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Abstract: Image adjustment methods are one of the most widely used post-processing techniques
for enhancing image quality and improving the visual preference of the human visual system
(HVS). However, the assessment of the adjusted images has been mainly dependent on subjective
evaluations. Also, most recently developed automatic assessment methods have mainly focused
on evaluating distorted images degraded by compression or noise. The effects of the colorfulness,
contrast, and sharpness adjustments on images have been overlooked. In this study, we propose
a fully automatic assessment method that evaluates colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images while considering HVS preferences. The proposed method does
not require a reference image and automatically calculates quantitative scores, visual preference,
and quality assessment with respect to the level of colorfulness, contrast, and sharpness adjustment.
The proposed method evaluates adjusted images based on the features extracted from high dynamic
range images, which have higher colorfulness, contrast, and sharpness than that of low dynamic range
images. Through experimentation, we demonstrate that our proposed method achieves a higher
correlation with subjective evaluations than that of conventional assessment methods.
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1. Introduction

Recently, camera manufacturers and researchers have developed various post-processing methods
that enhance image quality. With the development of computer performance, image enhancement
techniques have been actively developed for the last 20 years. These image enhancement techniques
include denoising that reduces image noise [1,2], sharpening that creates a less blurry image [3],
filtering that changes image property [4,5], and histogram equalization that enhances the contrast of
the image [6]. Furthermore, various cutting-edge techniques such as super-resolution used to increase
image resolutions [7–9], artifact and distortion removal for images degraded by compression [10,11],
and methods to adjust the colorfulness, contrast, and sharpness of images have been developed to
improve the visual preference of human visual systems (HVS) [12–18].

These methods need parameter adjustments in order to obtain high-quality images. Since the
perception of image quality is influenced by HVS properties, these parameter values can be determined
through subjective viewer preferences. However, subjective evaluations are time-consuming and
expensive because many people are required for the evaluation of test images. Accordingly,
objective assessment methods that automatically evaluate no-reference images have been extensively
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researched, which resulted in developments such as just-noticeable difference (JND)-based
techniques [19,20]. Furthermore, natural scene statistic (NSS)-based methods have been developed to
improve the correlation with subjective evaluations considering HVS properties [21–25]. The natural
image-quality index (NIQE) [24] method uses the statistical difference between the fitted Gaussian
functions of the high-quality and low-quality images in spatial domains. NIQE does not require
a reference database of human-rated images. Additionally, this method considers a human visual
system using a statistics-based difference between a pre-trained high-quality image database.
However, the aim of these previous methods has been completed to evaluate images distorted by
compression or noise and they are not suitable for evaluating colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images. Furthermore, they depend on the luminance of images without
considering color components.

Several efforts have been made to evaluate contrast-adjusted [26,27] and
sharpness-adjusted [27–29] images. Recently, a color quality enhancement evaluation (CQE)
method was developed [30], which considered color components. This method considers a color
component and is specialized in evaluating the adjusted image. In this method, the overall quality
scores of an image are obtained from a linear combination of several feature values that represent the
levels of quality for each adjustment. However, this method does not take HVS properties into account
and, therefore, its results correlate poorly with the results of subjective evaluations [31].

In this study, to improve the correlation of such no-reference methods with subjective
evaluations, we propose in this study a fully automatic method that evaluates colorfulness-adjusted,
contrast-adjusted, and sharpness-adjusted images by taking into account HVS preferences using a high
dynamic range (HDR) [32–34]—derived features. These HDR-derived features are extracted from HDR
images that have higher visual preferences for HVS than that for LDR images. Furthermore, since HDR
images have a wider dynamic range, they have more contrast, colorfulness, and sharpness components
than LDR images do [18]. To evaluate the performance of our proposed method, we compared its
correlation results (with subjective evaluation scores for the colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images) with those of two conventional methods, a natural image quality
evaluator (NIQE) [24], and CQE [30]. Since our method uses HDR-derived features that consider
HVS properties, it achieved a higher correlation with the subjective evaluations than the conventional
methods did.

