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ABSTRACT 

The resale price assessment of secondhand jewelry items relies 

heavily on the individual knowledge and skill of domain experts. 

In this paper, we propose a methodology for reconstructing an AI 

system that autonomously assesses the resale prices of 

secondhand jewelry items without the need for professional 

knowledge. As shown in recent studies on fashion items, 

multimodal approaches have succeeded in obtaining fine-grained 

representations of fashion items, although they generally apply 

simple vector operations through a multimodal fusion. We 

similarly build a multimodal model using the images and 

attributes of the product and further employ state-of-the-art 

multimodal deep neural networks applied in computer vision to 

achieve a practical performance level. In addition, we model the 

pricing procedure of an expert using iterative co-attention 

networks in which the appearance and attributes of the product are 

carefully and iteratively observed. Herein, we demonstrate the 

effectiveness of our model using a large dataset of secondhand no 

brand jewelry items received from a collaborating fashion retailer, 

and show that the iterative co-attention process operates 

effectively in the context of resale price prediction. Our model 

architecture is widely applicable to other fashion items where 

appearance and specifications are important aspects. 
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1   INTRODUCTION 

The fashion resale market has been rapidly growing and is 

becoming a larger part of the fashion industry owing to the 

prevalence of BtoC e-commerce sites and CtoC flea market apps 

used by consumers. A recent increase in secondhand shoppers is 

also driving this growth [1, 2]. Owing to such increase in demand 

and acceleration in trading, an appropriate price assessment of 

secondhand fashion items has become a major issue for retailers. 

Particularly in the case of jewelry items, a more proper price 

assessment is required because their unit price is much higher than 

that of other fashion items. However, the resale pricing of 

secondhand jewelry items heavily relies on the individual 

knowledge and skill of domain experts with several years of 

practical experience in purchasing, and jewelry retailers are 

therefore imposed with large costs for educating workers. To 

resolve this problem, through a partnership with Japan’s largest 

fashion resale retailer, we are constructing an AI system that 

autonomously assesses the resale prices of secondhand jewelry 

items without professional knowledge, even by laymen. 

Most predictive tasks basically rely on structured data [3, 4], such 

as the attributes or specifications. However, regarding the fashion 

items, their design appearance is extremely important in terms of 

their characterization, and it is difficult to estimate their prices 

correctly using their specifications alone. In recent studies on 

fashion items, product images are often utilized to incorporate 

visual information into their analytics. For a fashion product 

search or retrieval, an intuitive search [5-8] is realized through 

multimodal representations combining product images and their 

textual descriptions or attributes. In terms of fashion product 

recommendations, visual features of the product images are 

integrated with the item descriptions as latent factors to improve 

the recommendation performance [9-11]. These previous studies 

have shown that visuality is an essential factor in the analytics of 

fashion products, and multimodal approaches are effective at 

obtaining a better representation of fashion products. However, 

previous multimodal models generally employ traditional vector 

operations in integrating the feature vectors of different 

modalities, such as a simple concatenation, element-wise addition, 

or element-wise product. They are thus insufficient for acquiring 

representations of high-level associations between modalities. 

However, various multimodal fusion methods have been well 

studied regarding Visual Question Answering (VQA) tasks [12], 

which are typical multimodal challenges in the field of computer 

vision. Given an image and a natural language question regarding 

the image, the task is to derive an answer to the question. Bilinear 

models have shown an outstanding performance in VQA [13-18] 

because they enable the learning of high-dimensional interactions 

between modalities by encoding full second-order products. In 

Figure 1: The summary of the resale price prediction task of 

secondhand jewelry items. AI system takes an image and 

attributes of a product as input and suggest users a relevant 

resale price. 
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fact, they are approximated or simplified to reduce the number of 

parameters owing to the main issue of a huge dimensionality; 

however, they still provide better multimodal representations and 

predictive performances than classical vector combinational 

approaches. As another way to improve their accuracy, co-

attention approaches have recently been proposed [15, 19-22]. 

The co-attention mechanism enhances important regions of the 

input image and words of the question and enables to boost the 

predictive performance. Attention maps are calculated from 

interactions of the modalities, and are helpful in understanding the 

reasons for the prediction results; thus, they are often utilized in 

explanations and reasoning tasks [20, 22]. 

Similar to previous studies on fashion items, we also employ a 

multimodal model to combine a product image and its attributes, 

while further employing state-of-the-art methods in multimodal 

deep learning to achieve a practical level of accuracy regarding 

the resale pricing of secondhand fashion items. To demonstrate 

the performance of our model, we conducted an extensive 

experiment using a large dataset of purchasing and selling 

information of secondhand no brand rings received from a 

collaborative fashion retailer. This dataset is challenging because 

the pricing process of no brand rings is slightly different from 

brand items, whose product type has a strong impact on their price 

assessment. For no brand rings, the design appearance and 

specifications are more important because they have no product 

type to be compared to. In a practical price assessment of no 

brand rings by an expert, the appearance and attributes of the 

product are carefully and iteratively observed. We attempted to 

reproduce the pricing procedure of an expert using multimodal 

deep neural networks to achieve a practical price assessment. We 

employ a co-attention mechanism to enable focusing on important 

parts of the image and attributes and additionally propose a new 

iterative architecture for repeating the co-attention process. 

The primary contributions of our research are as follows. 

・ Through collaboration with Japan’s largest resale retailer, we 

worked on achieving a highly practical task, namely, the resale 

price assessment of secondhand jewelry items. 

・ Herein, we present an iterative co-attention network using state-

of-the-art methods in multimodal deep learning, which achieves a 

practical performance level. 

The rest of the paper is organized as follows. Section 2 reviews 

the related works. Section 3 formally explains the resale price 

prediction task and Section 4 describes our proposed network 

architectures. Section 5 experimentally evaluates our model with a 

large dataset of secondhand no brand rings, where we discuss the 

effectiveness of our approaches. We finally conclude the paper in 

Section 6. 

