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ABSTRACT
Fashion is a large and fast-changing industry. Foreseeing the upcom-

ing fashion trends is beneficial for fashion designers, consumers,

and retailers. However, fashion trends are often perceived as un-

predictable due to the enormous amount of factors involved into

designers’ subjectivity. In this paper, we propose a fashion trend pre-

diction framework and design neural network models to leverage

structured fashion runway show data, learn the fashion collection

embedding, and further train RNN/LSTM models to capture the

designers’ style evolution. Our proposed framework consists of

(1) a runway embedding learning model that uses fashion runway

images to learn every season’s collection embedding, and (2) a next-

season fashion design prediction model that leverage the concept

of designer style and trend to predict next-season design given de-

signers. Through experiments on a collected dataset across 32 years

of fashion shows, our framework can achieve the best performance

of 78.42% AUC on average and 95% for an individual designer when

predicting the next season’s design.

CCS CONCEPTS
• Information systems → Collaborative and social computing
systems and tools; • Computing methodologies → Artificial in-
telligence; • Applied computing→ Arts and humanities.
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1 INTRODUCTION
Fashion is a fast-paced and dynamic industry. While the majority of

fashion consumers obtain their fashion-related products from the

mass market, the trends are often driven by high-fashion designers.

In the fashion industry, the high-fashion designers (e.g., Chanel and

Christian Dior) are the innovators that propose new fashion design

ideas, while the mass market (e.g., Nike and GAP) and fast fashion
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brands (e.g., Zara and H&M) are the followers. Fashion trends have

been long-perceived as a product of subjective process. However,

researchers have shown that fashion trends often follow specific

patterns [5, 8, 17].

Fashion trend forecasting is not a new problem. WGSN has been

the long-standing brand that provides fashion forecast reports every

season since 1998, with clients including Coach, Nike, Adidas, and

Levis’.
1
However, to the best of the authors’ knowledge, the reports

they produce are more based on qualitative analysis and consists of

suggestive insights. While these are incredibly valuable resources,

we believe a more precise, large-scale, and quantitative prediction

is also necessary. Google once released a report on fashion trends

based on search queries in 2016.
2
While a further pursuit of the

insightful results is yet to continued since then. Being able to foresee

the upcoming trends in fashion has various benefits. First of all, from

the designers’ perspective, knowing the competitors’ potential next

design can help adjust their in-house designs for the next-season

collection. Secondly, from the retailers’ perspective, knowing ahead

what trends will take off soon helps them plan of what inventory

to stock up. Thirdly, from the consumers’ perspective, for those

that are highly trend-aware (such as online fashion influencers),

knowing the popular trends in advance help them stay on the top

of the fashion game.

While the change of fashion trends may seem extremely volatile

and irregular, the core that drives the change of trends in the fashion

industry is heavily organized and periodic: fashion shows. Fashion

shows are viewed as one of the most critical events in the fashion

industry that drive the fashion trends forward every fashion season

for decades. We hence focus on the fashion show information to

construct our fashion trend prediction system.

But even with the fashion show information, capturing the fash-

ion trends and being able to predict the next fashion design is

challenging. First of all, how to extract meaningful information

from the visual data of fashion shows can be difficult. Although

there has been an abundance of deep learning models built to learn

high-quality embedding of images, the datasets the models are

trained on are very general and not fashion focused. Secondly, fash-

ion designers’ styles change over time. How to encounter such

evolvement is a critical question. Thirdly, besides the changing

styles of designers, fashion designs are also influenced by the over-

all industry trend. A mechanism that can capture the concept of the

overall trend in the fashion industry at a specific time is needed.

In this paper, we propose to leverage the fashion show data to

do next-season design prediction. We collected fashion show data

of three decades, which consists of the images of each designer’s

collections in each fashion show. We design a prediction framework

1
https://www.wgsn.com/

2
https://www.thinkwithgoogle.com/advertising-channels/search/fashion-trends-

2016-google-data-consumer-insights/
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that can achieve the following three. (1) It takes in the visual of

fashion show images, learns the embedding of each fashion show. (2)

It trains an RNN/LSTMmodel [9, 13] for each fashion designer based

on their fashion designs, alongwith other designs in the industry. (3)

It uses the learned fashion show embedding and trained RNN/LSTM

models to predict, given a fashion designer and its past designs,

the design they will put out in the next season. For predicting the

next season’s design through a Bayesian Personalized Ranking

formulation, the highest area under curve (AUC) we achieve on

average 78.42% using LSTM, and even for an individual designer

with 95% AUC.

