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Motivation

Prediction is important
I Predictions of violent events: civil wars, revolutions, local conflicts

I Predictions of oncoming recessions

I GWAS-level predictions of disease-status
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Motivation

Prediction used in causal inference techniques
I Selecting amongst many and possibly weak instrumental variables in

2SLS (Belloni et al. 2014)

I Creating synthetic controls in DID designs (Xu 2015)

I Collecting interactions in conjoint analysis using LASSOplus
(Ratkovic & Tingley 2015)

I Collecting fewer interactions of factors in factorial experiments using
LASSO (Egami & Imai)

I Predicting case/control labels in text data
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Motivation

Prediction used in causal inference techniques
I Selecting amongst many and possibly weak instrumental variables in

2SLS (Belloni et al. 2014, Lo & Levy 2015)

I Creating synthetic controls in DID designs (Xu 2015)

I Collecting interactions in conjoint analysis using LASSOplus
(Ratkovic & Tingley 2015)

I Collecting fewer interactions of factors in factorial experiments using
LASSO (Egami & Imai)

I Predicting case/control labels in text data
Not nearly enough attention on creating a framework from which
to theoretically consider predictivity
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Motivation

Prediction-based framework to theoretically consider predictivity
Why does this matter?

I Creation of measures of predictivity specifically through the lens of
maximizing theoretical correct prediction rates (minimizing
theoretical error rates) might be important for better prediction

I Can we just use models/methods that seem to predict very well,
regardless of how they were motivated?

I One motivation for this project was I-score (measure we suggest here
as a good measure for predictivity) performance in complex data

I We believe I-score strong performance is because the score itself is
related to theoretical correct prediction rate

I There may be logic to and benefits from creation of prediction
measures from a prediction framework
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Current Approaches to Prediction
Variable Selection (VS)

via
I Significant variables (theory)

I Out of sample testing/Cross-validation (error rates)
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Current Approaches to Prediction

Variable Selection (VS) via
I Significant variables (theory)

I Highly significant variables are not necessarily highly predictive and
vice versa (Lo et al. 2015)

I Out of sample testing/Cross-validation (error rates)

I No theory based measure (such as significance measures) for
underlying predictivity

I Why is it that certain approaches perform better than others in some
scenarios can be hard to ascertain; what is the benchmark against
which to compare?

I Both approaches additionally suffer from curse of dimensionality
constraints vis a vis joint/interactive variables as variable size grows.
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Contribution

We provide a theoretical framework behind prediction

I Set up the framework: define our objective function (what are we
trying to get at? levels of predictivity)

I Maximize our objective function and find solution (what solves
our objective function? the variables that provide the maximal level
of predictivity)

I Identify sample-appropriate measures for measuring
predictivity that match the theoretical solution

I Solution doesn’t actually have usable sample analog form. Our
second major contribution stems from considering an alternative
solution with a sample analog that is useable.
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What is a Good Measure for Predictivity?

What, theoretically, does "maximizing predictivity" mean? What should
an influence measure that measures predictivity be able to do?

I Reflect predictive power of a given variable set

I Handle groups of variables

I Be able to differentiate between truly influential variables and noisy
variables
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Maximizing Predictivity: example

Suppose we are in the simplest of worlds:

I 1 explanatory variable X , Democracy, and 1 outcome variable Y ,
Civil War. Both X and Y are binary.

I X is defined on a space, ΠX , with density pX (x)

I “civil war” observations are nd and “no civil war” observations are nc ,
each with two probabilities: pX d

and pX c

I the expected correct prediction rate c using variable X Democracy:
constant · [|pXd

(x = 1)− pXc (x = 1)|+ |pXd
(x = 0)− pXc (x = 0)|]

I We can also call this the predictivity of variable X for variable Y
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Maximizing Predictivity: example

Suppose we are in the simplest of worlds:
I 1 explanatory variable X , Democracy, and 1 outcome variable Y ,

Civil War. Both X and Y are binary.

