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Overview

 Building Blocks of Urban Analytics
* Data Types

* Data Collection

e Data Labelling

e Data Analytics

e Data Mapping & Visualisation
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Urban Data Analytics: Building Blocks
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Which Sensors?

Fixed
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Wearables

Data
collection
tools
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Portable sensors
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Smartphones

How can the
participants
wear on-body
sensing belts?
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sensing
infrastructure
in everyday
places?

How many can
the users carry
with them
while walkin
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Data Collection

Active data which refers to data that requires
active input from the users to be generated
(e.g. self-report data), whereas

Passive data: data that are collected without
requiring any active participation from the
user (e.g.sensor data and phone usage
patterns)



Data Labelli 8
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@eimankanjo eiman.kanjo@ntu.ac.uk



4.5

3.5

2.5

15

0.5

Self-Reporting techniques for Crowdsrourcing
Data Mobile Phone Data Labelling

.2

EasyReport
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Eman M. G. Younis, Eiman Kanjo, Alan Chamberlain:
Designing and evaluating mobile self-reporting techniques: crowdsourcing for citizen science. Personal and Ubiquitous Computing 23(2): 329-338 (2019)
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Mutli-Model Sensor Data Labelling
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Kieran Woodward, Eiman Kanjo, Andreas Oikonomou, “LabelSens: Enabling Real-time Sensor Data Labelling at the point of Collection on Edge Computing”. CoRR abs/1910.01400 , 2019.



Automatic Data Labelling

(Example) Data from an accelerometer when running

Adding up segments that made Highly accurate training data
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Sensing devices with different Physical Labelling widgets
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Kieran Woodward, Eiman Kanjo, Andreas Oikonomou, “LabelSens: Enabling Real-time Sensor Data Labelling at the point of Collection on Edge Computing”. CoRR abs/1910.01400 , 2019.



Comparison of deep learning techniques on the
combined data collected from each device
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Kieran Woodward, Eiman Kanjo, Andreas Oikonomou, “LabelSens: Enabling Real-time Sensor Data Labelling at the point of Collection on Edge Computing”. CoRR abs/1910.01400 , 2019.



Zoning

Zoning divides a physical space into zones or places, e.g. Shops, clusters of shops or areas.

GROUND FLOOR PLAN ser

@eimankanjo eiman.kanjo@ntu.ac.uk



https://behavioranalyticsretail.com/wp-content/uploads/2017/12/Screenshot-2017-12-03-10.37.29.png

Zoning: Near Field Communications (NFC)

Near Field Communication is a method of
wireless data transfer that detects and then
enables technology in close proximity to
communicate with each other.

* To Unlock mobile content
 NFC around the house or hospital
* On-Body NFC
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Short Range Communications

* Bluetooth beacons are hardware transmitters
- a class of Bluetooth low energy (LE) devices
that broadcast their identifier to nearby
portable electronic devices. The technology
enables smartphones, tablets and other
devices to perform actions when in close
proximity to a beacon.

* iBeacon introduced by Apple in 2013 to enable
retail/location based payment.

* Then few versions of Beacons have followed.

* Eddystone is a Google's standard for Bluetooth
beacons (released by Google in July 2015




Proximity based Zoning
Wi-Fi . BLE
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Zoning
NeuroPlace | ShopMobla
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Lulwah Al-Barrak, Eiman Kanjo: NeuroPlace: making sense of a place. AH 2013: 186-189
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Data Analytics
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Modelling Behaviour from Multi-model Sensor Fusion

Collected

environmental
and health sensors
data as well as

continuous self-

reports of emotions.

Each line of data is
timestamped along
with GPS location.
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Eiman Kanjo, Eman M. G. Younis, Nasser Sherkat:

Towards unravelling the relationship between on-body, environmental and emotion data using sensor information fusion approach. Information Fusion 40: 18-31 (2018)

50 users/customers

Each Shopper visited 20
shops

45 minutes Shopping
journey around the same
shopping street.
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Multivariate regression

The comprehensive model above was evaluated using the diagnostic

regression curves shown in Fig. 8 shows the relation between the fitted

values against the model residual values (i.e. goodness of fit). The model SUND AY'FJEXPRESS

is statistically significant based on (p <0.001). : . ;
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HR Diagnostic regression curves: (Left) represents residuals curve,

and (Right) represents the Q-Q curve.
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Deep Learning Analysis of Mobile Physiological,
Environmental and Location Sensor Data for
Emotion Detection
Frriean Keirges 2354 brnean M C3 Yourus | Chiese Smang Arug
Emotion detection often require modelling of various data inputs from multiple modalities, including
physiological signals (e.g. EEG and GSR), environmental data (e.g. audio and weather), videos and motion
and location data. Many traditional machine learning algorithms have been utilised to capture the
diversity of multimodal data at the sensors and features levels for human emotion classification.

While the feature engineering processes often embedded in these algorithms are beneficial for emotion
modelling, they inherit some critical limitations which may hinder the development of reliable and
accurate models.

Our dataset was collected in a real-world study from smart-phones and wearable devices. It merges local
interaction of three sensor modalities: on-body, environmental and location into global model that
represents signal dynamics along with the temporal relationships of each modality.

Our approach employs a series of learning algorithms including a hybrid approach using Convolutional
Neural Network and Long Short-term Memory Recurrent Neural Network (CNN-LSTM) on the raw sensor
data, eliminating the needs for manual feature extraction and engineering.

The results show that the adoption of deep-learning approaches is effective in human emotion
classification when large number of sensors input is utilised (average accuracy 95% and F-Measure=%95)
and the hybrid models outperform traditional fully connected deep neural network (average accuracy

73% and F-Measure=73%).
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Eiman Kanjo, Eman M. G. Younis, Chee Siang Ang: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Information Fusion 49: 46-56 (2019)
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The accuracy levels of users across all the
models in ad-hoc and fused modes.
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Data Visualisations & Mapping
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Eiman Kanjo: NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping. MONET 15(4): 562-574 (2010)
Eiman Kanjo, Jean Bacon, David Roberts, Peter Landshoff: MobSens: Making Smart Phones Smarter. IEEE Pervasive Computing 8(4): 50-57 (2009)
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Heat Maps
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Accumulative Time spent in each shop

0 shops

Label distribution around 20 shops
based on one user journey



Comparing
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