

Disruptions in railway networks

Francesco Corman

francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems

Those slides

- Background on scheduling / routing
- Bad models
- Refreshing positive results from reality
- Interactions
- Understanding more about demand

Background on scheduling / routing: why railway transport is peculiar

Routing /scheduling: Interesting instances

- When things are constant, and nobody influences anybody else: relatively easy
- In reality, there is some influence
- Routing in time and space models explicitly changes over time

- Interesting case: When capacity of links or intersections is limited
- Opportunity: When vehicles/people can be "controlled"
- Issues: when things "interact"

An extended time space network

 First In First Out
2700 block sections,
150 trainc / h

State of the art in railway traffic control

- Hundreds of trains can be modelled
- For a time horizon of one hour or so
- Orders, routes and times optimally decided
- Limited inclusion of non linear effects -
speed variations as function of the orders chosen passenger loads

Railway traffic management (incomplete, incorrect graph)

Bad Models: How railway traffic control models apply to disruptions

F Corman, Assessment of advanced dispatching measures for recovering disrupted railway situations. Transportation Research Record

ㅋIHzürich

Disruption situation

$\square \sqrt{7 \text { Institut für Verkehrsplanunt }}$
Situation \rightarrow Resolution \rightarrow Disposition

GHzürich

A lot of resolution scenarios

Arnhem

Arnhem

$\square \square \sqrt{7 \text { Institut für Verkehrsplanum! }}$
Situation \rightarrow Resolution \rightarrow Disposition

A lot of performance indicators

Alternative	Gener Traveltime $\mathrm{Ht} \rightarrow \mathrm{Aco}$	$\begin{aligned} & \text { Freq } \\ & \text { Services } \\ & \mathrm{Ht} \rightarrow \text { Aco } \end{aligned}$	Freq Services $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener TravelTime $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener Traveltime $\mathrm{Ut} \rightarrow \mathrm{Aco}$	Freq Services Ut \rightarrow Aco	Gener TravelTime Aco \rightarrow Ut	Freq Services Aco \rightarrow Ut	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$
12_0_0	3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8 _0_4	3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8 _0_4+shuttle	3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	3750	1	5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
TIMETABLE REF	3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

A lot of performance indicators

Alternative	Average Total Delay (s)	Max Total Delay (s)	Average Consecutive Delay (s)	Max Consecutive Delay (s)	Punctuality 5 \min (\% running trains)	Canceled trains (absolute number)	Capacity occupation, $\mathrm{Ht} \leftarrow \rightarrow \mathrm{Ut}$	Extra Units compared to plan	
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0	
12+shuttle_0_0	43.258	510	21.0339	510	95.83333	0	1.242	8	
8_4_0	98.8813	1739	67.4402	1206	88.88889	0	1.143	4	
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667	0	1.154	8	
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4	
8 _0_4+shuttle	37.1944	510	14.4421	510	97.2973	4	0.948	0	
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.49123	4	0.948	4	
4_4_4	56.6107	1739	24.9972	1206	92.79279	4	0.948	0	
4_4_4+shuttle	56.818	1739	25.2173	1206	92.98246	4	0.948	4	
4_0_8	28.668	510	6.70236	510	100	8	0.959	-4	
4_0_8+shuttle	29.3327	510	6.78802	510	100	8	0.959	0	
TIMETABLE REF	26.8934	510	5.81801	510	100	0		0	
$\square \sqrt{\square} \sqrt{\text { insstitutut für ver rerehrss ranspor }}$	Situation -	\rightarrow Resolution	\rightarrow Disposit					\| 18.09.2019	15

캐zürich

Comparing them

?

