindHashing. If
the ‘Hash1’ value can be retrieved, the BlindHashing step is no longer required in order to attempt to
verify a password, and an offline attack becomes possible.

Keeping ‘Hash1’ in an encrypted form would only be reasonable if; (1) the ciphertext of ‘Hash1’ is
proveably useless for verifying if a password guess is correct, and (2) the key to decrypt ‘Hash1’ can be
kept offline.

In order to satisfy these points, we recommend encrypting ‘Hash1’ with an asymmetric algorithm which
provides indistinguishability under the chosen plaintext attack (IND-CPA). The unencrypted ‘Hash1’
value must not be stored, and the private key to allow decryption of ‘Hash1’ must be kept offline under
strict physical security.

Given an encrypted ‘Hash1’ it also becomes possible to re-blind hashes offline, for example after the
data pool size is increased, or when switching to a new ApplD if a client-side database breach is
discovered.

The BlindHashing service is provided by two distinct components; a ‘Request Handler’ and a ‘Data Pool
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Handler’. The following sections will describe in detail how these components perform the steps
required to complete a BlindHashing request.

The Request Handler is the front-end of the BlindHashing service, and as such receives HTTPS requests
from possibly malicious clients, and must parse these requests, perform authentication, authorization,
and accounting, and ultimately provide BlindHashing responses back to the clients.

A large number of Request Handlers may be running behind a suitable L4 or L7 load balancer, and
requests from the same or different clients may be processing concurrently across any number of
Request Handlers.

The processing steps the Request Handler performs are to;

* Receive BlindHashing requests over HTTPS,

* Parse the specified ApplD, Hash1, and Version ID values from the request,

¢ Authenticate the client making the request,

¢ Authorize the request based on the ApplD, Client IP, and any specified rate limits,

* Increment ApplD-specific counters to account for the request,

* Log any unauthorized access and dispatch any appropriate notifications of such,

* Determine the configured organization key, data pool volume, data pool size, and data pool
read count in order to complete the request

¢ Dispatch one or two requests to the appropriate Data Pool Handlers to complete the request

*  Wait for response(s) from the Data Pool Handler, and return an HTTP error upon timeout

* Return a JSON-formatted response with the ‘Salt2’, ‘Version ID’, and optionally ‘New Salt 2’ and
‘New Version ID’ in the response body.

An HTTPS / TLS session is established between the client machine and our Request Handler, and an HTTP
GET request is issued with a URL path of ‘/<ApplID>/<Hash1>/<Version>’. The AppID and Hash1 values
are mandatory hex-encoded strings, where AppID must be exactly 64 bytes and Hash1 must be at least
16 bytes and no more than 64 bytes. The Version, if specified, must be a decimal string between 0 and
21,

To parse the response, we split the URL path by the ‘/’ character, and expect either 2 or 3 resulting
fields. The first field must be exactly 128 characters ([A-Fa-f0-9]) and convert to 64 bytes of data. The
second field must be between 32 and 128 characters inclusive ([A-Fa-f0-9]) and convert to between 16
and 64 bytes of data. The third field, if present, must convert into a 32-bit unsigned integer without
overflow. A violation of the parsing constraints results in an HTTP error code response, with an error
message indicating the type of parsing error, but without reflecting the requested values in the error
response.

There are a great many crucial details around the underlying process of making such a secure,
performant, and valid HTTP request which we will take for granted at this time. However, it is worth
noting that in communication with a valid peer, there would be no attacker-controlled cleartext or
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ciphertext in any part of the request, which might be otherwise used to compromise the security of the
TLS channel.

The 64-byte binary ApplD specified in the request is hashed using SHA512, to calculate H(AppID). The
resulting 64-byte digest is used to lookup the AppID in a server-side database.

A hash of the AppID is used for two reasons;

* The ApplD is a sensitive value which we can avoid storing on the BlindHashing server

* The search function used by the database may not run in constant time, and therefore could be
exploited by a client to search for valid AppIDs by matching progressively more bytes and
looking for progressively longer delays in receiving the ‘AppID Not Found’ error response

Using H(AppID) solves both of these issues as it is computationally infeasible to compute the pre-images
necessary to pull off a timing attack, and H(AppID) is not sensitive since the ApplID itself is 512-bits of
randomly generated data.

Authentication of a BlindHashing request is primarily based on matching H(AppID) to an existing record
in the server-side database. If the H(AppID) is not found, then a HTTP 500 status code is returned with a
message indicating ‘AppID Not Found’ is returned.