The rest of this paper is organized as follows. In Section 2, we

introduce the background and literature related to fashion shows

and fashion research. We then conduct data analysis on the runway

image data in Section 3. Our proposed framework is presented in

Section 4 and evaluated in Section 5. We finally conclude this work

in Section 6.

2 FASHION TREND RESEARCH
The origin of fashion shows goes back to the 1800s in Paris, while it

prevailed in the 1920s in the US among the major department stores.

It was not until the 1970s that fashion designers started to hold

fashion shows outside of the department stores to showcase their

newly released collections.
3
Buyers from retail stores attend the

fashion shows to decide what collections to in stock to their stores

for the next seasons, and make the order after the shows. Fashion

journalists also attend the shows to report on the newly released

collections. The designers also, through the fashion shows, learn

about what other designers produce in the season. Such events are

viewed as the most important factors of deciding the new fashion

trends [11, 16].

Nowadays, the fashion shows take place in every fashion seasons,

spring, resort, fall, in the major fashion cities, New York, Paris,

and Milan. For the fashion seasons, spring shows are held around

September, fall shows are held around February, and resort are

usually held during summer, in between fall and spring shows. For

spring and fall shows, they can be further divided into ready-to-wear
and couture shows. Ready-to-wear shows display the collections

that will be in stores, ready for the consumers to purchase, while

couture shows display the collections that are for custom-made

only.

The study of fashion trends can go back to several decades ago.

In the 1960s, Blumer studied the trends of fashion from a theoretical

point of view, which was a popular approach to study the fashion

industry back then [2, 4, 12]. In the 1970s, the idea of fashion leaders
and design diffusion also started to receive attention from the fashion

researchers [3, 15, 18]. Afterward, the studies of the fashion industry

and trends have moved toward a more quantitative direction. Tigert

et al. studied fashion evolvement using fashion buyer data [19].

Belleau studied the cycles of dress length changes over the decades

using measurements obtained from paintings since 1860 [1].

Nowadays, with the immense amount of data accessible, re-

searchers can study fashion through an empirical approach lever-

aging the rich data of fashion, including online social networks,

3
https://en.wikipedia.org/wiki/Fashion_show
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Figure 1: Design trend detected by ImageNet pre-trained
DenseNet.

fashion magazine archives, and fashion runway images. On the con-

sumer end, Sanchis-Ojeda et al. studied the fashion trends through

consumer click rates [14], and He et al. studied the fashion trends

using Amazon’s recommendation dataset [8]. On the designer end,

Vittayakorn et al. and Furukawa et al. both explored using visuals

to detect fashion trends on the runway [7, 20]. We later present the

strong signals visuals can convey from the fashion runway images

in Section 3.

3 RUNWAY IMAGE ANALYSIS
Before introducing the design of our system framework, we first

conduct a brief analysis on the runway show images we collected

to show the rich information of fashion designs we can infer from

the images using deep learning neural network models. We used

32 years of runway data, with 952 unique fashion designers, 8965

fashion shows, and 256,907 unique looks in fashion shows. Note

that for this paper, we leverage only the fall and spring ready-to-

wear collections since it reflects more directly to the apparels worn

by consumers and timely fashion trends.

To convert runway images to more quantifiable information that

we can analyze, we pass through all the collected runway images

to a DenseNet that is pre-trained on ImageNet with 1000 classes

[6, 10]. We retrieve the top 10 predicted classes of each image based

on the classified probabilities and view them as the possible objects

appeared in the images. For each class, we plot their occurrences

normalized by the number of designers that had fashion shows in

that year.

https://en.wikipedia.org/wiki/Fashion_show
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Figure 2: System framework overview.