Alternative	Average Total Delay (s)	Max Total Delay (s)	Average Consecutive Delay (s)	Max Consecutive Delay (s)	$\left\|\begin{array}{ll}\text { Punctuality } & 5 \\ \text { min } & \text { (\% } \\ \text { running trains) }\end{array}\right\|$	Canceled trains (absolute number)	Capacity occupation, $\mathrm{Ht} \leftarrow \rightarrow \mathrm{Ut}$	Extra compared plan		Gener Traveltime $\mathrm{Ht} \rightarrow$ Aco	$\begin{aligned} & \text { Freq } \\ & \text { Services } \\ & \mathrm{Ht} \rightarrow \text { Aco } \end{aligned}$	$\begin{aligned} & \text { Freq } \\ & \text { Services } \\ & \mathrm{Ht} \rightarrow \mathrm{Ut} \end{aligned}$	Gener TravelTime $\mathrm{Ht} \rightarrow \mathrm{Ut}$	Gener Traveltime Ut \rightarrow Aco	$\begin{aligned} & \text { Freq } \\ & \text { Services } \\ & \text { Ut } \rightarrow \text { Aco } \end{aligned}$	Gener TravelTime $\mathrm{Aco} \rightarrow \mathrm{Ut}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Freq } \\ \text { Services } \\ \text { Aco } \rightarrow \text { Ut } \end{array} \\ \hline \end{array}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Freq Services $\mathrm{Aco} \rightarrow \mathrm{Ht}$	Gener Traveltime $\mathrm{Aco} \rightarrow \mathrm{Ht}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Freq } \\ \text { Services } \end{array} \\ \text { Aco } \rightarrow \mathrm{Ht} \end{array}$
12_0_0	43.8998	510	21.2463	510	94.73684	0	1.231	0		3765	6.5	4040	8	2144	15	2398	6.5	4455	4.5	3423	11.5
12+shuttle_0_0	43.258	510	21.0339	510	95.833330	0	1.242	8		3714	5	4057	8	3179	15	2518	6.5	7697	3.5	4010	12.5
8_4_0	98.8813	1739	67.4402	1206	88.888890	0	1.143	4		3854	6.5	3844	6.5	3216	14.5	2104	6	5215	4	4704	11
8+shuttle_4_0	96.73	1739	65.6454	1206	89.16667 C	0	1.154	8		3839	3.5	3821	6.5	4333	15.5	2187	6	9358	2.5	5164	12.5
8_0_4	37.2391	510	14.6082	510	97.22222	4	0.959	-4		3735	3.5	4326	5.5	3010	8.5	3153	3	5502	2	3660	7
8_0_4+shuttle	37.1944	510	14.4421	510	97.29734	4	0.948	0		3708	3.5	4326	5.5	2653	12	2440	6.5	6545	3.5	4028	9
8+shuttle_0_4+shuttle	36.7468	510	14.2366	510	96.491234	4	0.948	4		3723	3.5	4592	5.5	2929	12	2518	6.5	7826	2.5	4248	8.5
4_4_4	56.6107	1739	24.9972	1206	92.792794	4	0.948	0		3744	1.5	5055	3.5	5014	8.5	3390	2	7175	0.5	4370	4.5
4_4_4+shuttle	56.818	1739	25.2173	1206	92.982464	4	0.948	4		3719	1.5	5055	3.5	3828	12.5	2187	6	8194	1	4706	5.5
4_0_8	28.668	510	6.70236	510	1008		0.959	-4		4000	0	4000	2	4000	0	4000	0	4000	0	5000	1.5
4_0_8+shuttle	29.3327	510	6.78802	510	1008		0.959	0		3750		5471	2	2424	9	2518	6.5	8776	1.5	5592	4.5
timetable ref	26.8934	510	5.81801	510	1000			0		3672	7	3589	8	2840	14	2540	6.5	4294	4.5	3228	11.5

GIHzürich

Disruption management is complex

- Models can help, ...
- if you know which solutions would be acceptable (automatic scenario generation?)
- if you know which constraints exist (better model, more integration)

If you know how dispatcher would take decisions (?)

- If you know how passengers would react
- Statistics cannot help
- More integration/optimization make smaller problems disappear, bigger problems arise

T Partl, Master Thesis ETH

GIHzürich

Rastatt

- Disruption for about two months, 15.08 to 02.10 2018. No traffic.

- European corridor Rotterdam Genoa

Local cancellations lead to few cancellations in Switzerland

- Cancel train
- Buses, passengers
- Freight? (not analysed) ${ }^{10}$

Figure 7: Numbers of extra and cancelled trains arriving at Zurich HB and Olten

How to compare operations before / during disruptions

- Compare distributions, looking for jumps at beginning/ end of disruption through one year of data

GIHzürich

Primary delays: Trains coming from Germany

p	I_{1}	I_{2}	p -value KS-test	p -value t-test
0.2	0.86	0.80	7.2×10^{-3}	8.9×10^{-16}
0.4	0.80	0.93	2.4×10^{-6}	1.8×10^{-21}
0.5	0.81	0.93	1.2×10^{-6}	6.5×10^{-25}
0.6	0.79	0.95	3.6×10^{-7}	7.7×10^{-25}
0.8	0.64	0.70	2.0×10^{-9}	1.3×10^{-24}