2   RELATED WORK 

Multimodal approaches have recently become popular for use in 

several fashion domain tasks because they provide more fine-

grained representations of fashion products. Regarding fashion 

product searches and retrieval, Zhao et al. [5] introduced a 

multimodal search method with a clothing image and its attributes 

as a query and enabled to transform appearance of the clothing to 

desirable one by manipulating the attributes. Liao et al. [6] 

utilized multi-level semantics extracted from a query image and 

user’s feedback for them for more precise search. Tautkute et al. 

[7] proposed a multimodal style search engine based on the 

similarity of aesthetics and style, using product images and text 

descriptions. They deployed it to their publicly available web 

application where users can search furniture products by selecting 

interior design patterns. Shanker et al. [8] used deep and shallow 

convolutional neural network to extract both high and low level 

features from a clothing image. They deployed their model to one 

of largest fashion e-commerce site in India. In terms of fashion 

product recommendation, He et al. [9, 10] utilized visual features 

extracted from a product image into Matrix Factorization to 

improve their recommendation performance and also alleviate 

cold start issues. Liu et al. [11] incorporated style and categorical 

features extracted from a product image. Previous studies on 

fashion product searches, retrieval, and recommendations have 

shown that incorporating product images provides information of 

the design appearance, user preference, and semantics, which do 

not appear in other modalities. Furthermore, multimodal 

approaches have proven to be an effective method for a fashion 

item analysis and are applicable to real-life situations. 

By contrast, multimodal fusion strategies have been well studied 

regarding VQA tasks [12], which are typical multimodal 

challenges in the field of computer vision. Bilinear models have 

shown to outperform traditional linear models in VQA because 

they consider high-dimensional interactions between modalities 

by computing the outer-product of the feature vectors. The main 

issue is the significant amount of computational resources 

required owing to an explosion in the number of combinations 

when the feature vectors have high dimensionality. Therefore, 

current approaches approximate or simplify the bilinear models to 

reduce the number of parameters. Fukui et al. [13] applied a count 

sketch method to reduce the parameters. Kim et al. [14] 

approximates the bilinear interactions by Hadamard product with 

low-rank constraint. Yu et al. [15] proposed MFB model and 

imposed Matrix Factorization on sliced matrices of a bilinear 

tensor. They extended their approach to a higher-order setting by 

MFH, consists of cascaded MFB blocks [16]. Younes et al. [17] 

introduced Tucker Decomposition framework to the bilinear 

tensor with rank sparsity constraint and their recent work, 

BLOCK [18] similarly applied Block Term Decomposition. 

Bilinear-based models have shown an outstanding performance in 

terms of VQA; nevertheless, they have not been frequently 

employed in practical applications.  

As another way to improve multimodal models, co-attention 

mechanisms have been introduced in VQA [15, 19- 22]. Such co-

attention enhances the important regions of the input image and 

words of the question representations and helps improve the 

predictive performance. Furthermore, the stacking of co-attention 

blocks has been shown to refine the representations and increase 

their accuracy. Lu et al. [19] proposed a hierarchical co-attention 

model considering different level of sentence and presented basic 

logics of parallel and alternative co-attention mechanisms. Nam et 

al. [20] exploited multi-step dual attention networks for reasoning 

and matching. Nguyen and Okatani [21] proposed dense co-

attention networks which computes attentions from bilinear 

interactions between modalities. Younes et al. [22] presented 

MuRel cell which models pair-wise relations between each region 

of the image and question and sequentially connected them. These 

iterative co-attention models allow more fine-grained 

representations to be obtained, and boost the predictive 

performance. However, from the viewpoint of neuroscience, they 

do not follow the human attention system [23, 24]; in addition, 

there have been few studies on applying a co-attention framework 
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in real applications.  

We employed such state-of-the-art methods in VQA tasks to 

construct a multimodal model for the resale price assessment of 

secondhand jewelry items. Moreover, we modeled an expert’s 

pricing procedure through which the appearance and 

specifications of a product are carefully and iteratively observed 

using iterative co-attention networks obedient to the human 

attention system, and clarified important factors of the multimodal 

inputs by visualizing attention maps to help users understand the 

reasons for the predictive results. 

3   RESALE PRICE PREDICTION 

A summary of a resale price prediction task of secondhand 

jewelry items is illustrated in Figure 1. Given an image and 

attributes of a product as the input, the multimodal model predicts 

its resale price. We constructed the model using deep neural 

networks in a supervised learning manner, providing the actual 

prices paid as the labels. Strictly speaking, actual market prices 

may not be uniquely determined because there are various 

external factors influencing them, such as the economic 

conditions, market trends of the metals, and encounters with 

customers. In the present study, we regard the prices paid as the 

market prices reflecting the various factors described above, and 

use the prices paid as the teaching values for the prediction. In 

addition, we formulated our problem as a classification task since 

it provides confidence values for prediction results. 

4   MODEL ARCHITECTURE 

In this section, we provide the details of our model architecture. 

We employ state-of-the-art methods in multimodal deep learning 

and model the expert’s pricing procedure using iterative co-

attention mechanisms in which the appearance and specifications 

of the product are carefully and iteratively observed. The entire 

network, as illustrated in Figure 2, consists of sequential co-

attention cells, each being responsible for a refinement of the 

representations of the image and attributes using a co-attention 

mechanism and fusion to provide a predictive feature vector. 

Using an iterative co-attention process, the predictive feature 

vectors are accumulated to form the final price decision, and the 

resale price is gradually determined through careful and iterative 

observations of the appearance and specifications. We first explain 

the initial representations of the image and attributes in Section 

4.1 and 4.2 respectively, and then describe the details of co-

attention cell in Section 4.3. We additionally introduce an 

ensemble strategy in Section 4.4. 

4.1   IMAGE REPRESENTATION 

As in many previous studies on multimodal deep learning using 

an image as one of modalities. We employ ResNet-50 model [25] 

to extract visual feature maps from an input image. If more fine-

grained visual representations are required, it can be replaced by 

deeper ones such as ResNet-101 and 152 or other state-of-the-art 

models, but we use ResNet-50 due to the limitation of GPU 

memory. The input images are size of 448×448  and we use 

feature maps of 2048×14×14  dimensions from ‘res5c’ block 

before the final average pooling layer in ResNet-50. We denote 

dimensions of feature maps as 𝑑𝑣×𝐷  so 𝑑𝑣 = 2048  and 𝐷 =
14×14. The network is pre-trained with ImageNet [26] dataset 

and fine-tuned with jewelry images in an end-to-end manner. 