Figure 1 shows the trend comparisons between different fashion

designs detected by ImageNet.
4
As shown, we can observe drastic

changes in trends in the detected fashion designs. For example, as

shown in Figure 1a, the trend of stable pieces such as trench coats

does not change as much as trendy pieces such as kimonos, similar

as the trends of loafers (stable piece) and clogs (trendy piece) in

Figure 1b. Besides differentiating trendy pieces from stable pieces,

Figures 1c and 1d also show the changes of different fashion designs’

trends. In particular, Figure 1d shows the declines of both cowboy

hats and jersey, which were both considered as extremely trendy

in the 2000s.
56

Through the analysis of runway images using DenseNet pre-

trained on ImageNet without any fine-tuning, we may confirm that

pre-trained CNNmodels are capable of assisting us to extract mean-

ingful visual information from the fashion runway images, even

though ImageNet is not a fashion-focused dataset. Based on such

confirmation, we develop our runway design prediction system

relying on the visual information extracted by pre-trained CNN

models.

4 METHODOLOGY
The system framework we propose in this paper consists of two

main modules: (1) runway show embedding learning model (Figure

3) and (2) next-season prediction RNN model (Figure 4). Overview

4
We only plot trends from 2000 and onwards since the years before that include very

few designers.

5
https://www.wmagazine.com/gallery/paris-hilton-best-2000s-style/

6
https://www.buzzfeed.com/hnigatu/iconic-fashion-trends-from-the-early-2000s/

Table 1: Symbol definition

Symbol Definition

D Designer set

S Season set

X Look set

x Look image input

yd Designer output

ys Season output

Φ(·) CNN model

f (·) Fully-connected layer

hv Visual embedding

hl Look embedding

hc Collection embedding

hds Designer style embedding

htr Trend embedding

W ,U RNN/LSTM transitional matrices

of the system design is shown in Figure 2. For clarity, we summarize

the notations used in this paper in Table 1.

4.1 Problem Formulation
Each designer d ∈ D puts out a collection of fashion designs in

season t . Each collection consists of a set of looksX = {x1, ...,xk } ⊂
X, where k is the number of looks in the collection and X is the

universal set of looks. The goal is given a designer d , its collections
[c1, ...ct−1], predict its design at season t .

4.2 Runway Show Embedding Learning Model
Each collection by each designer consists of multiple images that

capture the outfit on the runway models, which we call them looks.
The number of looks in each collection varies. To generate an

embedding for a given collection, we first pass through all the

looks’ images x to a pre-trained CNN model of choice Φ(x) (e.g.,
DenseNet [10]) to generate visual embedding, hv. We then pass the

image embedding through a fully-connected layer f (ha) to reduce

their dimension, and generate look embedding, hl. We then do a

max pooling across all the look embedding to generate a collection
embedding, hc . The above process can be summarized as follows.

ha = Φ(x) (1)

hl = f (ha) (2)

hc = maxpool(hl) (3)

A good collection embedding should be able to capture its de-

signer and the season it belongs to. We therefore design the model

to be multi-task. Firstly, with the collection embedding hc , the
model predicts which designer designed this collection. hc is passed
through a fully-connected layer fd (hc ), then a softmax layer, which
further outputs ŷd . ŷd is a |D|-dimensional vector, where the ith

value in ŷd represents the probability of the collection being de-

signed by the ith designer in D. The above process is summarized



KDD ’19, August 2019, Anchorage, AK Yusan Lin and Hao Yang

PoolΦ ⋅ 𝑓 ⋅

𝐱

𝐡𝐯 𝐡𝐥

ℎ)

𝑦+

𝑦,

𝑓+ ⋅

𝑓, ⋅

Figure 3: Runway show embedding learning model

𝑑"

𝑑#

𝑑$

𝑑 𝒟

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

ℎ-

ℎ./" ℎ./# ℎ./$ ℎ./0

ℎ12.
𝑡 = 𝑇

ℎ./4

Figure 4: Next-season prediction RNN/LSTM model

as follows.

ŷd = softmax(fd (hc )) (4)

Secondly, also with the collection embedding hc , the model pre-

dicts which season
7
this collection is released. hc is passed through

a fully-connected layer fs (hc ), then a softmax layer, which further

outputs ŷs . ŷs is a |S|-dimensional vector, where the jth value in

ŷs represents the probability of the collection being released in the

jth season in S. The above process is summarized as follows.

ŷs = softmax(fs (hc )) (5)

7
The season here we refer to is spring, resort, fall, couture, etc, regardless of the year.

The objective of the model is to minimize the following two loss

functions.