GIHzürich

Secondary delays: indirect network effects

Indirectly affected: Olten \& Zürich HB

p	I_{1}	I_{2}	p-value KS-test	p -value t-test
0.2	0.71	0.90	2.3×10^{-2}	2.9×10^{-3}
0.4	0.93	0.99	1.6×10^{-3}	1.8×10^{-7}
0.5	0.88	0.88	6.8×10^{-5}	2.2×10^{-7}
0.6	0.84	0.74	7.1×10^{-4}	2.4×10^{-7}
0.8	0.88	0.90	4.3×10^{-3}	1.6×10^{-9}

Unaffected: Yverdon \& Fribourg / Freiburg

p	I_{1}	I_{2}	p-value KS-test	p -value t-test
0.2	0.70	0.80	4.7×10^{-2}	2.8×10^{-3}
0.4	0.71	0.31	2.6×10^{-1}	3.4×10^{-2}
0.5	0.59	0.32	4.1×10^{-1}	1.5×10^{-1}
0.6	0.60	0.49	8.0×10^{-2}	3.5×10^{-1}
0.8	0.58	0.15	6.1×10^{-2}	1.9×10^{-2}

Disruptions are good, if we measure the wrong things

- Clear effect of isolation of network \rightarrow less delays
- Locally outsourcing delays to passengers
- Globally observing network dynamics
$25^{\text {th }}$ percentile

$75^{\text {th }}$ percentile

$50^{\text {th }}$ percentile

Number of daily trains

Ongoing work: replicate the dynamics in simulation models

- Challenges: real life dynamics, all possible sources of delays appear; the system changed, as a reaction to the disruption
- Unique opportunity: empirically see the performance of a railway network from a statistical point of view, over a large shock in some of its characteristics
- Quantify delay impact of factors

$50^{\text {th }}$ percentile

Interaction modelling

Passengers Routing in public transport networks

- Divide hierarchically into layers post process, simulate, adjust
- Equal importance given to problem: iterate coordinate, converge

Schedule-based Transit assignment

Knowing passengers demand per time
Routing of passengers is based on shortest travel time
Vehicles (trains) have infinite passengers capacity
(relatively strong assumptions!)

Schedule-based assignment \rightarrow min cost flow problem

Interaction

Possible solutions -who does what, why?

- Optimize everything (integrated model)
~System optimum
- Minimize delay weighted by passengers; Passengers react to schedule, trains react to passengers choice
~Nash
- Keep the timetable order; or optimize schedule Passengers adjust route choices ~Inv. Stackelberg
- Passengers publish their choices / cost functions; optimize schedule to minimize travel time \sim Stackelberg

Upper bound to optimum

Larger/better models: How to include demand in our models

N. Leng, Agent-based simulation approach for disruption management in rail schedule, CASPT A, Marra, Multimodal passive tracking of passengers to analyse public transport use, STRC

A larger perspective onto activities: agent based simulation

Example disruption, Zurich

Oerlikon
~300 trains/ day
~85000 pax/day

GIHzürich

Comparison of the cases: delays, mode usage

$\square \square /$ Institut für Verkehrsplanung und Transportsysteme

Benchmark

Timely information

Lessons learnt

- Large (agent based) simulation models are complex
- The realistic behavior of people is complex to attain
- Interplay between operations, passengers decisions and (limited) information is crucial, but hard to model in a realistic manner
- Current work: integration of rolling stock rescheduling; creation of more information dissemination strategy (who knows what when? And how correct it is?)

Study mobility in-vivo

- Typically user interaction-intensive
- Typically battery intensive
- Own developed
- Testing ongoing

Cleaning of data

Diary

Fig. 7 Continuous tracking of a single user for one month. Activities in the same place have the same color, that goes from red to yellow according to the time spent in the activity. A white space indicates absence of signal.

This is different!

Lessons learnt

- Disruptions are gray; a complete link closure might have an impact comparable to a delayed vehicle
- Large samples might help; data must be complemented with annotations
- Choice models can be estimated
- Mobility providers might know about us than we know

Disruptions in railway networks

Francesco Corman

francesco.corman@ivt.baug.ethz.ch
Chair for Transport Systems