4.2   ATTRIBUTE REPRESENTATION 

To encode the attributes, we apply two-layered embedding 

networks, as illustrated in Figure 2. The input attributes include 

both continuous and categorical variables. The categorical 

variables are assigned IDs and are transformed into one-hot 

vectors beforehand. The first embedding layer has multiple fully 

connected layers, each for a particular categorical attribute, and 

converts the one-hot vectors into distributed representations such 

as word embedding [27]. The number of units 𝑢 for each fully 

connected layer is determined using 𝑢 = 𝑐𝑒𝑖𝑙(�̃�/2) , where �̃� 

indicates the dimensions of a one-hot vector. The second 

embedding layer also consists of fully connected layers, each 

being for a particular categorical and continuous attribute, and 

projects the distributed representations into a high-dimensional 

space 𝑑𝑎 common to all attributes, which is set to 200. The output 

feature vectors are stacked in a feature map of 𝑑𝑎×𝑇 dimensions, 

where 𝑇 is the number of attribute types. 

4.3   CO-ATTENTION CELL 

We now describe the details of co-attention cell; see Figure 3. It 

takes visual and attributes feature maps, ℎ𝑣 ∈ ℝ𝑑𝑣×𝐷  and ℎ𝑎 ∈
ℝ𝑑𝑎×𝑇  respectively and outputs their refined representations as 

well as a predictive feature vector ℎ𝑜 ∈ ℝ𝑑𝑜 . We denote these 

visual and attribute representations into the (𝑙 + 1)-th co-attention 

cell as ℎ𝑣
(𝑙)

 and ℎ𝑎
(𝑙)

, respectively and output predictive feature 

vector as ℎ𝑜
(𝑙)

 where 𝑙 ∈ [0, 𝐿 − 1] and 𝐿 is the number of cells. 

For the initial representations before the first co-attention cell are 

denoted as ℎ𝑣
(0)

 and ℎ𝑎
(0)

, where 𝑙 = 0. All co-attention cells share 

their weight parameters inside them.  

4.3.1 Top-down and bottom-up attentions. We model the expert’s 

pricing procedure using iterative co-attention networks in which 

the appearance and specifications of the product are carefully and 

iteratively observed. From the viewpoint of neuroscience, an 

iterative co-attention process has the potential for modeling the 

human attention system. Top-down and bottom-up attention are 

two human visual attention systems [23, 24]; top-down attention 

is intentionally caused by specific stimulus in the context of the 

current task, and bottom-up attention is passively drawn to an 

unexpected stimulus. When a human acts in the real world, the 

top-down and bottom-up attention systems do not work 

individually, but both are applied interactively. Top-down 

attention can be expressed as ‘attribute-to-visual’ attention 

because the appearance is observed based on the specific purpose 

with the provided attributes. By contrast, bottom-up attention can 

be considered ‘visual-to-attribute’ attention because visual 

saliency provides further interest regarding the attributes.  Based 

on these findings, we propose formulating the human attention 

system in an iterative co-attention network as follows. 
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Figure 2: An overview of our iterative co-attention networks. An image and the attributes of a product are fed to the network and 

each feature map is initially extracted. A single co-attention cell takes these representations to enhance their important parts using 

a co-attention mechanism and outputs a predictive feature vector. Using an iterative co-attention process through the sequential 

cells, the visual and attribute representations are repeatedly refined, and predictive feature vectors are accumulated to form the 

final price decision. In the final prediction step, we employ a coarse-to-fine ensemble strategy by voting by multiple classifiers. FC 

in the figure means the fully connected layer. 

 

Given the visual and attribute representations, ℎ𝑣
(𝑙)

 and ℎ𝑎
(𝑙)

, they 

are firstly summed to calculate attentions as 

ℎ̂𝑣
(𝑙)

= ∑ ℎ𝑣
(𝑙)

𝐷

𝑖=1

, (1) 

ℎ̂𝑎
(𝑙)

= ∑ ℎ𝑎
(𝑙)

.

𝑇

𝑖=1

(2) 

These ℎ̂𝑣
(𝑙)

∈ ℝ𝑑𝑣  and ℎ̂𝑎
(𝑙)

∈ ℝ𝑑𝑎  are the feature vectors for each 

modality. Top-down and bottom-up attention maps, 𝐴𝑣
(𝑙)

∈ ℝ𝑑𝑣×𝐷 

and 𝐴𝑎
(𝑙)

∈ ℝ𝑑𝑎×𝑇, are each calculated by 

𝐴𝑣
(𝑙)

= Softmax (𝑓 (ℎ𝑣
(𝑙)

, ℎ̂𝑎
(𝑙)

)) (3) 

and 

𝐴𝑎
(𝑙)

= Softmax (𝑓 (ℎ̂𝑣
(𝑙+1)

, ℎ𝑎
(𝑙)

)) (4) 

respectively. Note that 𝑓(∙)  is a common multimodal fusion 

operation between both attentions, which learn high-dimensional 

associations between the modalities and specify the factors to be 

enhanced. We discuss 𝑓(∙)  in next subsection in detail. We 

calculate the bottom-up attention using refined visual 

representations. The refined representations are calculated by 

element-wise multiplication defined as 

ℎ𝑣
(𝑙+1)

= 𝐴𝑣
(𝑙)

∗ ℎ𝑣
(𝑙)

, (5) 

ℎ𝑎
(𝑙+1)

= 𝐴𝑎
(𝑙)

∗ ℎ𝑎
(𝑙)

. (6) 

These representations become next input to followed co-attention 

cell. We finally perform multimodal fusion inside the cell to 

derive a predictive feature vector from attended representations by 

ℎ𝑜
(𝑙)

= 𝑔 (ℎ̂𝑣
(𝑙+1)

, ℎ̂𝑎
(𝑙+1)

) . (7) 

where 𝑔(∙) is also a multimodal fusion operation but distinguished 

from 𝑓(∙) because the expressive power required is quite different 

between calculation of attention maps and calculation of 

predictive feature vector and also there is a limitation of GPU 

memory. 

