

Disruptions in railway networks

Francesco Corman francesco.corman@ivt.baug.ethz.ch Chair for Transport Systems

Those slides

- Background on scheduling / routing
- Bad models
- Refreshing positive results from reality
- Interactions
- Understanding more about demand

Background on scheduling / routing: why railway transport is peculiar

Routing /scheduling: Interesting instances

When things are constant, and nobody influences anybody else: relatively easy

In reality, there is some influence

 Routing in time and space models explicitly changes over time

- Interesting case: When capacity of links or intersections is limited
- Opportunity: When vehicles/people can be "controlled"
- Issues: when things "interact"

An extended time space network

Rule-based

Delay Propagation in the systems, [s] average over all traffic

Keep the Timetable Order

2700 block sections, 150 trains / h

State of the art in railway traffic control

- Hundreds of trains can be modelled
- For a time horizon of one hour or so
- Orders, routes and times optimally decided
- Limited inclusion of non linear effects speed variations as function of the orders chosen passenger loads

Railway traffic management (incomplete, incorrect graph)

Bad Models: How railway traffic control models apply to disruptions

F Corman, Assessment of advanced dispatching measures for recovering disrupted railway situations. Transportation Research Record

Prorail

Disruption situation

Institut für Verkehrsplanun:
Situation → Resolution → Disposition

A lot of resolution scenarios

A lot of performance indicators

	Gener	Freq	Freq	Gener	Gener	Freq	Gener	Freq	Gener	Freq	Gener	Freq
Alternative	Traveltime	Services	Services	TravelTime	Traveltime	Services	TravelTime	Services	Traveltime	Services	Traveltime	Services
	Ht → Aco	Ht → Aco	Ht→Ut	Ht→Ut	Ut → Aco	Ut → Aco	Aco→Ut	Aco→Ut	Aco→Ht	Aco→Ht	Aco→Ht	Aco→Ht
12_0_0	3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8 _0_4	3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

A lot of performance indicators

Alternative	Average Tota	Max Total Delay	Average	Max	Punctuality 5	Canceled trains	Capacity	Extra Units
	Delay (s)	1, ,	Consecutive	Consecutive	min (% of	(absolute	occupation,	compared to
	Delay (3)	(s)	Delay (s)	Delay (s)	running trains)	number)	Ht←→Ut	plan
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0	1.242	8
8_4_0	98.8813	1739	67.4402	1206	88.88889	0	1.143	4
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667	0	1.154	8
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4	0.948	0
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4	0.948	4
4_4_4	56.6107	1739	24.9972	1206	92.79279	4	0.948	0
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4	0.948	4
4_0_8	28.668	510	6.70236	510	100	8	0.959	-4
4_0_8+shuttle	29.3327	510	6.78802	510	100	8	0.959	0
TIMETABLE REF	26.8934	510	5.81801	510	100	0		0

Comparing them

	Average Total	Max Total Delay	Average	Max	Punctuality 5 Canceled trains	Capacity	Extra Un	its Gener	Freq	Freq	Gener	Gener	Freq	Gener	Freq	Gener	Freq	Gener	Freq
Alternative	<u> </u>	(a)	Consecutive	Consecutive	min (% of (absolute	occupation,	compared	to Traveltime	Services	Services	TravelTime	Traveltime	Services	TravelTime	Services	Traveltime	Services	Traveltime	Services
	Delay (s)	(5)	Delay (s)	Delay (s)	running trains) number)	Ht←→Ut	plan	Ht→Aco	Ht→Aco	Ht→Ut	Ht→Ut	Ut→Aco	Ut→Aco	Aco→Ut	Aco→Ut	Aco→Ht	Aco→Ht	Aco→Ht	Aco→Ht
12_0_0	43.8998	510	21.2463	510	94.73684 0	1.231	0	3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	43.258	510	21.0339	510	95.83333 <mark>0</mark>	1.242	8	3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	98.8813	1739	67.4402	1206	88.88889 0	1.143	4	3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667 0	1.154	8	3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8_0_4	37.2391	510	14.6082	510	97.22222 <mark>4</mark>	0.959	-4	3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973 4	0.948	0	3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123 4	0.948	4	3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	56.6107	1739	24.9972	1206	92.79279 4	0.948	0	3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246 4	0.948	4	3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	28.668	510	6.70236	510	100 8	0.959	-4	4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	29.3327	510	6.78802	510	100 8	0.959	0	3750	1	. 5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	26.8934	510	5.81801	510	100 0		0	3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

Disruption management is complex

- Models can help, ...
- if you know which solutions would be acceptable (automatic scenario generation?)
- if you know which constraints exist (better model, more integration)
 If you know how dispatcher would take decisions (?)
- If you know how passengers would react
- Statistics cannot help
- More integration/optimization make smaller problems disappear, bigger problems arise

Some positive thoughts, when we measure the wrong thing

T Partl, Master Thesis ETH

Rastatt

Disruption for about two months, 15.08 to 02.10 2018. No traffic.

