
SF Innovations Ltd

Custard Pi 5 - Breakout board with protection for 8 digital I/O and stacking connector for the

Raspberry Pi GPIO

User Instructions (11th November 2016)

Contents

Introduction

CE Compliance and Safety Information

Circuit Description

Schematic

Parts List

Project 1 - Flashing an LED

Project 2 - Reading a Switch

Project 3 - Electronic Dice

Introduction

The Raspberry Pi GPIO allows the control of external electronics. There are two rows of 13 pins which are brought out to

a 26 way header on the edge of the board. The Custard Pi 5 board simply plugs into the Raspberry Pi GPIO connector

and allows users to quickly connect to all the pins. At the same time it protects the Raspberry Pi from possible damage

from the wrong voltage being accidentally connected to the GPIO.

The original version of the Custard Pi 5 is shown below.

The Custard Pi 5A is a smaller PCB and does not have the 2 multi fuses.

The Custard Pi 5 uses a stacking 26 way connector. What this means is that when it is plugged into the Raspberry Pi

GPIO, these pins are still available for other accessories. The Custard Pi 5 can also be plugged into the 40 pin GPIO

provided on the later raspberry Pi’s such as the A+. B+, Raspberry Pi 2, 3 and Zero models.

CE Compliance and Safety Information

* This product does not need any power to operate. It simply plugs into the Raspberry Pi GPIO to allow users to

interface their products and projects to the Raspberry Pi. For this reason it is outside the scope of the LVD Directive.

* The connection of incompatible devices to this product may cause damage and invalidate the warranty.

* All devices connected to this product must comply with all relevant standards to ensure that safety and

performance is not compromised.

* This product complies with the Class B limit for Electromagnetic Radiation when used with the Raspberry Pi.

* This product provides reasonable protection against harmful interference in a residential installation. However

there could be deterioration in performance in the presence of strong RF fields. For this reason, this product should not

be used in any safety critical applications. Any wires connected to this product should be less than 2 metres in length.

Avoid handling the PCB while it is powered. Only handle by the edges to avoid the risk of ESD damage.

* If this product is being incorporated in a commercial product which uses either all CE marked products or some

CE marked and some non CE marked product, it is the responsibility of the system integrator to assess the end product

for compliance with the relevant EU Directives.

* This product complies with the requirements of the RoHS regulations.

Circuit Description

When the Custard Pi 5 is plugged into the GPIO, two LEDs come ON, showing that the 5V and 3.3V rail are working

correctly.

GPIO connections showing power rails

The 3.3V is supplied on pin 1 of the GPIO and the 5V is supplied on pin 2. The 2 LEDs are connected to these pins with a

1k current limiting resistor. Note that there are no connections to pins 4, 9, 14, 17, 20 & 25 of the GPIO. On Revision 1

Raspberry Pi boards nothing should be connected to these pins. On Revision 2 boards, these are connected to 5V, 3.3V

or Gnd as shown in the chart below.

Layout of GPIO port pins on Rev 1 and Rev 2 boards

This chart shows the layout of the GPIO port pins. It looks quite complex, but once it is described piece by piece, it will

be easier to understand.

Power pins (J3)

These are brought out to connector J3 on the Custard Pi 5 and have a fuse fitted to each line. This is to prevent the user

from drawing too much current from the Raspberry Pi. The fuses are resettable and are both rated at 0.1 Amp (100 milli

Amps).

Note: The Custard Pi 5A does not have these fitted.

5V and 3.3V pins with fuses (Not on the CPi5A)

General Purpose Input Output (I/O) pins (J2)

The pins marked green are general purpose digital input output pins. These are pins 11, 12, 13, 15, 16, 18, 22 and 7.

They can be set high (to 3.3V) or low (0V) by program control from the Raspberry Pi. The Pi can also read whether these

pins are high or low, say to a switch being pressed.