By iterative co-attention process, we obtain multiple predictive 

feature vectors ℎ𝑜
(𝑙)

for 𝑙 = 0, … , 𝐿 − 1. This accumulated feature 

vectors could be considered to form the final price decision so we 

compute the average of them as follows: 

ℎ̂𝑜 =
1

𝐿
∑ ℎ𝑜

(𝑙)

𝐿−1

𝑙=0

. (8) 

The averaged predictive feature vector is fed to an ensemble 

module explained in Section 4.4 in detail.  

Previous sequential co-attention methods [19-22] have not 

followed the theory of neuroscience and have applied the two 

attention process at the same time. In contrast, our model applies 

the two attention processes alternately, following theory. 

4.3.2 Fusion strategy. The co-attention cell requires multimodal 

fusion for three times, two for calculation of attention maps and 

the rest is for calculation of predictive feature vector, denoted as 

𝑓(∙) and 𝑔(∙) respectively. We employ the MFB model [15] for 

𝑓(∙). It has appealing expressiveness in spite of drastic reduction 

in number of parameters. We briefly review the logics of MFB 

model. For simplicity, feature vectors for different two modalities 

are denoted as 𝑥 ∈ ℝ𝑑𝑥 and 𝑦 ∈ ℝ𝑑𝑦 below. Bilinear model of two 

representations is defined as follows: 

𝑧𝑖 = 𝑥𝑇𝑊𝑖𝑦, (9) 

where 𝑊𝑖 ∈ ℝ𝑑𝑥×𝑑𝑦 is a projection matrix and 𝑧𝑖 ∈ ℝ is the output 

of bilinear model. The matrix 𝑊𝑖 can be factorized into two low-

rank matrices by Matrix Factorization method as 

𝑧𝑖 = 𝑥𝑇𝑈𝑖𝑉𝑖
𝑇𝑦 = ∑ 𝑥𝑇𝑢𝑑𝑣𝑑

𝑇𝑦

𝑘

𝑑=1

= 𝕀𝑇(𝑈𝑖
𝑇𝑥 ∘ 𝑉𝑖

𝑇𝑦), (10) 

where 𝑈𝑖 ∈ ℝ𝑑𝑥×𝑘 and 𝑉𝑖 ∈ ℝ𝑑𝑦×𝑘 are the latent matrices, ∘ is the 

Hadamard product of two vectors, 𝕀 ∈ ℝ𝑘  is an all-one vector.  

The matrix 𝑊𝑖 is a sliced matrix of the bilinear tensor and we need 

to obtain 𝑧 ∈ ℝ𝑜. Therefore, two latent matrices are extended to 

three-order tensors, 𝑈 ∈ ℝ𝑑𝑥×𝑘×𝑜  and 𝑉 ∈ ℝ𝑑𝑦×𝑘×𝑜  respectively. 

We further reformulate these tensors to 2-D matrices, �̃� ∈ ℝ𝑑𝑥×𝑘𝑜 

and �̃� ∈ ℝ𝑑𝑦×𝑘𝑜. Accordingly, 𝑧 can be rewritten as follows: 

𝑧 = SumPooling(�̃�𝑇𝑥 ∘ �̃�𝑇𝑦, 𝑘), (11) 
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where the function SumPooling(𝑠, 𝑘) means sum pooling over 𝑠 

with window size 𝑘.  

The MFB model mainly consists of expand stage and squeeze 

stage and consequently requires only embedding layer for each 

modality, represented as �̃� and �̃� above. To calculate our attention 

maps, we additionally perform feature transformation with 1-D 

convolutions and ReLU activation as depicted in Figure 3. We set 

depth dimension of first convolution output to 128 and second to 

1 , which means that we provide one glimpse in one attention 

process. Therefore, the function 𝑓(∙)  also includes these 

transformations as well as fusion but for the sake of simplicity we 

denote 𝑓(∙) as 

𝑓 = 𝑀𝐹𝐵(𝑥, 𝑦). (12) 

On the other hand, we require high-level expressiveness for 

calculation of predictive feature vectors. According to our 

preliminary experiments to compare several fusion methods, we 

find BLOCK model [18] demonstrates outstanding performance 

and it enables us to control the expressivity and complexity of the 

model. Thus, we define 𝑔(∙) as follows: 

𝑔 = 𝐵𝐿𝑂𝐶𝐾(𝑥, 𝑦). (13) 

We also briefly review the core part of BLOCK model. 

The bilinear model takes two vectors 𝑥 ∈ ℝ𝑑𝑥 and 𝑦 ∈ ℝ𝑑𝑦, and 

projects them as follows: 

𝑧 = 𝒯×1𝑥×2𝑦, (14) 

where 𝑧 ∈ ℝ𝑜 is an output feature vector and 𝒯 ∈ ℝ𝑑𝑥×𝑑𝑦×𝑜 is a 

bilinear tensor. The bilinear tensor is expressed in terms of Block 

Term Decomposition as 

𝒯 ≔ ∑ 𝒟𝑟×1𝐴𝑟×2𝐵𝑟×3𝐶𝑟

𝑅

𝑟=1

, (15) 

where ∀𝑟 ∈ [1, 𝑅] , 𝒟𝑟 ∈ ℝ𝐿×𝑀×𝑁  is the 𝑟 -th core tensor,  𝐴𝑟 ∈
ℝ𝑑𝑥×𝐿, 𝐵𝑟 ∈ ℝ𝑑𝑦×𝑀, and 𝐶𝑟 ∈ ℝ𝑜×𝑁 are the 𝑟-th latent matrices. 

It can be written as 

𝒯 = 𝒟𝑏𝑑×1𝐴×2𝐵×3𝐶, (16) 

where 𝐴 = [𝐴1, … , 𝐴𝑅]  (same for 𝐵  and 𝐶 ), and 𝒟𝑏𝑑 ∈
ℝ𝐿𝑅×𝑀𝑅×𝑁𝑅 is the block-superdiagonal tensor of {𝒟𝑟}1≤𝑟≤𝑅.  