Ldesiдner =
1

|D|
∑

H (ŷd ,yd ) (6)

Lseason =
1

|D|
∑

H (ŷs ,ys ) (7)

where H is the cross entropy.

4.3 Next-Season Prediction Model
Abundant factors are influencing what a designer will design for

the next season. We believe the two most important parts are what

the designers have designed in the past that define their styles, and

what the industry has put out as a whole in the previous seasons.We

call the first component designer style and the second component

trend. Such concept is illustrated in Figure 4.

The trend embedding of the whole industry at a given time j
can be obtained through an aggregation over all the designers’

collection embedding at time t , which is expressed as follows.

httr = maxpool({ht (1)c , ...,h
t ( |D |)
c }) (8)

where h
t (i)
c denotes designer i’s collection embedding at time t .

The designer style of a designer i at a given time j can be gen-

erated using all of their collection embedding hc from the past

(i = 1...t − 1). We design two alternatives to capture such sequen-

tial evolution. The first alternative is the recurrent neural network

(RNN), at time t , designer i’s designer style embedding hds is ob-
tained as follows.

htds = tanh
(
W [htc | |ht−1tr ] +Uht−1ds + b

)
(9)

whereW andU are fully-connected layers:W transforms the col-

lection embedding hc and trend embedding htr to smaller hidden

embedding in RNN andU transforms the design style embedding

at time t − 1 to at time t . By using RNN, we capture the designer’s

evolvement of styles throughout the time, rather than just looking

at a single snapshot. This alternative is shown in Figure 5a.
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Figure 5: Cell alternatives for next-season predictionmodel.

Another option is to leverage long-short-term memory (LSTM)

design, where the evolution of designers’ styles can be modeled as

below.

ft = σд
(
Wf [htc | |ht−1tr ] +Wf h

t−1
ds + bf

)
(10)

it = σд
(
Wi [htc | |ht−1tr ] +Wih

t−1
ds + bi

)
(11)

ot = σд
(
Wo [htc | |ht−1tr ] +Woh

t−1
ds + bo

)
(12)

ct = ft ⊙ ct−1 + it ⊙ tanh
(
Wc [htc | |ht−1tr ] +Ucht−1ds + bc

)
(13)

ht = ot ⊙ tanh(ct ) (14)

where the purposes ofW andU are similar as in RNN. Also, forget

gates are included to enable the model’s ability to capture designers’

short-term and long-term dependencies on the designs and trends

in the past. This alternative is shown in Figure 5b.

Given a designer, a sequence of collection embedding from time

1 to t − 1, the objective of the model is to minimize the following

loss.

Lrnn =
1

|D|
∑

cosine(htc , ˆhtc ) (15)

where cosine is the cosine distance.

5 EVALUATION
In this section, we introduce the dataset we collected and used for

evaluation. We then describe our experiment setting. We finally

discuss the prediction task formulation and report the results.

Algorithm 1 Model training process of runway fashion design

prediction.

1: procedure TrainRunwayShowEmbedding

2: epoch ← 0

3: while not converged or epoch < MAX_EPOCH do
4: Pass batch of ({x},yd ,ys ) to RunwayShowEmbedding
5: if epoch mod 2 == 0 then
6: Optimize Lseason
7: else
8: Optimize Ldesiдner
9: epoch ← epoch + 1

return Learned parameters Θrunway

10: procedure TrainNextSeasonPredictionRNN/LSTM
11: Θrunway ← TrainRunwayShowEmbedding
12: hc ← Generate all collection embedding with Θrunway
13: htr ← Generate all trend embedding with Θrunway
14: for designer d ∈ D do
15: epoch ← 0

16: while not converged or epoch < MAX_EPOCH do
17: Pass one batch of (Θrunway ,d) NextSeasonRNN

18: Add Θd
rnn to Θrnn

return Learned parameters Θrnn

5.1 Experiment Setting
We implemented all of our models in Tensorflow. The images are

passed through DenseNet to obtain image features. The image

features generated by DenseNet are of dimension 50176. The look

embedding hl and collection embedding hc are of dimension 256.

The weights in the models are initialized using Xavier initializer

and biases are initialized as zeroes.