1.1. Correlation between the Evaluation Scores and the Adjustment Levels

The feature values for colorfulness, contrast, and sharpness used in the CQE method can
effectively represent the levels of each adjustment. As a result, the calculated quality scores obtained by
linearly combining these values may represent the overall levels of the image adjustments. However,
the subjective evaluation scores for these adjusted images may be different from the quality scores
calculated by CQE because HVS perceives images differently than the calculated features and quality
scores used in CQE do. As such, we conducted experiments to investigate the correlation between the
subjective and calculated scores and the level of image adjustments.

Eight levels of the colorfulness, contrast, and sharpness adjustments were applied to 24 images in
the TID2013 database [35], which resulted in 576 adjusted images. The color saturation method [36],
linear contrast adjustment [37], and unsharp masking method [3] were used for colorfulness, contrast,
and sharpness adjustments, respectively. Eight observers participated in subjective evaluations for
these adjusted images and rated the image qualities from 1 to 5 with 1 representing the worst quality
and 5 the best. Lastly, we calculated mean opinion scores [38] from these subjective scores.

Figure 1 shows the mean scores of the subjective scores and the calculated feature values used
in a previous assessment method, CQE [30], along with the levels of image adjustment. While the
calculated feature values keep increasing as the level of adjustment increases, the subjective scores
increase only until the level of adjustment of about four or five levels and then they decrease thereafter
until the eighth adjustment level. Figure 1 shows that the calculated feature values and the subjective
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scores have different tendencies depending on the level of adjustment. Generally, the subjective
scoring is considered the gold standard for image assessment methods because human perception is
the ultimate image receiver. This suggests that excessive adjustment of an image can have adverse
impact on the perception of HVS for the image. Therefore, in this study, we propose a new fully
automatic assessment method that can consider the relationships between the adjustment levels and
the visual preference of HVS. Our assessment algorithm utilizes the features of HDR images, which are
better matched with HVS preferences than LDR images. The following Section 2.2 demonstrates that
HDR images receive higher subjective evaluation scores than LDR images.
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Figure 1. Subjective evaluation scores (x-) and calculated feature values (o-) for different adjustment
levels on (a) colorfulness adjustment, (b) contrast adjustment, and (c) sharpness adjustment. While the
calculated feature values keep increasing as the level of adjustment increases, the subjective scores
increase only until the level of adjustment of about four or five levels and then they decrease thereafter
until the eighth adjustment level.

1.2. Visual Preference Comparison between LDR and HDR Images

To determine whether the visual preference for HDR images is greater than for LDR images,
we subjectively evaluated the HDR and LDR images. A total of 190 LDR images and 27 tone-mapped
HDR images from the EMPA-HDR database [39] were subjectively evaluated by 10 researchers who
specialize in image processing for analysis, image adjustment, and artifact reduction in a dark room
display and the same display. The random order images were individually evaluated on a scale of
1 (minimum score) to 5 (maximum score). The subjective scores evaluated by 10 observers of each
images were averaged to yield mean opinion scores (MOSs) and the MOSs of all LDR and tone mapped
HDR images were also averaged to yield total MOSs of LDR and tone mapped HDR, respectively.
Figure 2 shows that the subjective scores for the HDR images are greater than those for the LDR
images. While the mean score of the LDR images is 2.44, the mean score of the HDR images is 4.39.
This indicates that the HDR images are visually preferred by HVS over the LDR images.

Our proposed assessment method, therefore, uses HDR-derived features extracted from HDR
images that are closer to the HVS properties in order to improve our method’s correlation with
subjective evaluations.
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Figure 2. Comparison of the subjective scores for LDR and HDR images. HDR images received
significantly higher scores than LDR images.

2. Materials and Methods

2.1. Proposed Assessment Method

Since the visual preference for HDR images is higher than for LDR images, a better quality score
can be obtained by using the calculations based on the difference between the HDR-derived features
and the test image features. The features used in our method are HDR-derived colorfulness, contrast,
and sharpness features. In addition, each colorfulness, contrast, and sharpness feature in our method
comprises global and local feature values. Since HVS evaluates images based on the hierarchical visual
perception mechanism [40], our proposed method uses both global and local features to consider these
HVS properties.