The BLOCK model consequently approximates a full bilinear 

tensor by a sum of low-rank terms composed of 𝐴𝑟, 𝐵𝑟, and 𝐶𝑟, 

and 𝒟𝑟 (the tensor size is controllable), and imposes rank-sparsity 

constraints. However, we do not apply rank-sparsity because our 

computational resources have the capability of computing the core 

tensors 𝒟𝑟 . We employ the BLOCK model for the final fusion 

inside the co-attention cell, and therefore our single co-attention 

cell is composed of MFB-based top-down and bottom-up attention 

mechanisms and a BLOCK fusion module. This means that our 

model using 𝐿 = 1 is considered a BLOCK model equipped with 

a co-attention mechanism.  

4.4   MULTIPLE CLASSIFIER ENSEMBLE 

We also introduce an ensemble strategy, Multiple Classifier 

Ensemble (MCE), into our model for further improvement. As 

described in Section 3, we formulate the resale price prediction 

problem as a classification task. This means that the continuity 

and distances among classes are ignored. As an another problem,  

fine-grained classification becomes difficult when imbalanced 

data are used. To solve these problems, we set multiple classifiers 

with coarse labels shifting the price zones and apply a voting 

based on their multiple prediction results. This coarse-to-fine 

approach explicitly takes the continuity into the model and 

provides more stable prediction results through a voting strategy. 

The final prediction result is determined by voting over the 

original labels, and a softmax function is applied to obtain the 

class probability distribution. We now have additional hyper-

parameters, the number of classifiers 𝑁𝑐 , the number of coarse 

classes #{𝒞𝑘} (𝒞𝑘 means class sets defined for 𝑘-th classifier), and 

shifting price band 𝑏 (in dollar). We empirically determined 𝑁𝑐 =
20 , #{𝒞𝑘} = 7 , and 𝑏 = 180 . Moreover, we employ weighted 

softmax cross entropy loss against the imbalanced data for 

training the model by 

𝐿 = −
1

𝑁𝑐
∑ ∑ 𝑤𝑐𝑡𝑐 log(softmax(𝑦𝑐))

𝑐∈𝒞𝑘

𝑁𝑐

𝑘

, (17) 

where 𝑤𝑐  , 𝑡𝑐, and 𝑦𝑐  each represent the reciprocal of ratio of the 

number of samples of the class 𝑐 to total batch size, ground truth 

label for the class 𝑐 (0 or 1), and predicted logit for the class 𝑐. 

The weighted softmax cross entropy loss puts more loss on 

minority classes and results in avoid of over-fitting. 

5   EXPERIMENTS 

5.1   DATASET 

We have received a large dataset of purchase and selling 

information of secondhand no brand rings from the collaborative 

fashion retailer. Our dataset totally includes 32,542 samples with 

their images and attributes. We split the whole dataset into train, 

validation, test sets and each includes 19,176, 5,350, and 8,016 

samples respectively. The validation split is used for hyper-

parameter tuning and we employ the model reaching the peak of 

accuracy on the validation split for test evaluation. The ring 

images are size of 512×512. These images are originally taken 

for the purpose of insertion into the retailer’s e-commerce site, 

and thus the photographic conditions such as the camera 

viewpoint, illumination, and background are mostly the same 

among all samples. The details of the attributes are shown in Table 

1. Both continuous and categorical variables are included. In 

addition to these characteristic attributes, we add ‘month of pur 

chase’ to take the seasonality into account in our models. We have 

a total of 13  types of attributes and 123  variables, and we 

therefore set parameter 𝑇  introduced in Section 4.2 to 13 . As 

Figure 3: Details of the single co-attention cell. It takes visual 

and attribute representations, 𝒉𝒗
(𝒍)

 and 𝒉𝒂
(𝒍)

, as input and then 

outputs refined them,  𝒉𝒗
(𝒍+𝟏)

 and 𝒉𝒂
(𝒍+𝟏)

, and a predictive 

feature vector 𝒉𝒐
(𝒍)

. Inside the cell, top-down and bottom-up 

attention are calculated by MFB fusion method. The final 

fusion is performed by BLOCK fusion model. 
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described in Section 3, we use the actual prices paid for the labels. 

Figures 4 (a) and (b) show the histogram of the price, which has 

an extremely long tail distribution. We defined 18  price zones 

(labels) along the price line, which is a list of reference selling 

prices determined by the collaborative retailer. Table 2 shows the 

18 price zones and label IDs, where the prices are written in 

dollars and converted from Japanese yen based on the exchange 

rate as of May 2019. We also plot the number of samples for each 

label in Figure 4 (c). 

5.2   IMPLEMENTATION DETAILS 

We use the Momentum Stochastic Gradient Descent optimizer 

with a learning rate 𝛾 = 0.01. We train models on the train split, 

validate on the validation split, and evaluate the performance on 

the test split. The batch size is set to 16 for all models. While 

training a model, input images are randomly cropped to size of 

448×448. As for the attributes, we filled missing values in the 

continuous variables with their mean value and then we apply a 

log-transformation and standardization.  

5.3   EVALUATION METRIC 

We evaluate the performances of models by top-  𝑘  accuracies, 

where we sort predicted labels by their confidence values in 

descending order and calculate accuracy according to whether any 

of 𝑘 highest labels coincide to the correct label or not. We set  𝑘 =
3, 5, 7  to observe how much the models concentrate their 

prediction to the correct price. 

5.4   METHODS 

To explore the essential components in multimodal models for a 

resale price prediction task, we implemented various models in 

our experiment, which can be roughly divided into the baseline 

models, state-of-the-art models, and our proposed models. To 

investigate how each modality affects the price, we built the 

‘visual-alone’ and ‘attributes-alone’ models as follows: (i) The 

visual-alone model extracts a visual feature vector of 2,048 

dimensions from the ‘pool5’ layer in ResNet-50, which is fed to 

the following MCE layer. (ii) The attributes-alone model replaces 

the second embedding layer with a single fully connected layer to 

extract a feature vector of 2,048 dimensions, which is fed to the 

MCE layer. In addition to these single modality models, we built 

simple multimodal models to purely confirm the effectiveness of 

our multimodal approach for a resale price prediction task. We 

conducted the following operations on the feature vectors of the 

visual appearance and attributes obtained through the same 

procedure as the single modality models. (iii) The simple 

concatenation model of two vectors results in a feature vector of 

4,096 dimensions. (iv) In the element-wise addition model, the 

two feature vectors are added in an element-wise manner. (v) 

Finally, the element-wise product is the product of the two feature 

vectors. These models are similarly followed by the MCE layer. 