As a preliminary experiment, due to the cold-start problem, we

focus our evaluation on the 202 designers with most fashion shows

reported in our dataset.

The training of the system consists of two stages: we first train

the runway show embedding model, then use the trained model to

generate runway show embedding, which in turns is fed as input

to the next-season prediction RNN model. We explain the training

process below and summarize it in Algorithm 1.

5.1.1 Runway Show Embedding Model. Runway show embedding

model is a joint-task neural network with two objective functions

to minimize. Since Ldesiдner is a multi-class classification loss (202

classes in the experiment) and Lseason is a binary classification

loss, the scales of the two losses are very different. Minimizing the

two by linearly adding them together will dilute one of the loss’

value and affect the optimization. To prevent this, we train the two

objectives in each epoch interchangeably.

Each input for runway show embedding model follows the for-

mat of ({x},yd ,ys ), where the first element is a set of images. We

use 70% of the data for training, 20% for validation and 10% for

testing. We set the batch size to 16, and use AdamDelta optimizer

for backpropagation, and terminate training until both Ldesiдner
andLseason converge. For interpretability, we evaluate the model’s

performance on embedding learning using accuracy (i.e., the num-

ber of instances classified correctly) instead of cross entropy. At
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Figure 6: Individual performance on next-season prediction.

Table 2: Performance summary on next-season prediction.

Cell type Min. AUC Avg. AUC Max. AUC

RNN 53.85% 78.40% 93.02%

LSTM 64.17% 78.42% 95.00%

Random 50.00% 50.00% 50.00%

this preliminary stage, we find that given a set of runway images,

the model can better distinguish the designers who create the col-

lection (2.5% for a 202-way classification [baseline: 0.4%]) than the

season the collection is released (50.25% for a binary classification

[baseline: 50%]).

5.1.2 Next-Season Prediction RNN/LSTM Model. After training of

the runway show embedding model is done, we use the trained

model to create each fashion show’s collection embedding, hc , and
each season’s trend embedding, htr .

Each input for next-season prediction RNN model for a designer

d follows the format of [(h1c ,h1tr ), (h2c ,h2tr ), ..., (h
Td
c ,h

Td
tr )], whereTd

is the maximum timestamp for designer d . We train a next-season

prediction RNN/LSTM model for each designer with batch size 16.

We use Adam optimizer with learning rate 0.0001 for backpropaga-

tion. The training stops untilLrnn converges or until the maximum

number of epochs achieves (500).

5.2 Next-Season Prediction Task
To evaluate the performance of our proposed framework, we con-

duct a next-season design prediction task. We formulate the predic-

tion task as follows. Given a designer d , her collections from time

1 to t − 1, her collection at time t as positive collection Xi and a

random collection not designed by d as negative collection X j , the

objective is to predict next-season scores so that z
(t−1)
d,i > z

(t−1)
d, j ,

where z is computed as follows.

z
(t−1)
d,i = cosine([c1, ..., ct−1],Xi ) (16)

For each designer d in each season, we randomly select a col-

lection from any designer d ′ (d ′ , d) in any season s ′ as negative
collection X j to form evaluation samples Ed . We evaluate the pre-

diction task by calculating the Area Under Curve (AUC) as follows.

AUC =
1

|D|
∑
d ∈D

1

|Ed |
∑

(i, j)∈Ed
I(z(t−1)d,i > z

(t−1)
d, j ) (17)

where I(·) is an identity function counting the number of times

z
(t−1)
d,i > z

(t−1)
d, j is true.

We experimented with both cell alternatives, RNN and LSTM.

The results are shown in Figure 6 and Table 2. At this preliminary

stage, without much parameter tuning, for RNN, we achieve an

average AUC of 78.40% for all the 202 designers (solid green line),

which is superior to a baseline of 50% (red dashed line) for binary

classification problems. The highest performance we get for an

individual designer is 93.02% and the worst performance being 53%.

As for LSTM, we achieve an average of 78.42% AUC, with the best

performance of 95% and worst being 64.17%.

6 CONCLUSION
In this paper, we propose a framework that leverages three decades

of fashion runway image data to predict next season’s fashion de-

signs. Our framework consists of two neural networks: a runway

embedding learning model and a next-season design RNN/LSTM

model. We show that when compared with random guess our frame-

work can well predict between which design will be released.
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