If the H(ApplID) value is found, then the request is considered to be authenticated for that AppID, and
the configured settings for the AppID are retrieved from the server-side database.

Once a request is authenticated for a given ApplD, a request is then authorized based on the Client IP
address, and any rate limits which may be in place. If an IP whitelist is specified, then the IP is compared
against the list of allowed addresses (which may be individual addresses, or subnet ranges) for a match.

If a rate limit is specified, a multi-level token bucket algorithm determines if the request may be
processed. A first level token bucket determines a baseline allowed rate, while a second level token
bucket allows short term bursts above the baseline, which may also trigger a warning to be sent to the
client via SMS, or email.

If both a Client IP whitelist and rate limit exist, the IP whitelist is checked first, and the rate list checked
only if the IP is allowed. In either case, a failure results in an error message indicating the reason for the
failure.

If the request is not authorized, either a ‘Client IP Rejected’ or ‘Rate Limit Exceeded’ counter is
incremented for that ApplD. Otherwise, if the request is authorized, an ‘Authorized Request’ counter is
incremented for that ApplD. Performance counters track the incidence of various such events occurring
on a per-ApplD basis at 5-minute intervals.
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Once a request is authorized, to prepare for the actual BlindHashing request, the Request Handler
retrieves the 64-byte ‘Organization Key’ which was randomly generated by the BlindHashing server at
the time a new client account is first created, and which is shared across all the AppIDs created for that
account. The Request Handler also retrieves the data pool volume, data pool size, and data pool read
count settings which are configured for the specified version of the ApplID, as well as the same settings
for the latest configured version of the AppID.

If the ‘Version ID’ in the BlindHashing request is not equal to the latest configured version, then two
Data Pool Read requests are prepared. If no version is specified, or the specified version matches the
latest configured version, then only a single Data Pool Read Request is prepared.

Each Data Pool Read Request is a UDP packet with the following format;

* TxID — 4 bytes— A binary value which is copied into the corresponding response packet returned
by the Data Pool Handler verbatim.

* UDP Port — 4 bytes — Big Endian unsigned integer indicating the UDP Destination Port for the
response packet.

* Read Count — 4 bytes — Big Endian unsigned integer indicating the number of reads to be made
from the data pool to complete the BlindHashing Request (valid range: 1 — 128)

* Pool Size — 4 bytes — Big Endian unsigned integer indicating the size of the data pool volume in
millions of bytes (MiB).

* Organization Key — 64 bytes — The organization level (not unique per ApplD) key used to
transform the data pool bits into a virtual private data pool

* Indexer — 64 bytes — The value used to derive the uniformly distributed locations of the data
pool to be read from

If two requests are being dispatched concurrently, all values will be the same except for the TxID, Read
Count, and Pool Size.

The ‘TxID’ is used to distinguish one Data Pool Read Request from any other requests which may have
been sent from the same Request Handler to the same Data Pool Handler while this request is still being
processing. The Data Pool Read Response will include the TxID field verbatim to allow the Request
Handler to associate the response with the corresponding request. The TxID is implemented by the
Request Handler as a monotonically incrementing counter which will wrap if it overflows. This allows for
2°%-1 requests to theoretically be outstanding all at once before any responses from the Data Pool
Handler would not be distinguishable.

The ‘Indexer’ is calculated as the SHA512-HMAC(AppID, Hash1) where ApplD is the key, and Hash1 is the
value being hashed. The 64-byte binary values (not string representations thereof) are provided as
inputs to the underlying SHA512 function, and the ‘Indexer’ is the 64-byte binary result of the
calculation.

The ‘Hash1’ value is run through an HMAC with the AppID as the key in order to ensure that requests
with the same ‘Hash1’ value issued against two different AppIDs will each have independently
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distributed read patterns against the data pool, and provide entirely uncorrelated results, even for two
ApplDs running against the same virtual private data pool.

An available Data Pool Handler is selected by the Request Handler based on the ‘Data Pool Volume’
configured for the ApplD. If multiple Data Pool Handlers are available to service requests for a given
‘Data Pool Volume’ then requests are dispatched round-robin between the available Data Pool Handlers.

A single UDP packet is sent to ‘localhost’ with a Destination UDP Port based on the selected Data Pool
Handler. A dedicated secure channel is provided by a ‘spiped’ daemon—*“a utility for creating
symmetrically encrypted and authenticated pipes between socket addresses” —which listens on
localhost on the specified port, and provides a persistent secure channel carrying packets to the desired
Data Pool Handler.