General purpose I/O pins

Each of these pins is protected by a 3.6V (marked as 3.3V on the schematic) zener and a 220 ohm (marked as 1k ohm)

current limiting resistor. The 3.6V zener prevents any voltages in excess of 3.6V from being applied to the pins of the

Integrated Circuit on the Raspberry Pi and damaging it. It also protects from negative voltages being applied to the pins.

Due to the diode action of the zener voltages on the pins are limited to -0.7V.

Schematic

Custard Pi 5 schematic

PARTS LIST

Description Circuit reference

Printed Circuit Board (PCB)

26 way stackable connector J1

4 x 2 way screw terminal connectors J2

1 x 3 way screw terminal connector J3

2 x 0.1 Amp Multifuse F1, F2 (Not on the Cpi5A)

2 x LEDs LD1, LD2

10 x 220R resistors R1, R2, R3, R4, R12, R13, 14, R15, R16,

R18

8 x 3.6V zener D1, D2, D3, D4, D5, D6, D7, D8

1 x sticky pad

 CUSTARD PI 5 ASSEMBLY

The image below shows the assembled Custard Pi 5 plugged into the Raspberry Pi GPIO.

This is a compact assembly that simply plugs into the Raspberry Pi GPIO. This can be done even with the Raspberry Pi is

powered. Just make sure that the 2 power LEDs are on as soon as you plug in. If not there could be a fault with the

Custard Pi 1 or it has not been plugged in properly.

There is a risk of shorting between the pins on the base of the Custard Pi 5 and some of the components of the

Raspberry Pi like capacitor C6. For this reason, the Custard Pi is supplied with a length of double sided sticky pad to act

as insulation. If the Custard Pi 1 is bought as a kit of parts for self assembly, then sticky pads are supplied and must be

used.

Sticky pads to insulate Custard Pi 5 from Raspberry Pi

Note: Below are listed Custard Pi 1 projects that can easily be adopted for Custard Pi 5.

Project 1 - Flashing an LED

Driving LEDs from the Custard Pi 1 is very easy. As there is a current limiting resistor built in (1k on early versions, 220

ohm on later versions). All one has to do is to connect an LED between one of the pins on connector J1 and Gnd. Just

make sure that the long leg on the LED is connected to the pin and the short leg is connected to Gnd. In the code below,

we assume that the LED is connected to pin 11 of J2, which is one of the general purpose I/O pins.

Custard Pi 1 connected to an LED

#sample Python code to flash an led

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO # import GPIO library

import time #import time library

GPIO.setmode(GPIO.BOARD) #use board pin numbers

GPIO.setup(11, GPIO.OUT) #setup pin 11 as output

for x in range (0,10): #repeat for x=0 to 9

 GPIO.output(11, True) #set pin 11 high

 time.sleep(0.2) #wait 0.2 seconds

 GPIO.output(11, False) #set pin 11 low

 time.sleep(0.2) #wait 0.2 seconds

GPIO.cleanup() #tidy up GPIO port

import sys #exit program

sys.exit()

If you would like the LED to flash faster, then change the time.sleep(0.2) to a smaller value. For example time.sleep(0.1)

would make the LED flash twice as fast. Both the time.sleep commands will need to be changed to halve the LED ON

time and the LED OFF time.

If you would like the LED to carry on flashing 50 times, instead of just 10, then change the command “for x in range

(0,10):” to “for x in range (0,50):”.

The GPIO.setmode command uses the board pin numbers as opposed to the port numbers of the IC used to control the

GPIO port. In my experience it is much easier to use the pin numbers as these are clearly identified on the Custard Pi

board.

Project 2 - Reading a Switch

In this mini project, we look at reading a switch and flash the LED only when the switch is pressed. The LED is connected

to pin 11 as before. Connect the switch between pin 12 and Gnd. When the switch is pressed, pin 12 will be taken low.

The Python code for this is presented below.