Rastatt

European corridor
 Rotterdam Genoa

Local cancellations lead to few cancellations in Switzerland

- Cancel train
- Buses, passengers

Freight? (not analysed)

Figure 7: Numbers of extra and cancelled trains arriving at Zurich HB and Olten

How to compare operations before / during disruptions

 Compare distributions, looking for jumps at beginning/ end of disruption through one year of data

Primary delays: Trains coming from Germany

р	I ₁	l ₂	p-value KS-test	p-value t-test			
0.2	0.86	0.80	7.2 × 10 ⁻³	8.9 × 10 ⁻¹⁶			
0.4	0.80	0.93	2.4 × 10 ⁻⁶	1.8 × 10 ⁻²¹			
0.5	0.81	0.93	1.2 × 10 ⁻⁶	6.5 × 10 ⁻²⁵			
0.6	0.79	0.95	3.6 × 10 ⁻⁷	7.7 × 10 ⁻²⁵			
0.8	0.64	0.70	2.0 × 10 ⁻⁹	1.3 × 10 ⁻²⁴			

Secondary delays: indirect network effects

Indirectly affected: Olten & Zürich HB

р	I ₁	l ₂	p-value KS-test	p-value t-test
0.2	0.71	0.90	2.3 × 10 ⁻²	2.9 × 10 ⁻³
0.4	0.93	0.99	1.6 × 10 ⁻³	1.8 × 10 ⁻⁷
0.5	0.88	0.88	6.8 × 10 ⁻⁵	2.2 × 10 ⁻⁷
0.6	0.84	0.74	7.1 × 10 ⁻⁴	2.4×10^{-7}
0.8	0.88	0.90	4.3 × 10 ⁻³	1.6 × 10 ⁻⁹

Unaffected: Yverdon & Fribourg / Freiburg

p	l ₁ l ₂		p-value KS-test	p-value t-test		
0.2	0.70	0.80	4.7 × 10 ⁻²	2.8 × 10 ⁻³		
0.4	0.71	0.31	2.6 × 10 ⁻¹	3.4 × 10 ⁻²		
0.5	0.59	0.32	4.1 × 10 ⁻¹	1.5 × 10 ⁻¹		
0.6	0.60	0.49	8.0 × 10 ⁻²	3.5×10^{-1}		
8.0	0.58	0.15	6.1 × 10 ⁻²	1.9 × 10 ⁻²		

Disruptions are good, if we measure the wrong things

- Clear effect of isolation of network → less delays
- Locally outsourcing delays to passengers
- Globally observing network dynamics

-20

-40

160

Ongoing work: replicate the dynamics in simulation models

- Challenges: real life dynamics, all possible sources of delays appear;
 the system changed, as a reaction to the disruption
- Unique opportunity: empirically see the performance of a railway network from a statistical point of view, over a large shock in some of its characteristics
- Quantify delay impact of factors

Interaction modelling

Passengers Routing in public transport networks

- Divide hierarchically into layers post process, simulate, adjust
- Equal importance given to problem: iterate coordinate, converge

escher

Schedule-based Transit assignment

Knowing passengers demand per time Routing of passengers is based on shortest travel time Vehicles (trains) have infinite passengers capacity

(relatively strong assumptions!)

Schedule-based assignment → min cost flow problem

scheduling trains in an infrastructure with limited capacity, taking into account the number of passengers per train

Interaction

What will I do?

What I believe the other person would do

What I believe the other person would do

What will I do?

Possible solutions –who does what, why?

Optimize everything (integrated model) ~System optimum

Minimize delay weighted by passengers;
 Passengers react to schedule,
 trains react to passengers choice

~Nash

Keep the timetable order; or optimize schedule
 Passengers adjust route choices ~Inv. Stackelberg

Passengers publish their choices / cost functions;
 optimize schedule to minimize travel time ~Stackelberg

္ဗ orman D'Ariano Pacciarelli Marra

Upper bound to optimum

Larger/better models: How to include demand in our models

N. Leng, Agent-based simulation approach for disruption management in rail schedule, CASPT

A, Marra, Multimodal passive tracking of passengers to analyse public transport use, STRC

A larger perspective onto activities: agent based simulation

Example disruption, Zurich

Oerlikon

~300 trains/ day

Main station

Planstitut für Verkehrsplanung und Transportsysteme ~2900 trains/day,
Institute for Transport Planning and Systems 450000 pax/day

Comparison of the cases: delays, mode usage

Lessons learnt

- Large (agent based) simulation models are complex
- The realistic behavior of people is complex to attain
- Interplay between operations, passengers decisions and (limited) information is crucial, but hard to model in a realistic manner
- Current work: integration of rolling stock rescheduling; creation of more information dissemination strategy (who knows what when? And how correct it is?)

Study mobility in-vivo

- Typically user interaction-intensive
- Typically battery intensive
- Own developed
- Testing ongoing

Cleaning of data

Diary

Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have the same color, that goes from red to yellow according to the time spent in the activity. A white space indicates absence of signal.

Lessons learnt

- Disruptions are gray;
 a complete link closure might have an impact comparable to a delayed vehicle
- Large samples might help; data must be complemented with annotations
- Choice models can be estimated
- Mobility providers might know about us than we know

Disruptions in railway networks

Francesco Corman francesco.corman@ivt.baug.ethz.ch Chair for Transport Systems

