

What is Urban Analytics?

Use of data and technologies to generate specialised insight in order to address complex issues cities are facing.

Data visualisationFlicker data for London
Locals vs Tourists

Data analyticsSSIM, predictive modelling for option assessment

Interactive tools
Web-based Digital Environmental Statement tool, AECOM

Our mission

Promote an outcome-oriented approach in development and infrastructure projects to improve efficiency, mitigate risk and optimise the social value generated by the projects.

Measure what matters most to our lives but difficult to quantify such as: wellbeing | equality | diversity | social cohesion | cultural identify | productivity | resilience.

Support seamless transition from planning to design.

Urban Analytics for better outcomes and efficiency

Define

Explore data to identify issues and develop measures for social, economic and environmental outcome objectives through a workshop.

Measure

Build an integrated systems model to measure outcomes for various scenarios to support planning and design of development/infrastructure.

Engage

Communicate value that projects would generate to enable informed decision making and meaningful stakeholder engagement.

AECOM

Defining issues and objectives - Liveability Framework

Goals

Social resilience

Connectivity

Diversity and identity

Inclusivity and equity

Happiness and Pride

Economic innovation

Connectivity

Diverse activities

Innovation and creativity

Vitality

Environmental balance

Resilience

Bio-diversity

Objectives

Provide metropolitan connectivity

Create neighbourhoods with character

Integrate existing neighbourhoods

Accommodate students and key workers

Encourage mix of activities

Develop cultural identities

Offer access to a range of lifestyle choices

Foster sense of belonging

Attract multi-national businesses

Attract diverse activities

Improve productivity and economic efficiency

Enhance innovation and research industry

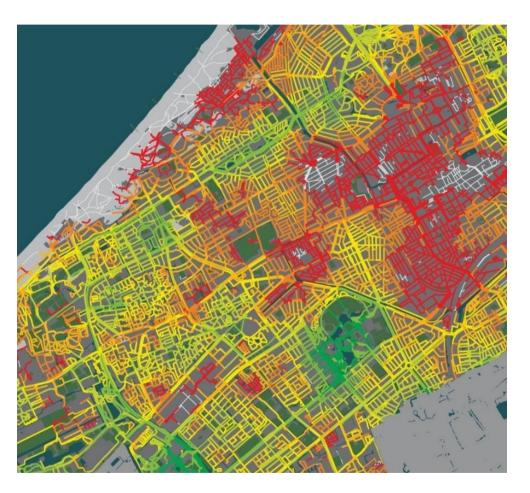
Reduce carbon emission

Improve air quality

Increase usage of sustainable transport

Increase inner city bio-diversity

Better experience of nature


Reduce energy consumption


Mitigate flood risks

Minimise heatwave negative impact

Measuring and scenario comparison

Environmental Balance

- E1 Develop Sustainable Urban Drainage Systems (SuDS).
- E2 Promote productive green areas (allotments, agricultural markets, etc.)
- Reduce carbon footprint by reusing warehouse building structure.

Social Resilience

- Recover industrial heritage buildings.
- 52 Promote ground floor as community hubs, through public consultation process.
- 3 Disincentive the creation of single use enclaves, at least 30% of non-residential functions.

Economic innovation

- F1 More Gross Floor Area.
- F2 Lower construction / refurbishment costs.
- F3 Lower operation / maintenance costs.