For state-of-the-art models, we implemented several bilinear 

approaches. (vi) The MFB and (vii) MFH models are Matrix 

Factorization based bilinear models, as described in Section 4.3.2. 

We set the parameters 𝑘 and 𝑜 to 5 and 200, respectively. For the 

MFH model, the number of MFB blocks 𝑝  is set to 2. These 

parameters are the same as in previous studies [15, 16]. In terms 

of the tensor decomposition, we implemented (viii) MUTAN and 

(ix) BLOCK models. For the MUTAN model, we set the 

parameters 𝑡𝑞 = 𝑡𝑣 = 𝑡𝑜 = 360, and rank 𝑅 = 10. These are the 

same as used in the experiment, the details of which can be found 

in [17]. In the BLOCK model, we chose 𝐿 = 𝑀 = 𝑁 = 32 and 

𝑅 = 100, which differ from the experiment settings, which were 

𝐿 = 𝑀 = 𝑁 = 80 and 𝑅 = 20 for the VQA task [18]; however, 

we found that the BLOCK model provides better results when 

making the core tensor smaller and increasing the rank. For the 

proposed models, we implemented the iterative co-attention 

networks (hereinafter, the ICAN model). To observe the reactions 

when changing the number of cells 𝐿, we built the ICAN models 

for 𝐿 = 1 to 5. The comparison results of the top- 𝑘 accuracy are 

shown in Table 3 and the peak is almost reached when 𝐿 = 3.  

The results of the ICAN models when (x) 𝐿 = 1 and (xi) 𝐿 = 3 

are listed in Table 4. The parameter settings in the MFB and 

BLOCK modules of the co-attention cell are the same as with the 

single models. 

 

Figure 4: (a) Long-tail distribution of prices. Prices are written in dollars. (b) Distribution of log-transformed prices. (c) The 

number of samples for each class. As for the definition of the classes, refer to Table 2. The last class (label:17) covers wide ranges of 

price zone and contains large number of samples. It is obviously imbalanced data. 
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Table 1: List of attributes of a secondhand no brand ring. Both continuous and categorical variables are included. We have totally 

13 attributes and 123 variables. 

 

 

 

Table 2: Class label IDs and their pricelines. Prices are shown 

in dollar. 

 

5.5   RESULTS  

As shown in Table 4, the attributes-alone model shows better 

results than the visual-alone model. This indicates that explicit 

product information gives steady predictions. The product image 

also implicitly includes basic information such as the size or type 

of a stone, but this is ambiguous and results in poor accuracy. By 

contrast, multimodal models, namely, concatenation, element-

wise addition, and element-wise product, are clearly more 

accurate than single-modality models. We infer that the images 

provide visual information that does not appear in the attributes, 

and the images complement each other. Thus, the multimodal 

approaches are effective for a resale price prediction. The results 

of the state-of-the-art models, MFB, MFH, MUTAN, and 

BLOCK, indicate that they all excel over the simple multimodal 

models. This shows that bilinear approaches are certainly effective 

in a multimodal fusion. They achieve almost the same results 

although the BLOCK model slightly excels over the others, and 

thus we adopted it for the final fusion of our co-attention cell. Our 

ICAN models remarkably outperform these state-of-the-art 

models with top-3, -4, -5 level accuracies. In particular, for 𝐿 = 3, 

+6.8– 9.7  and +5.9  point improvements are achieved in top-3 

level accuracy over the simple multimodal fusion models and the 

best bilinear approach, namely, the BLOCK model, respectively. 

Accordingly, the collaborative retailer has regarded the ICAN 

model as achieving a practical level performance and permitted to 

be deployed for practical use. Figure 5 shows the confusion 

matrix for this case, which indicates that the predictions are 

concentrated along the diagonal of the matrix; in other words, the 

predicted class distribution overlaps the correct label. For 𝐿 = 1, 

the ICAN model corresponds to the BLOCK model equipped with 

our co-attention mechanism and therefore the co-attention 

performs well in the context of resale price prediction and 

substantially contributes to a task improvement. We also observed 

that increments in the iterative co-attention process enable a boost 

in performance. These results indicate that the attention process 

should be repeated several times to correctly specify the important 

parts of the input data and should be alternately interacted 

between different modalities. It is thought that our iterative co-

attention architecture follows the human attention system, namely, 

when humans act in the real world, the top-down and bottom-up 

attention systems do not operate individually, but are interactively 

ID Attribute Description Variable type Examples # of categories 

1 Size The circumference of the ring. Continuous 5 - 

2 Weight The total weight of the ring. Continuous 0.15 ounce - 

3 Size of center stone The size of the stone at the center. Continuous 0.5  - 

4 Size of side stone The size of a stone to the side of the 

center stone. 

Continuous 0.5 carat, 0.1 inch - 

5 Grading report The existence of a grading report 

showing an analysis of the 4Cs (carat, 

color, clarity, cut). This is for 

diamonds only. 

Categorical Present / absent 2 

6 Identification report The existence of a gem identification 

report, which shows an analysis of the 

type of gem and its authenticity. This 

is for all types of gems. 

Categorical Present / absent 2 

7 Center stone The type of center stone. Categorical Diamond, ruby, sapphire, pearl, 

emerald, topaz, opal, etc. 

37 

8 Side stone The type of side stone. Categorical Diamond, ruby, sapphire, pearl, 

emerald, topaz, opal, etc. 

37 

9 Metal The color and content of the metal. Categorical 10K, 14K, 18K, 24K, yellow 

gold, platinum, silver, etc. 

11 

10 Degree of use The quantized degree of use of the 

ring. 

