

Present and Future Water Uses in the South Saskatchewan River Basin

Saskatchewan Institute of Agrologists March 18, 2010

Roger Hohm, P.Ag.

Head, Basin Water Management
Head Irrigation Secretariat
Alberta Agriculture and Rural Development
roger.hohm@gov.ab.ca

1858 Palliser Declares the Prairie as a Dry Waste Land

It was dry then and it's still dry today.

Alberta's Landuse Luminescence

HISTORICAL PRIORITY

- People located near water
- Agriculture was the foundation
- Traditionally, agriculture and rural communities had broad public support
- Agriculture was a large economic contributor to the prairie's economy

Alberta -Renewable Water Supply

- Total outflow from Alberta's rivers is about 130 Billion m³ per year.
- Total volume withdrawn 4.7 Billion m³ (3.6%)
- Total volume consumed –2.6 Billion m³ (2%)

Renewable Water Supply

South Saskatchewan River Basin

Average annual natural flow volumes

WHAT IS HAPPENING IN THE SSRB South Saskatchewan River Basin

The Alberta SSRB

This is the most developed basin in the Prairie Provinces.

- Population of ~ 1.4 Million
- Less than 20% of Alberta's area, but produces almost 50% of the economic activity.
- Agriculture, petroleum, petroleum refining and manufacturing are the major industrial activities.
 - City of Calgary ~70% of this region's major spending.

2006 Water Management Plan for the SSRB

- 2006 SSRB water management plan
 - Set Water Conservation Objectives for each sub-basin (45% of natural or (In stream Objectives IO+10%)
 - Closed Bow, Oldman, South Sask. sub-basins to further allocations, Crown Reservation on unallocated water
- 2007 Water from Crown Reservation may be used for:
 - First Nations Reserves
 - Water Conservation Objectives
 - Licences for pending applications
 - Storage of peak flows to mitigate impacts on aquatic environment, support existing licences

Why a Water Supply Study?

Science Based - Future Water Supply in the SSRB

- Recognized that future demand for water could outstrip supply.
- Demands for water will continue to increase.
- Global Warming will change the flow system in the major rivers.

Water is Highly Allocated in the Basin

Actual water use is estimated to be 54% of allocation

Long term Alberta has passed 81% of the apportionable flow to Saskatchewan

Water allocation by sector in SSRB

Study Objectives Science Based Study

- Assess Current and Future Water Supply and Demand
- Identify Constraints to Water Supply and Economic Growth
- Identify and Analyze, Structural and Non-Structural Water Management Constraints and Opportunities

Studies Components

- Detailed assessment of current and projected future (25 year) water supply and demand including impacts of Climate Change
- Simulation modelling to determine magnitudes, frequency and location of deficits
- Identification of structural and non-structural measures to improve water supply security

Study scenarios

1: Current conditions

3: Year 2030 demands +25% district expansion

Water supply

Historical

Additional infrastructure

Water demand

Future (2030) uses for all sectors Irrigation: high growth scenario – 25% district

expansion – within existing allocations – plus private expansion

Climate Change Scenario

- 3: Year 2030 demands +25% district expansion
 - 4: Scenario 3 plus climate change

Water supply

Decreased flows (4 to 13%)

Water demand

Future (2030) uses for all sectors

Irrigation: high growth scenario (scenario 3)

plus 10-16% water for warmer temperatures

Simulation Modelling Results

Simulations Modelled

- Scenario 1: Current conditions
- Scenario 2: 2030 non-irrigation demands, meeting of all outstanding commitments, 10% irrigation expansion
- Scenario 3: 2030 non-irrigation demands, meeting of all outstanding commitments, 32% expansion of Bow districts, 19% expansion of Oldman districts, improved onfarm efficiencies, optimal (higher) on-farm applications
- Scenario 4: Same as scenario 3 plus climate change conditions

^{*}All simulations were required to be meet existing licence allocations and apportionment commitments

Irrigation District Irrigated Area for Scenarios 1,2 & 3

SSRB Sub-Basin	Scenario 1 Irrigated ha.	Scenario 2 Irrigated ha.	Scenario 3 Irrigated ha
Bow River	217,094	239,169	287,003
Oldman River	276,629	300,279	330,307
Total	493,723	539,448	617,310

Bow River Sub-basin Junior Private Irrigation Deficits greater than 100 mm

Scenario 1 Current conditions
Scenario 3 Year 2030 demands + 25% district
expansion

Bow River Sub-basin Junior Non-irrigation Deficits

Scenario 1 Current conditions Scenario 3 Year 2030 demands + 25% district expansion

Modelling Results

- Increased deficits to WCO's and junior licences are observed for Scenarios 2, 3 and 4 in every segment modelled.
- The St. Mary river is most severely impacted, Red Deer river is least impacted
- Irrigation Districts and senior municipal licence holders perform adequately in all scenarios and for all segments.