HDR images have different bit depth than LDR images and cannot be directly compared with
them. Therefore, the HDR images are first tone-mapped [41] such that the scale of the original HDR
images can be matched to those of the LDR test images. 500 HDR images were used to construct the
standard HDR-derived features.

2.1.1. Colorfulness

Colorfulness is an aspect of the visual perception, according to which the color of an object is
perceived to be more or less chromatic [30]. The colorfulness features can be obtained mainly from color
channels a and b of the CIELab space and they are orthogonal to the lightness channel. Two different
colorfulness features are used in our proposed method. The first colorfulness feature is calculated by
using Equation (1) [30].

Col1 = 0.02× log

(
σ2

a

|µa|0.2

)
× log

(
σ2

b

|µb|0.2

)
(1)

where σ2
a and σ2

b are the variance of a and b channels in CIELab and µa and µb are the mean values of
the a and b domains, respectively. This feature value increases as the color adjustment level increases,
which is shown in Figure 3a.
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Figure 3. Comparison graph between the color adjustment level and calculated colorfulness features.
Colorfulness feature 1 and 2 represent the global and local aspects of the colorfulness of the
image, respectively.

Unlike CQE, our proposed method applies a low-pass filter to the RGB space before converting
it into the CIELab space. This is done so that the colorfulness features are not influenced by the
components of the structural features. The low-pass filter is effective in minimizing the influence of
the sharpness features of the images.

The second colorfulness feature in our assessment method is obtained by using Equation (2).

Col2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Rk,l(i, j)− µ(i, j))2 (2)

where R =
√

a2 + b2 is the magnitude of the color components in the chromatic domain, wk,l is the
5 × 5 sized 2D circularly symmetric Gaussian weighting function, and N and M are the width and
height of an image, respectively. This feature also increases as the color adjustment level increases,
which is shown in Figure 3b.

The first feature in Equation (1) represents the global colorfulness obtained from the entire image
while the second feature in Equation (2) represents the local colorfulness obtained from small image
patches. Our proposed method uses these two colorfulness features to consider the global and local
aspects of the HVS color perception [40]. These feature values are compared with the HDR colorfulness
features that are established from HDR images by using the same Equations (1) and (2) in order to
determine the final quality scores that correlate well with the subjective evaluations.

2.1.2. Contrast

Contrast represents the difference in luminance that makes an object distinguishable from other
objects within the same field of view [30]. Similar to the colorfulness features, a low-pass filter is also
used to minimize the influence of the sharpness component of an image in our study. The first feature
is obtained by using Equation (3).

Con1 =
1

k1k2

k1

∑
l=1

k2

∑
k=1

(
log
(

Lmax,k,l + Lmin,k,l

Lmax,k,l − Lmin,k,l

))−0.5
(3)
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where Lmax and Lmin are the maximum and minimum luminance values of a 5× 5-sized image patches,
respectively. This feature increases as the contrast adjustment level increases, which is shown in
Figure 4a. The second contrast feature is obtained by using Equation (4).

Con2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Lk,l(i, j)− µ(i, j))2 (4)

where wk,l is a 15 × 15 2D circularly symmetric Gaussian weighting function. The second contrast
feature also increases as the contrast adjustment level increases, which is shown in Figure 4b.
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Figure 4. Comparison graph between the contrast adjustment level and the calculated contrast features.
Contrast feature 2 and 1 represent the local and global aspects of the contrast of the image, respectively.

The first feature in Equation (3) represents the local contrast feature that is extracted from
small-sized image patches. In contrast, the second feature in Equation (4) represents a semi-global
contrast feature that is extracted from relatively large-sized image patches. As done with the
colorfulness assessment, our proposed method uses two contrast features to consider the HVS
properties. These feature values are also compared with the HDR contrast features for the final
quality score calculations.

2.1.3. Sharpness

Sharpness represents the aspects of fine details and edge components of an image and it is
distributed in the high-frequency band of a Fourier domain [30]. Sharpness features can be extracted
from high-pass filtered images, which is outlined in Equations (5) and (6).

Sha1 =
1

k1k2

k1

∑
l=1

k2

∑
k=1

log
(

Emax,k,l

Emin,k,l

)
(5)

The first sharpness feature in Equation (5) is calculated by using 5 × 5 sized image patches and
Emax and Emin are the maximum and minimum luminance values of the high-pass filtered image
patches, respectively. This feature increases as the sharpness adjustment level increases, which is
shown in Figure 5a.