I X is defined on a space, ΠX , with density pX (x)

I “civil war” observations are nd and “no civil war” observations are nc ,
each with two probabilities: pX d

and pX c

I the expected correct prediction rate c using variable X Democracy:
constant · |pXd

(x)− pXc (x)|
I We can also call this the predictivity of variable X for variable Y

Imagine now we have many X variables to consider. Then what we are
looking for is the set of X variables that maximize the correct prediction
rate, c.
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Maximizing Predictivity: general
Basic Bayesian set up

Correct prediction rate:

I X is discrete random vector defined on space Πx , density of pX (x)

I nd cases, nc controls independently selected from two discrete
probabilities: pXd (x) and pX c (x) (≡ p(x |w = d) and p(x |w = c))

I {X d ,X c} always arrive as pair when X variables fixed (fixing
Πx = {x = (x1, x2, ..., xm)});

I X d and X c defined on common partition space, Πx

I If new observation has 50% chance to be case/control, expected
correct prediction rate/error of adopting this rule is:
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Basic Bayesian set up

Correct prediction rate:
I X is discrete random vector defined on space Πx , density of pX (x)

I nd cases, nc controls independently selected from two discrete
probabilities: pXd (x) and pX c (x) (≡ p(x |w = d) and p(x |w = c))

I {X d ,X c} always arrive as pair when X variables fixed (fixing
Πx = {x = (x1, x2, ..., xm)});

I X d and X c defined on common partition space, Πx

I If new observation has 50% chance to be case/control, expected
correct prediction rate/error of adopting this rule is:

c = c[pX d
, pX c ] = 1− e[pX d

, pX c ] =
1
2

∑
x∈Πx

max{pX d
(x), pX c (x)}

c[pX d
, pX c ] =

1
2

+
1
4

∑
x∈Πx

|pX d
(x)− pX c (x)| (1)
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Problems with Sample Analog

c[pX d
, pX c ] =

1
2

+
1
4

∑
x∈Πx

|pX d
(x)− pX c (x)|

Sample analog of equation (1) is always increasing in variables and favors
ever-increasing the variable set with both truly influential as well as noisy
and un-influential variables.
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Suggested Alternative Solution

Lemma 1
Let a1, a2, a3...ak be k nonnegative numbers. Then∑k

i=1 ai ≥
√∑k

i=1 a
2
i . If we replace ai by |p(i |d)− p(i |c)| ∀i , 1 ≤ i ≤ k ,

it is clear that by maximizing
∑k

i=1(pi (d)− pi (c))2 over possible pairs
will have the parallel effect of encouraging selection of probability pairs
that satisfy the maximization in Equation 1, yielding a better predictor.
We can show that the I -score can be seen asymptotically as precisely the
maximization of the term up to a constant
A(πx) =

∑k
i=1(pi (d)− pi (c))2.

Since
∑k

i=1 |pi (d)− pi (c)| ≥
√∑k

i=1(pi (d)− pi (c))2 , a strategy that

seeks for a variable set with larger value of A(πx) will automatically have
the effect of seeking for the variable set with a better prediction rate.
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Intuition behind Suggested Alternative Solution

Intuitive explanation:

I Absolute difference strictly positive, linear, increasing in positive
space of integers

I Squared term allows for existence of maximum
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Suggested Alternative Measure: I-score

I n observations of Y and large number S of Xs, X1,X2, ...,XS .

I Randomly select small group, m, of the Xs. Call this m Xj ,
j = 1, ...,m that take values 0, 1, and 2 (here, discrete example)

I m1 = 3m possible values for each set of X ’s.

I Partition n observations into m1 cells according to values of m X
variables and refer to this partition as Π.

I I -score designed to place greater weight on cells with more
observations:

IΠ =
m1∑
k=1

nk
n
· (Ȳk − Ȳ )2

s2

nk

=

∑m1
k=1 n

2
k(Ȳk − Ȳ )2∑n

i=1(Yi − Ȳ )2
(2)

where s2 = 1
n

∑n
i=1(Yi − Ȳ )2.
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Lo et al. Making Good Prediction November 10, 2017 17 / 26



Suggested Alternative Measure: I-score

I n observations of Y and large number S of Xs, X1,X2, ...,XS .