The Request Handler increments a ‘Data Pool Read’ counter associated with the ApplD based on the
number of Data Pool Read requests which were dispatched (either 1 or 2) as well as request counters
associated with each Data Pool Handler.

The Data Pool Handler provides asynchronous responses via UDP packets with the following format;

* TxID — 4 bytes — Binary value copied from the Data Pool Request packet
* Salt2 — 64 bytes — Binary value with the completed result of the BlindHashing process

The response is sent from the Data Pool Handler to its ‘localhost” with a UDP Port as specified in the
Data Pool Request, which again causes the response to be routed by an ‘spiped’ daemon providing a
persistent encrypted link back between the Data Pool Handler and Request Handler processes.

As UDP packets are received by the Request Handler on the designated port, the 68 byte payload is
parsed into TxID and Salt2 fields. The TxID is used to lookup the corresponding request which was in
process, and dispatch the HTTP response back to the client.

Once a UDP packet is received from the Data Pool Handler over the encrypted channel, the TxID is used
to lookup which request it corresponds to. If the request involves only a single Data Pool Read, then a
JSON-formatted response with ‘Salt2’ and ‘Version ID’ is immediately prepared, and dispatched to the
remote client with an HTTP Status Code of 200.

If the request involves two Data Pool Reads, then the ‘Salt2’ and ‘Version ID’ are queued to be returned
to the client. Once both responses are received from the Data Pool Handler(s) then a single JSON-
formatted response containing: ‘Salt2’, ‘VersionlID’, ‘New Salt2’, ‘New VersionID’ is assembled and
dispatched to the remote client. The TxID is used to determine which response corresponds to ‘Salt2’
versus ‘New Salt 2'.

The Request Handler also implements a timeout handler which will dispatch a response with an HTTP
Status Code ‘500’ indicating an Internal Timeout if the UDP response(s) are not received from the Data
Pool Handlers within the expected timeframe.

Copyright © 2017 BlindHash. All rights reserved. Page 12 of 17



The Data Pool Handler provides the gateway into performing the necessary reads from the underlying
data pool volume in order to calculate the ultimate ‘Salt2’ value. The service is designed as a UDP
listener accepting individual 144-byte requests, and dispatching asynchronous 68-byte UDP responses.

While the operational controls to secure the Data Pool Handler are out-of-scope for this document, it
bears mentioning that the crucial requirement of this service is to not leak the underlying data pool bits
in any way, and to provide a network traffic pattern which can be easily audited to ensure that the only
network traffic was the expected number of Data Pool Read requests and responses.

The processing steps the Data Pool Handler performs are to;

* Receive Data Pool requests over UDP from Request Handlers,
* Parse the specified Tx ID, UDP Port, Organization Key, Indexer, Read Count, and Data Pool Size
from the UDP request
* Use the Indexer to generate ‘Read Count’ number of uniformly distributed values between
[0...’Data Pool Size’).
* Identify the data pool blocks to be read, and dispatch the reads for those blocks
* Aseach read completes,
o Verify the data pool block checksum,
o Transform the data pool blocks into the virtual private data pool blocks using the
Organization Key and HMAC-SHA512
* Extract the desired 64-bytes from the transformed data pool block(s)
* Collect these 64-byte reads into a 64 * ‘Read Count’ byte buffer, ordered by Read Count
* Once the read buffer is full, perform a final HMAC on the read buffer with the Organizational
Key in order to calculate ‘Salt2’.
* Dispatch a UDP packet with a Destination UDP Port as specified in the request, and containing
the following data;
o TxID (4 bytes)
o Salt2 (64 bytes)

Each Data Pool Read Request consists of a single 144 byte UDP packet sent from a Request Handler over
a persistent encrypted channel. The request contains the 6 fields as defined above, and which are
parsed as simple binary data, or big endian unsigned integers.

Requests of an invalid length or which specify an out-of-range UDP Port, Read Count, or Data Pool Size
are silently discarded.