SSIM: Sustainable Systems Integration Model

Simulating outcomes and communicating value

Energy
Consumption

NNV-Y2

17,708 - 700,000

100,000 - 1500,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

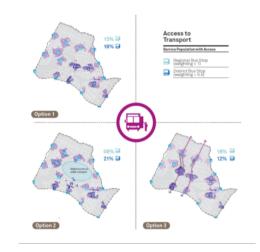
100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

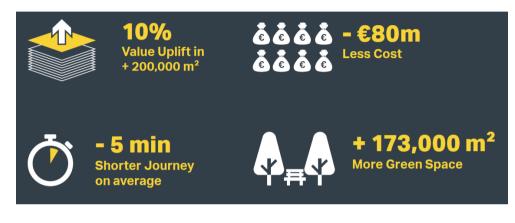

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

100,000 - 1300,000

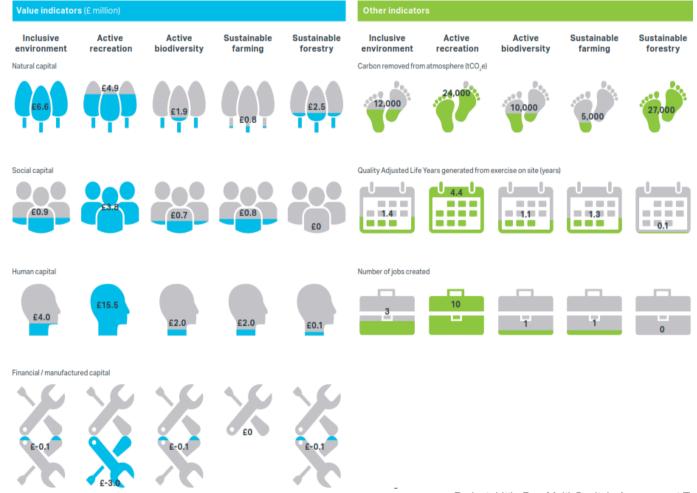
Water consumption


Energy consumption

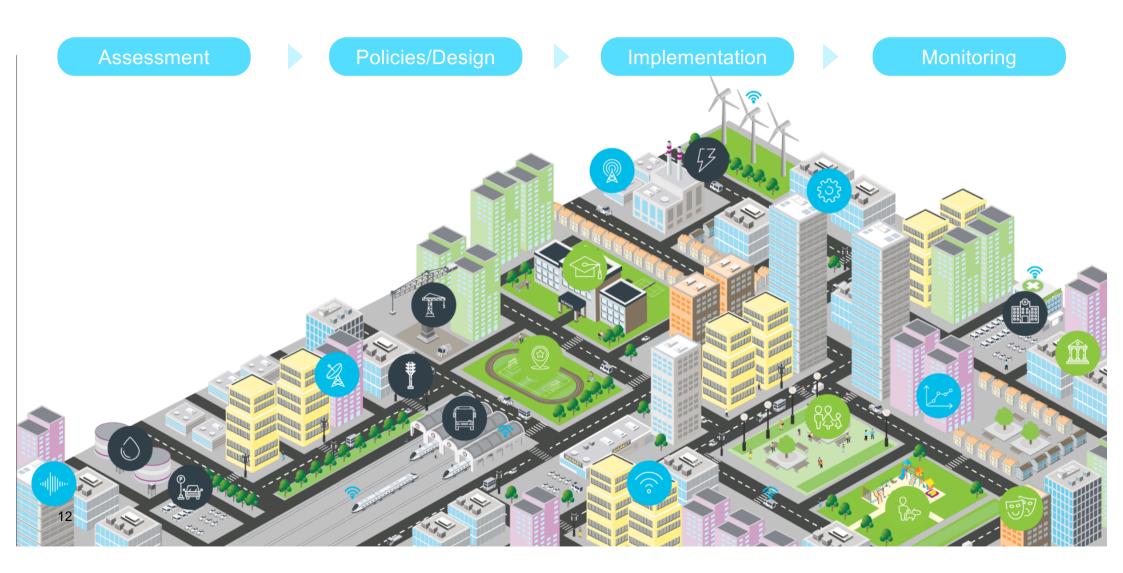
Developer contribution to infrastructure

Access to transport

A large regeneration project in Italy



Translating into social value – comparable indicators



AECOM

Capitals approach – Cost to Benefit evaluation

Smart city is where we learn lessons from the past