Sha2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Ek,l(i, j)− µ(i, j))2 (6)
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Figure 5. Comparison between the sharpness adjustment level of an image and the calculated sharpness
features. Sharpness feature 1 and feature 2 represent the local and global aspects of the colorfulness of
the image, respectively.

The second sharpness feature is obtained by using Equation (6). The standard deviation of the
high-pass filtered luminance values is used to calculate how widely distributed the high-frequency
components were in the images. wk,l is a relatively large-sized 15 × 15 2D circularly symmetric
Gaussian weighting function. This feature increases as the sharpness adjustment level increases,
which is shown in Figure 5b. Similar to the assessments of the colorfulness and contrast, our proposed
method uses both local (Equation (5)) and global (Equation (6)) sharpness features to consider the
HVS properties. These feature values are also compared with the HDR sharpness features for the final
quality score calculations.

2.1.4. HDR-Derived Features

A direct assessment using the previously mentioned features obtained from Equations (1)–(6)
may lead to erroneous evaluation results that do not correlate well with the subjective evaluations,
as previously demonstrated in Figure 1. To overcome this problem, our proposed assessment method
uses HDR-derived features as standards when evaluating the features of a test image. The HDR-derived
features are extracted by using the same equations (Equations (1)–(6)) applied to many HDR images.
Since the HDR images are visually preferred by HVS as shown in Figure 2, HDR-derived features can
be used as references, according to which the features of test images are evaluated to determine the final
quality scores. Our study demonstrates that this method correlates well with the subjective evaluations.

2.1.5. Assessment Metric Scheme

Figure 6 shows a diagram of our proposed method for determining the quality score of a test
image. Six features are extracted from a test image and then compared with the standard HDR-derived
features to calculate the quality score of a test image.
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Figure 6. Diagram of the proposed method, which comprises two processes. Above side process:
extracting the standard HDR-derived features. Below side process: extracting the features of the test
image. These two sets of features are compared with each other to produce the final quality score of
the test image.

First, the differences between each feature are calculated by using the following equation.

∆X = |XHDR − XTEST | (7)

where XHDR is a standard HDR-derived single feature vector and the XTEST is a single feature vector
of the test image. Many colorfulness, contrast, and sharpness features from HDR images is obtained
and averaged to make a single feature vector. Lastly, the single feature vector is used to calculate the
quality score based on a weighted combination of the feature differences. In addition, multiple feature
vectors from a test image are also averaged to make a single feature vector since multiple feature
vectors are obtained from multiple local patches of a single test image. The final quality score, Q,
is obtained from a weighted combination of the following feature differences.

Q =
→
C
→
D = [C1 C2 C3 C4 C5 C6]× [∆Col1 ∆Col2 ∆Con1 ∆Con2 ∆Sha1 ∆Sha2 ]T (8)

where
→
C is a set of weighting coefficients for each feature.

→
C was determined as [7, 9, 6.1, 8.5, 6.7, 0.54, 1]

through the training with 576 training image sets.

2.2. Experimental Setup

The total 576 training images were subjectively evaluated by 10 researchers who specialize in image
processing for analysis, image adjustment, and artifact reduction in the dark room display and in the
same display. The random order images were individually evaluated on a scale of 1 (minimum score) to
5 (maximum score).

A total of 114 adjusted images were assessed by our proposed method as well as by two
conventional methods, which were NIQE and CQE. The subjective evaluation was also performed
as the ground truth quality scores. Three intact images (traffic, cactus, and basketball) were selected
from the LIVE video database [42] and processed with different combinations of three levels of
colorfulness adjustment, three levels of contrast adjustment, and four levels of sharpness adjustment,
which resulted in 108 adjusted images using MATLAB (R2017a, The Mathworks, Natick, MA, USA)
software automatically. The examples of these test image sets are shown in Figure 7. The other six
images included the original three images plus enhanced ones by an HDR-toning toolbox in Photoshop
CS6. These 114 test images were not used in the training process.
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3. Evaluation Results

To evaluate the performance of our proposed method, we obtained correlations between
the quality scores of our proposed method and the subjective scores (visual preferences of HVS).
Ten observers participated in the subjective evaluation. For the purpose of comparison with other
methods, correlations between the scores of the conventional methods (NIQE and CQE) and the
subjective scores were also obtained. Spearman’s rank ordered a correlation coefficient (SROCC) and
Pearson’s linear correlation coefficient (PLCC), which were used to compare the performances. We used
the Spearman and Pearson coefficients methods for performance evaluation because these methods
have been widely used for correlation metrics between image quality assessment and subjective
scores [21–25].