We must execute ‘Read Count’ number of reads into the data pool using the ‘Indexer’ to calculate a
deterministic set of uniformly random i.i.d. indices between [0, ‘Data Pool Size’). To perform this task we
use the Indexer as the key to a SHA512-HMAC-DRBG as specified in NIST SP 800-90Ar1 to generate a
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deterministic sequence of random bits, which are then used to produce uniformly random values in the
desired range as follows;

* Deterministic random bits generated by the SHA512-HMAC-DRBG are generated 64 bytes at
a time, and consumed 8 bytes at a time, taken as 64-bit big endian unsigned integers

* Uniformity is achieved by taking a new 64-bit unsigned integer from the DRBG output until
the taken value is outside the range [0, 2**64 % Data Pool Size). This guarantees the
selected random number will be inside [2**64 % Data Pool Size, 2**64) which maps back to
[0, Data Pool Size) after reduction modulo Data Pool Size. (This algorithm is taken from
BSD’s arc4random_uniform function)

In this fashion, the ‘Indexer’ is used to produce a list of ‘Read Count’ number of uniformly randomi.i.d
indices into the Data Pool between 0 (inclusive) and ‘Data Pool Size’ (exclusive). A given 64-byte binary
‘Indexer’ will always produce the exact same sequence of read locations for a particularly sized data
pool.

A ‘Virtual Private Data Pool’ allows a client to perform BlindHashing with, what appears for all intents

and purposes to be, their own unique secure random Data Pool, but which underneath is physically a

single data pool shared between any numbers of other clients. The transformation from the shared or
‘raw’ data pool into a ‘virtual private’ data pool must satisfy several requirements;

* Produce a client-specific set of data pool bits with no loss of entropy or uniformity,

*  Produce a virtual private data pool which is completely independent and uncorrelated with the
underlying shared data pool

* Produce a data pool which could be provided entirely to the client without risking any
disclosure of the ‘raw’ data pool bits from which they were calculated

Taking the underlying ‘raw’ data pool as a numbered sequence of 64-byte blocks, we can calculate the
corresponding ‘virtual private’ data pool blocks by calculating the SHA512-HMAC(Organization Key, Data
Pool Block | | Block Number) for each block. Specifically, the SHA512-HMAC is calculated using the 64-
byte binary Organization Key as the HMAC key, and a 72-byte HMAC value consisting of the 64-byte
binary ‘Data Pool Block’ as the HMAC value concatenated with the 64-bit unsigned big endian integer
block number.

Therefore, in order to perform a read of 64 bytes from a specific index within a virtual private data pool,
in most cases (63 out of 64 times) we will need to convert two blocks of the underlying data pool into
the corresponding virtual private data pool blocks, and then select the desired 64-bytes of virtual private
data from within those two blocks (128 bytes) of data.

In 1 out of 64 times, the index to be read happens to align perfectly with the start of a data pool block,
and therefor only a single SHA512-HMAC needs to be performed to calculate the virtual private data
pool block and provide the desired data into the buffer. In the current implementation, however, for
timing consistency, two data pool blocks are still read from disk and converted into virtual private data
pool blocks, even though just the entire first block of data is copied into the output buffer.
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Note that different ‘Applications’ created by a given client will each be assigned a unique ApplID, but will
share the same underlying ‘Organization Key’. This allows each client to have effectively one ‘virtual
private data pool’ shared between their various applications, and provides the possibility for that client’s
own data pool to be brought “on-premise” for their own use in serving their own Applications / AppIDs.

An output buffer with a length of 64 * ‘Read Count’ bytes is allocated at the start of each request, which
will ultimately contain the result of the completed reads from the client’s virtual private data pool. Each
index to be read is given a ‘Read Number’ from 1..’Read Count’, and the 64-byte result of each read is
copied into the output buffer at a location of 64 * (‘Read Number’ — 1). So, for example, a ‘Read Count’
of 64 will result in a 4096 byte output buffer where the result of the first read is copied into locations
0..63 of the buffer, the result of the second read is copied into locations 64..127 of the buffer, etc.

Once all reads are complete and all locations within the output buffer have been filled, the final Salt2
result is calculated by taking the SHA512-HMAC(Organization Key, buffer).

Once a request is received and parsed, asynchronous |0 reads are dispatched to retrieve the necessary
data pool blocks which will be converted into virtual private data pool blocks and ultimately assembled
into the output buffer. When the final read is complete, transformed, and inserted into the output
buffer, then the final HMAC is performed and a Salt2 value is produced.