Categorical Brand-new, unused, used, etc. 4 

11 Notices of repair Noted resizes and adjustments. Categorical Non-resizable, non-adjustable, 

etc. 

6 

12 Notices of defects Noted scratches, flaws, or inclusions. Categorical Scratches, flaws, inclusions, etc. 6 

13 Month of purchase The month of purchase. Categorical January, February, March, etc. 12 

label Price 

line 

Price zone label Price 

line 

Price zone 

0 157 -180 9 562 540-585 

1 202 180-225 10 607 585-630 

2 247 225-270 11 652 630-675 

3 292 270-315 12 697 675-720 

4 337 315-360 13 742 720-765 

5 382 360-405 14 787 765-810 

6 427 405-450 15 832 810-855 

7 472 450-495 16 877 855-900 

8 517 495-540 17 904 900- 
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applied.  

We further visualized each attention map for visual and attribute 

representations, as shown in Figure 6. We picked up several 

samples using (a) the original product image, (b) a visual attention 

heatmap of where the model focuses on, (c) an image overlaid 

with the attention heatmap, and (d) an attribute attention heatmap 

along with the names of the attributes. From the visual attention 

map, we can see that the ICAN model reveals important regions 

of the input image, such as over the center stone, side stone, or 

other characteristic parts. Similarly, important attributes are 

highlighted including the weight, size of the center stone, and size 

of the side stone. These factors are intuitively understandable, but 

we found that the center stone is not as highlighted as we 

expected, and therefore this information might be retrieved from 

the input image. 

In addition, we interestingly observed that an identification report 

is occasionally highlighted. Its existence does not appear in 

images, and the model can explore modality-dependent factors to 

complement each other. For several products whose 

characteristics make it extremely difficult to estimate their prices, 

the attention heatmaps cover the entire appearance of a product 

and its attributes to seek clues to estimate its price. Moreover, our 

model provides new insights into further analysis. We found that 

the month of purchase is often highlighted, which indicates there 

may be a seasonality in the resale prices. Perhaps, anniversary 

promotions or trading among resale retailers affect their pricing 

trend. Thus, a co-attention mechanism can discover new 

information and provide areas of further investigation. 

 

Table 3: Top-𝒌  accuracy of iterative co-attention networks 

when changing the number of cells. It is peaked around 𝑳 = 𝟑.  

 

Models Top- 𝑘 accuracy [%] 

 𝑘 = 3  𝑘 = 5 𝑘 = 7 

ICAN with 𝐿 = 1 57.8 77.1 88.6 

ICAN with 𝐿 = 2 58.7 77.3 88.3 

ICAN with 𝐿 = 3 59.0 77.6 88.8 

ICAN with 𝐿 = 4 58.6 77.4 88.9 

ICAN with 𝐿 = 5 57.6 77.1 88.7 

 

Table 4: Evaluation results of top- 𝒌  accuracies on various 

models. We implement baseline models and state-of-the-art 

models in multimodal fusion as well as our proposed iterative 

co-attention networks. The ICAN models outperform both 

baseline and state-of-the-art models. 

 

Models Top- 𝑘 accuracy [%] 

 𝑘 = 3  𝑘 = 5  𝑘 = 7  

(i) visual-alone 41.6 59.9 73.6 

(ii) attributes-alone 46.6 66.0 78.9 

(iii) concatenation 50.4 69.9 82.8 

(iv) element-wise addition 49.3 69.0 82.6 

(v) element-wise product 52.2 71.7 84.3 

(vi) MFB [15] 52.3 71.7 85.1 

(vii) MFH [16] 52.9 73.5 85.5 

(viii) MUTAN [17] 52.8 72.8 85.7 

(ix) BLOCK [18] 53.1 73.9 86.4 

(x) ICAN with 𝐿 = 1 57.8 77.1 88.6 

(xi) ICAN with 𝐿 = 3 59.0 77.6 88.8 

5.6   DISCUSSIONS AND FUTURE WORKS 

We demonstrated that our iterative co-attention model is effective 

in the resale price assessment of secondhand jewelry items, and 

showed that it achieves a high level of performance 

experimentally and hence the collaborative retailer has regarded 

the ICAN model as achieving a practical level performance and 

permitted to be deployed for practical use. However, we need to 

apply additional experiments to confirm its practicality. First, we 

need to conduct an A/B test, where half of the target products are 

priced by experts and the other half are priced by our system. The 

sales and inventory turnover can then be fairly compared. For the 

model generalizability, we need to seek a methodology to 

optimize multiple hyper-parameters in our model. In addition, we 

should incorporate the trends of the economic conditions, the 

market prices of the stones and metals, or the design popularity. 

We will extend our iterative co-attention model to other fashion 

items or tasks, as well as other domains, where the appearance 

design and specifications are both important. 

6   CONCLUSION 

In this paper, we introduced a resale price prediction task of 

secondhand jewelry items and presented a multimodal model that 

takes an image and attributes of a product into consideration, and 

thus suggests a relevant resale price. We employed state-of-the-art 

methods in VQA, which is a typical multimodal task, and 

proposed a new iterative co-attention network that models an 

expert’s pricing procedure in which the appearance and 

specifications of a product are carefully and iteratively observed. 

In our experiment on the large dataset of secondhand no brand 

rings, we demonstrated that our model provides an outstanding 

performance compared to baseline and state-of-the-art fusion 

models. Furthermore, we clarified the key factors of the input 

multimodal data by visualizing attention maps for each modality 

using a co-attention mechanism. Our model architecture is also 

applicable to other fashion items, tasks, and domains, where the 

design appearance and specifications are both important. 

Figure 5: Confusion matrix of iterative co-attention networks 

when 𝑳 = 𝟑 on test split. Predicted distribution overlaps the 

correct label and predictions concentrate on the diagonal of 

matrix. 
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Figure 6: Visualization results of attention maps for an image and attributes data: (a) original product image, (b) visual attention 

heatmaps of where the model focuses on, (c) overlaid images with attention heatmaps, and (d) attention heatmaps of attributes 

along with the names. Visually important parts such as the center stone, side stone, and other characteristic parts are highlighted in 

the overlaid images. Similarly, important attributes are highlighted such as the weight, size of the center stone, and size of the side 

stone. In the case of unusual design samples, attention maps cover the whole range of the input data; in other words, the model 

seeks clues for a resale price prediction from the input data. Such visualization helps users understand the prediction results. 