The results of the correlations with the subjective scores are shown in Table 1. In all the cases,
our proposed method achieved higher correlations with the subjective scores than those of the NIQE
and CQE. These results demonstrate that our proposed method is more suitable for evaluating the
colorfulness-adjusted, contrast-adjusted, and sharpness-adjusted images than the other two conventional
methods. This is because the conventional methods were mainly developed for evaluating images distorted
by compression or noise corruption (NIQE) and did not consider HVS properties (CQE).

Table 1. Performance comparison between the conventional methods (NIQE, CQE) and the proposed
method. Two difference correlation metrics called SROCC and PLCC were calculated between the
scores measured by the automatic methods and by the subjective evaluation.

Basketball Cactus Traffic Average

NIQE
SROCC 0.6465 0.3233 0.1650 0.3283

PLCC 0.7144 0.3221 0.2373 0.4246

CQE
SROCC 0.6207 0.4241 0.5292 0.5247

PLCC 0.6225 0.4236 0.5205 0.5222

Proposed Method SROCC 0.8042 0.9121 0.9669 0.8944

PLCC 0.7626 0.9284 0.9538 0.8816

4. Discussion and Conclusions

We proposed a fully automatic no-reference quality assessment method for the enhanced images
whose colorfulness, contrast, and sharpness were adjusted. HDR-derived features were obtained from
HDR images with different scenes. Therefore, the proposed method without using the reference image
with the same scene can be a ‘no-reference’ method.

The proposed method does not require a reference image. It automatically calculates quantitative
scores, visual preference, and quality assessment with respect to the level of colorfulness, contrast,
and sharpness adjustment. This method considers colorfulness components. Additionally, this method
uses HDR-derived features, which have more human visual preference than LDR images. By evaluating
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the LDR based on the HDR, this method can extract how different the quality of the test images differs
from the HDR with a high visual preference and it offers visual preference scores, quantitatively.
It shows that the proposed method yielded better performance than other methods.

We investigated the performance of the proposed method depending on the size of image patches
in global and local settings and measured the corresponding performance, according to the correlation
values with subjective scores. In most cases involving our test image dataset, the highest correlation
results were achieved with the sizes of image patches used in our experiments.

Our proposed method currently used linear weighted coefficients trained by 576 HDR images.
However, other machine learning metrics such as the support vector machine can be used in the
training process. Because SVM-based quality evaluation methods have already been used in the
detection on artifacts caused by compression [21–25], it is possible to use the SVM method for our
proposed method. In addition, if there are additional features including the six features, neural network
methods can be used for the evaluation of adjusted images.

We made an effort to overcome the limitations of conventional methods such as NIQE and CQE
methods. NIQE performs well in evaluating the distorted images due to compression, blurring, or noise
corruption, but it is not focused on evaluating adjusted images. CQE can evaluate several adjustment
effects such as colorfulness and contrast adjustments but does not incorporate HVS properties in its
assessment process, which results in a mismatch with the subjective evaluations. These limitations
were effectively overcome in our proposed method, which incorporated HVS-favorable HDR-derived
features as standards in its evaluation process. HDR images have higher visual preferences for HVS
than LDR images and, therefore, the features derived from HDR images are more closely related
to the perception properties of HVS than those of LDR images. In addition to the incorporation of
the HDR-derived features, both global and local features are extracted and combined to produce
the final quality scores for an image assessment, which also considers the hierarchical visual
perception mechanism of HVS. Consequently, we found through our experimentation that our new
assessment method correlated well with subjective evaluations and outperformed two conventional
assessment methods.
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