Key Findings: Water Demand

- Current water use is estimated to be 1.98 billion cubic meters
- 2030 demand is expected to be 3.04 billion cubic meters
- 2030 non-irrigation use to increase from current 315 million to 410 million cubic meters

Urban Population

Current and future net water use in SSRB

Scenario 1 Current conditions
Scenario 3 Year 2030 demands + 25% district
expansion

Current and future net water use in SSRB

Scenario 1 Current conditions
Scenario 3 Year 2030 demands + 25% district
expansion

Climate Change Scenario

- 3: Year 2030 demands +25% district expansion
 - 4: Scenario 3 plus climate change

Water supply

Decreased flows (4 to 13%)

Water demand

Future (2030) uses for all sectors

Irrigation: high growth scenario (scenario 3)

plus 10-16% water for warmer temperatures

Potential climate change impacts on natural flows

(based on research by Martz et al., 2007)

Irrigation district deficits

Scenario 3 Year 2030 demands + 25% district expansion Scenario 4 Scenario 3 and climate change

Climate change modelling results

Assuming lower flows in the SSRB with climate change:

- Red Deer Acadia irrigation marginal (major irrigation expansion)
- Bow River district irrigation
 - occasional deficits, but less than 100 mm threshold
- Oldman River district irrigation
 - deficits greater than 100 mm in 13 out of 100 years
- All sub-basins Junior users
 - substantial increases in deficits

Considerable uncertainty around climate change impacts on future water supply and demands

Non-structural Initiatives

- Optimization of existing infrastructure operations on Red Deer (Dickson) and Bow (TransAlta)
- Improved irrigation efficiency and reduced return flows have considerable impact on supply and demand
- Streamline water allocation transfers to support needs of juniors
- Deficit sharing (2001)

Non-structural management options 1. Refine or modify existing infrastructure operations

Red Deer Sub-basin

- Modify operation of Gleniffer Reservoir (Dickson Dam) to increase winter releases
- Minor changes could resolve the WCO and junior user deficits

Bow River Sub-basin

- Modify operation of hydro-electric reservoirs
- Reservoirs currently operated to store water in spring and summer and release in remainder of year
- Tested scenario to operate reservoirs for IO's and consumptive uses

TABLE 6.1 TransAlta Hydro-electric System Basic Information

Plant	Reservoir	Primary Reservoir Supply	Installed Capacity (MW)	Reservoir Storage (dam³)
Cascade	Lake Minnewanka	Cascade, North Ghost	34	221 900
Spray Group (Three Sisters, Spray, Rundle)	Spray Lake	Spray River	155	177 600
Interlakes	Upper Kananaskis Lake	Kananaskis River	5	124 500
Pocaterra	Lower Kananaskis Lake	Kananaskis River	15	63 100
Barrier	Barrier Lake	Kananaskis River	13	24 800
Kananaskis	Forebay	Bow River	19	
Horseshoe	Forebay	Bow River	16	
Ghost	Ghost Lake	Bow River	56	92 500
Bearspaw	Forebay	Bow River	17	
Bow Basin Total			330	704 400

Source: TransAlta

Bow River Sub-basin Preliminary analysis of hydro reservoirs Junior Non-irrigation Deficits

Non-structural management options

- 2. Improved irrigation efficiencies, reduced return flows
 - Increase to 63% (from 53%) would conserve 326 000 dam³ yearly
- 3. Water allocation transfers
 - Minor contribution of transfers to reducing basin-wide deficits if current level of market activity remains
- 4. Deficit sharing
 - Temporary assignments during past droughts were successful and could be useful in future

2. Improved irrigation efficiencies, reduced return flows Increase to 63% (from 53%) would conserve 326 000 dam³ yearly

IRP Lined Canals & Pipelines All Districts

All Districts System Trends by % Area

Actual Water Saving 99 to 06 – approximately 3.2%

Structural Management Options

- Study focused on on-stream storage
- On-stream storage benefits
 - Capture peak river flows
 - Flood flow protection
 - Flow regulation capacity

Oldman River

Structural Opportunities

- Considerable storage potential exists on the southern Tributaries, Oldman, Bow and Red Deer.
- New storage must be used to meet WCO and junior allocation deficits
- Existing infrastructure needs to be optimized prior to new storage considerations.

Summary of key findings for structural measures

- Preliminary analysis of potential for new on-stream storage
 - Additional storage potential of 1 Billion m³ in SSRB
 - "Location, location, location"
- Additional on-stream storage
 - Could improve water supply in the Oldman sub-basin for instream and consumptive users

Key Findings: Water Supply

- Water regulation and use (reservoirs and diversion)
 has had a significant impact on flows in the Bow,
 Oldman and South Saskatchewan Rivers
- Summer Flows are lower
- Winter Flows in the Bow are higher
- Water, surplus to the Prairie Province Master Agreement, has been delivered to Sask. in every year.
 - There may be water available for additional use in Alberta

Conclusions

- Expansion within irrigation district for all basins performs well
- Irrigation expansion has an impact on instream flows
- Deficits to junior priority users increases in each scenario
- Additional storage would reduce or eliminate deficits is the Oldman sub-basin
- Additional storage is not a requirement in other sub-basins

Conclusions

- Water consumption could increase by 53% by 2030
- Increased water use efficiency could reduce risk due to expansion of the irrigation districts.
- One billion m³ of additional storage may be required if climate change results in less snow and earlier spring flows.

The state of the s

AMEC Earth & Environmental Calgary, Alberta

In Association with: Marv Anderson & Associates Ltd. Unitech Solutions Inc. Klohn Crippen Berger Ltd. Calgary, Alberta

2009

South Saskatchewan River Basin in Alberta Water Supply Study

Conclusions and Recommendations

Government of Alberta

Agriculture and Rural Development