KDD Workshop on AI for fashion, 2019, Alaska, USA Y. Yamaura et al. 

 

 

 

REFERENCES 

[1] Aaron Kessler. 2019. Rise of the Fashion Resale Marketplaces. Raymond James 

& Associates Industry Report. 

[2] Imran Amed, Achim Berg, Anita Balchandani, Johanna Andersson, Saskia 

Hedrich, Robb Young, Marco Beltrami, Dale Kim, and Felix Rölkenes. 2019. 

The State of Fashion 2019. McKinsey & Company. 

[3] Gordon S. Linoff and Michael. J. A. Berry, John. 2011. Data Mining 

Techniques: For Marketing, Sales, and Customer Relationship Management. 

Wiley & Sons, Inc. 

[4] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. 2016. Data 

Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 

[5] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. 2017. Memory-

Augmented Attribute Manipulation Networks for Interactive Fashion Search. 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6156-

6164.  

[6] Lizi Liao, Xiangnan He, Bo Zhao, Chong-Wah Ngo, and Tat-Seng Chua. 2018. 

Interpretable Multimodal Retrieval for Fashion Products. In Proceedings of the 

26th ACM International Conference on Multimedia (MM). 1571-1579. 

[7] Ivona Tautkute, Tomasz Trzcinski, Aleksander Skorupa, Lukasz Brocki, and 

Krzysztof Marasek. 2019. DeepStyle: Multimodal Search Engine for Fashion 

and Interior Design. IEEE Access 2019. 

[8] Devashish Shanker, Sujay Narumachi, H A Ananya, Pramod Kompalli, and 

Krishnendu Chaudhury. 2017. Deep Learning based Large Scale Visual 

Recommendation and Search for E-Commerce. arXiv preprint 

arXiv:1703.2344. 

[9] Ruining He and Julian McAuley. 2016. VBPR: Visual Bayesian Personalized 

Ranking from Implicit Feedback. In Proceedings of the 30th AAAI Conference 

on Artificial Intelligence (AAAI). 144-150. 

[10] Ruining He, Chunbin Lin, Jianguo Wang, and Julian McAuley. 2016. Sherlock: 

Sparse Hierarchical Embeddings for Visually-aware One-class Collaborative 

Filtering. In Proceedings of the 35th International Joint Conference on 

Artificial Intelligence (IJCAI). 3740-3746. 

[11] Qiang Liu, Shu Wu, and Liang Wang. 2017. DeepStyle: Learning User 

Preferences for Visual Recommendation. In Proceedings of the 40th 

International ACM SIGIR Conference on Research and Development in 

Information Retrieval. ACM, 841-844. 

[12] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv 

Batra, C. Lawrence Zitnick, and Devi Parikh. 2015. VQA: Visual Question 

Answering. IEEE International Conference on Computer Vision (ICCV). 2425-

2433. 

[13] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, 

and Marcus Rohrbach. 2016. Multimodal Compact Bilinear Pooling for Visual 

Question Answering and Visual Grounding. In Proceedings of the 2016 

Conference on Empirical Methods in Natural Language Processing (EMNLP). 

The Association for Computational Linguistics. 457-468 

[14] Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo 

Ha, Byoung-Tak Zhang. 2017. Hadamard Product for Low-rank Bilinear 

Pooling. In the 5th International Conference on Learning Representations 

(ICLR). 

[15] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. 2017. Multi-modal 

Factorized Bilinear Pooling with Co-Attention Learning for Visual Question 

Answering. IEEE International Conference on Computer Vision (ICCV). 1839-

1848. 

[16] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. 2018. Beyond Bilinear: 

Generalized Multimodal Factorized High-Order Pooling for Visual Question 

Answering. IEEE Transactions on Neural Networks and Learning Systems 

(TNNLS). 5947-5959. 

[17] Hedi Ben-Younes, Rémi Cadene, Matthieu Cord, and Nicolas Thome. 2017. 

Mutan: Multimodal Tucker Fusion for Visual Question Answering. IEEE 

International Conference on Computer Vision (ICCV). 2631-2639. 

[18] Hedi Ben-Younes, Rémi Cadene, Nicolas Thome and Matthieu Cord. 2019. 

BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and 

Visual Relationship Detection. In Proceedings of the 33th AAAI Conference on 

Artificial Intelligence (AAAI). 

[19] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical 

Question-Image Co-Attention for Visual Question Answering. In Proceedings 

of the 30th International Conference on Neural Information Processing Systems 

(NIPS). 289-297. 

[20] Hyeonseob Nam, Jung-Woo Ha, and Jeonghee. 2017. Dual Attention Networks 

for Multimodal Reasoning and Matching. In IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). 2156-2164. 

[21] Duy-Ken Nguyen and Takayuki Okatani. 2018. Improved Fusion of Visual and 

Language Representations by Dense Symmetric Co-Attention for Visual 

Question Answering. In IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). 6087-6096. 

[22] Rémi Cadene, Hedi Ben-Younes, Matthieu Cord, and Nicolas Thome. 2019. 

MUREL: Multimodal Relational Reasoning for Visual Question Answering, In 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).  

[23] Charles E. Connor, Howard E. Egeth, and Steven Yantis, 2004. Visual 

Attention: Bottom-Up Versus Top-Down. Current Biology. R850-R852. 

[24] Lucia Melloni, Sara van Leeuwen, Arjen Alink, Notger G. Müller. 2012. 

Interaction Between Bottom-up Saliency and Top-down Control: How Saliency 

Maps Are Created in the Human Brain. Cerebral Cortex. 2943-2952. 
[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016. Deep Residual 

Learning for Image Recognition. IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR). 770-778.  

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. 

ImageNet: A Large-Scale Hierarchical Image Database. IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). 248-255.   

[27] Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 

2013. Distributed Representations of Words and Phrases and their 

Compositionality. In Proceedings of the 26th International Conference on 

Neural Information Processing Systems (NIPS). 3111-3119.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