At that time, we dispatch a UDP packet from the Data Pool Handler to the specified UDP Destination
Port with a payload of;

* TxID — 4 bytes — copied from the Data Pool Read Request
* Salt2 — 64 bytes — the final result

The Data Pool is nothing but cryptographically secure random data, dumped to disk and stored in a
format which allows the Data Pool Handlers to ensure the integrity of the bits being read. We must
carefully protect against undetected bit-flips, as an undetected and uncorrected bit-flip would cause
inconsistency (non-determinism) in the BlindHashing function which, in the case of password hashing,
would result in valid passwords appearing invalid.

Therefore our design goals for generating and storing the data pool are simply to encapsulate the
random bits of the data pool in a structure to allow cryptographic validation of the integrity of the data
pool at a point in time, as well as run-time application-layer validation of all bits being used for each
BlindHashing request.

The random data which forms the basis of the data pool must be securely generated in such a way that
no fraction ‘s’ of the underlying data pool bits can be used to complete a BlindHashing request with a
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probability of successfully completing the request greater than s” where ‘s’ is the percentage of the data
pool, and ‘n’ is the read count. For example, assuming a read count of 64 lookups, then possessing 80%
of the data pool bits must not allow completing BlindHashing requests at an average rate greater than
.8**64 or ~6.27e-7 (about 6 requests successfully completed out of every 10 million).

Additionally, it must not be possible to obtain n-bits of the underlying data pool in any fashion other
than physically stealing n-bits of the pool itself. In other words, to the greatest extent possible, the data
pool bits should not be themselves derived from a random key with a deterministic random bit
generator and a counter (e.g. NIST SP800-90A).

However, since the size of the data pool can be quite large, and the collection of true random entropy
quite performance limited, a hybrid approach using DRBGs with very frequent re-keying can produce the
desired size random files drawn from a CS-PRNG with a large set of rapidly discarded secure random
keys. Crucially, a single known key should not be used to generate a significant portion of the data pool
for risk that the key itself could be stolen, and subvert the fundamental assumptions around the
bounded retrieval capabilities of an attacker.

A data pool volume is conceptually a single monolithic byte array, but in practice we store the data pool
on a standard file system as a set of numbered files, where each file contains 1 billion bytes (1 GiB) of
the data pool’s random data.

The storage sub-system provides several degrees of data integrity protection, including checksums and
ECC maintained by the physical drive itself, as well as checksums at the file-system level. We also
interleave our own application layer checksums into the data pool as follows.

Each data pool file contains 1 billion bytes of random data, or 15,625,000 data pool blocks of 64 bytes
each. Each data pool block is stored on the filesystem as the 64 bytes of data pool entropy followed by a
2 byte ‘crc16’ calculated from the preceding 64 bytes. Therefore each data pool file is in total
1,031,250,000 bytes long, containing a total of 1 GiB of data pool data, and 31.25 MiB of checksum data.

For each individual data pool file, 5% of parity data (50 MiB) is calculated and stored (using ‘par2’ Reed-
Solomon encoding). This parity data is useful for more rapid recovery of the file if a ‘crc16’ value ever
fails to verify during the course of performing reads from the data pool.

When any given 64-byte data pool block is to be read by the Data Pool Handler, 66 bytes are actually
read from disk, and the ‘crc16’ is calculated for the first 64-bytes and then compared to the last 2 bytes.
If the calculated checksum does not match, the associated data pool file is flagged as damaged and
attempted to be repaired.

The ‘sha512sum’ of each data pool file (with the interleaved checksums in place), as well as each
associated parity file, is calculated and stored in a ‘spec’ file located in the same directory. A GPG
signature of the ‘spec’ file is also stored.
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When a Data Pool Handler process is first started, the process discovers any available data pool
volumes, and then verifies the integrity of the volume by first verifying the GPG signature of the ‘spec’
file, and then ensuring that the sha512sum of each data pool file matches the specification.

If a recovery action is ever initiated, the recovery process first calculates the sha512sum of the parity file
and ensures it matches the ‘spec’ before attempting to use the parity data to repair the damaged data
pool file. After a completed repair, the sha512sum of the repaired file is compared against the spec to
ensure a match before clearing the flag indicating the file is damaged / offline.

Data Pool Handlers search through a specified list of mount points for all available files which makeup a
given data pool volume. The Data Pool Handlers will identify if multiple copies of the same file are
available across multiple mount points, and load balance reads directed at those files across the
available volumes.

If reads from a given file or mount point begin to fail due to a timeout, software, or hardware error, or if
an application layer checksum fails to verify, the affected files are marked as damaged / offline, and
reads will be directed toward the same files on any remaining mount points.
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