Continuous Control

Setting:
e MDP (S, A, P, r,~), where A is continuous.

Objective:
Find 7v* which satisfies

Distributional Policy Optimization: An Alternative Approach for Continuous Control
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mell well

Problem: (s, a) is not necessarily convex!

In this work we provide a framework for tackling continuous control problems with

non-convex returns
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Distributional Policy Optimization (lllustration)

Initial policy

Q(s,)

Sub-optimal actions are nearly never played

Q(s,)

Probability mass is transfered to better actions

DPO moves probability mass from sub-optimal actions towards better ones, while considering the entire action space
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Distributional Policy Optimization (Algorithm)

1. Input: learning rates o, > B > 0

2 W1 = I (7Tk — akvwd(D;’%@v ) ‘Wzm)

3: QZ'H(Sa a) = Qzl(sa a) + B (T(Sv a) + 'Yv;:(s) — QZ,(S9 a))
4 v, (s) = vf + B [, (QF (s,a) — v (s))

5. TWhyq = T, + Op(mr — )

1. We proposed the Distributional Policy Optimization (DPO) framework for tackling non-convex
returns.

2.DPO requires the ability to represent arbitrary policies and optimize by minimizing the distance
to a target distribution.

3. We achieve this by modeling the actor (policy) using an Autoregressive Implicit Quantile
Network, a generative model.

4.Empirical tests attain results competitive to policy gradient methods, while remaining as sample

Pitfalls of Current Approaches

efficient.
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