Custard Pi 1 connected to a switch and an LED

#sample Python code to flash an led when a switch is pressed

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO # import GPIO library

import time #import time library

GPIO.setmode(GPIO.BOARD) #use board pin numbers

GPIO.setwarnings(False)

GPIO.setup(11, GPIO.OUT) #setup pin 11 as output

GPIO.setup(12, GPIO.IN, pull_up_down=GPIO.PUD_UP)

 #setup pin 12 as input with pull up

while True: #do forever

 while GPIO.input(12)==False: #while switch is pressed

 GPIO.output(11, True) #set pin 11 high

 time.sleep(0.2) #wait 0.2 seconds

 GPIO.output(11, False) #set pin 11 low

 time.sleep(0.2) #wait 0.2 seconds

GPIO.cleanup() #tidy up GPIO port

import sys #exit program

sys.exit()

This code is similar to the previous code but the LED flash is only executed if pin 12 goes low (FALSE) when the switch is

pressed. Otherwise the “while True” command keeps the program in an endless loop, waiting for the switch to be

pressed.

To exit the program, the user has to press CTRL and C at the same time on the keyboard. Because this exits the program

without cleaning up the GPIO interface, we use the command “GPIO.setwarnings(False)” command to stop any

warnings from being displayed.

Project 3 - Electronic Dice

This project uses a 7-segment display and a switch to simulate the roll of a dice. We will use 7 pins from J2 as outputs to

drive the 7-segment display and the 8th pin as an input to read the switch. The drawing below shows how to connect up

the 7-segment display to the Custard Pi 1.

Connecting the 7-segment display to the Custard Pi 1

Connect a switch between pin 7 of connector J2 and Gnd so that pin7 goes low (False) when the switch is pressed.

Electronic Dice using the Custard Pi 1

The Python code for the electronic Dice is presented below. When the program is started, the 7-segment shows the

digit 0. When the switch is pressed, the 7-segment display will randomly display a digit from 1 to 6. This will stay on the

display until the switch is pressed again.

#!/usr/bin/env python

#sample Python code to display a random digit

#from 1 to 6 when a switch is pressed

#www.sf-innovations.co.uk

import RPi.GPIO as GPIO

import time

import random

GPIO.setwarnings(False)

GPIO.setmode(GPIO.BOARD)

#setup output pins

GPIO.setup(11, GPIO.OUT)

GPIO.setup(12, GPIO.OUT)

GPIO.setup(13, GPIO.OUT)

GPIO.setup(15, GPIO.OUT)

GPIO.setup(16, GPIO.OUT)

GPIO.setup(18, GPIO.OUT)

GPIO.setup(22, GPIO.OUT)

#setup inpt pin with pull up resistor

GPIO.setup(7, GPIO.IN, pull_up_down=GPIO.PUD_UP)

#define 7 segment digits

digitclr=[1,1,1,1,1,1,1]

digit0=[0,0,0,0,0,0,1]

digit1=[1,0,0,1,1,1,1]

digit2=[0,0,1,0,0,1,0]

digit3=[0,0,0,0,1,1,0]

digit4=[1,0,0,1,1,0,0]

digit5=[0,1,0,0,1,0,0]

digit6=[0,1,0,0,0,0,0]

gpin=[11,12,13,15,16,18,22]

#routine to clear and then write to display

def digdisp(digit):

 for x in range (0,7):

 GPIO.output(gpin[x], digitclr[x])

 time.sleep(0.5)

 for x in range (0,7):

 GPIO.output(gpin[x], digit[x])

#wait for switch to be released

def swwait():

 while GPIO.input(7)==False:

 time.sleep(0.1)

#display random digit

def randigit(digit):

 digdisp(digit)

 swwait()

#initialise by clearing display and writing 0

for x in range (0,7):

 GPIO.output(gpin[x], digitclr[x])

digdisp (digit0)

#main routine to read switch and display random digit from 1 to 6

while True:

 if GPIO.input(7)==False:

 rand = random.randint(1,6)

 if rand == 1:

 randigit(digit1)

 if rand == 2:

 randigit(digit2)

 if rand == 3:

 randigit(digit3)

 if rand == 4:

 randigit(digit4)

 if rand == 5:

 randigit(digit5)

 if rand == 6:

 randigit(digit6)

#tidy up

GPIO.cleanup()

import sys

sys.exit()

End of document