I Randomly select small group, m, of the Xs. Call this m Xj ,
j = 1, ...,m that take values 0, 1, and 2 (here, discrete example)

I m1 = 3m possible values for each set of X ’s.

I Partition n observations into m1 cells according to values of m X
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k(Ȳk − Ȳ )2∑n

i=1(Yi − Ȳ )2
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s2

nk

=

∑m1
k=1 n

2
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Lo et al. Making Good Prediction November 10, 2017 17 / 26



Suggested Alternative Measure: I-score

I n observations of Y and large number S of Xs, X1,X2, ...,XS .

I Randomly select small group, m, of the Xs. Call this m Xj ,
j = 1, ...,m that take values 0, 1, and 2 (here, discrete example)

I m1 = 3m possible values for each set of X ’s.

I Partition n observations into m1 cells according to values of m X
variables and refer to this partition as Π.

I I -score designed to place greater weight on cells with more
observations:

IΠ =
m1∑
k=1

nk
n
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I-score

I Asymptotics

I Data simulations
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I-score Asymptotics

I As n→∞ the I-score decomposes to a term that looks like:

constant ·
∑
j∈Π

[p(j |d)− p(j |c)]2 (3)

I Recall c:

c[pX d
, pX c ] =

1
2

+
1
4

∑
x∈Πx

|pX d
(x)− pX c (x)|

=
1
2

+
1
4

∑
i∈Π

|p(j |d)− p(j |c)|

I-score asymptotics
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I-score with data

How does I-score fare with data (sample constrained world)?
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I-score with simulated data
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I-score with real data

Systematic name Gene name Marginal p-value

1 Contig45347_RC KIAA1683 0.008

2 NM_005145 GNG7 0.54

3 Z34893 ICAP-1A 0.15

4 NM_006121 KRT1 0.9

5 NM_004701 CCNB2 0.003

Joint I -score: 2.89 Joint p-value: 0.005 Family-wise threshold: 6.98x10−5

Table: Real data example vant Veer
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Desirable properties of the I-score

I No model specification: Requires no specification of a model for
joint effect of {X1,X2, ...,Xm} on Y . I captures discrepancy between
the conditional means of Y on {X1,X2, ...,Xm} and mean of Y .

I Differentiation between noisy and influential variables: I
doesn’t monotonically increase with the addition of any variables (as
would the sample analog form of Eqn 1). Rather, given a variable set
of size m with m − 1 truly influential variables, the I is higher under
the influential m − 1 variables than under all m variables. Dropping
to m − 2 variables leads to decrease in I . I has natural tendency to
“peak” at variable set(s) that lead to the maximum predictive rate in
the face of noisy variables, under the current sample size.

I Approximation towards theoretical maximization of prediction
rate: I approximates maximizing Eqn 1 by identifying the cluster of
variables that maximize the term

∑k
i=1(Pi (D)− Pi (C ))2, which is

directly related to maximization of the correct prediction rate less
the error rate (Lemma 1).

I Interactions: I shown elsewhere to be able to handle interactions
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Discussion

I We have to rethink how we approach prediction; VS cannot be
accomplished through significance criteria

I We require new measures and new criteria that are prediction-based

I Preliminarily offer the I-score, which has the following nice
properties:

I Theoretical relationship to maximizing prediction rates

I Seems to predict well in simulated and real applications

I Can distinguish between noisy and influential variables

I Can handle interactions
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I-score Asymptotics

As n→∞, it can be shown that the I-score decomposes to two terms
that converge to 0 in probability and a third term, call it Bn that
approximates Equation 1 (correct prediction rate) via Lemma 1:

Bn

n2 = λ2(1− λ)2
∑
j∈Π

[p(j |d)− p(j |c)]2

(Where limn
nd
n = λ, a fixed constant between 0 and 1)

Ignoring the constant term above, the I-score is exactly trying to search
for the X partitions which maximize the summation term∑

j∈Π[p(j |d)− p(j |c)]2. Recall c:

c[pX d
, pX c ] =

1
2

+
1
4

∑
x∈Πx

|pX d
(x)− pX c (x)| (4)

back
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