Ralph Deters

Dep. of Computer Science

University of Saskatchewan

deters@cs.usask.ca

1

Outline

Cloud-Computing

Mobile Computing

Combining Mobile & Cloud-Computing -> Mobile Cloud-Computing

Approaches

Issues

Big Switch - Nicholas Carr

2003 Harvard
Business
Review article "IT
Doesn't Matter"

2004: The End of Corporate Computing" in the MIT Sloan Management Review

2008: The Big Switch: Rewiring the World, From Edison to Google

Need for IT People & HW/SW

Need more IT Resources?

Renting Resources to cover peak loads

Do you really need your own IT?

Cloud Computing - Economy of Scale

Outsourcing many/all/parts of computing

Use of virtualized components

Focus on services

Pay as you go

Cloud Types

Infrastructure as a Service (IaaS)

EC2, Google Compute Engine, Rackspace, Slicehost

Platform as a Service (PaaS)

Azure, Google App Engine,

Software as a Service (SaaS)

S3 (storage)

Core Management SW in the Cloud

Fault

Access

Configuration

Performance

State

Account

....

Mobile

CEO Satya Nadella: Mobile First & Cloud First

Bold Ambition & Our Core, http://news.microsoft.com/ceo/index.html

Worldwide Devices Shipments by Device Type, 2015-2018 (Millions of Units)

Device Type	2015	2016	2017	2018
Traditional PCs (Desk-Based and			226	219
Notebook)	246	232		
Ultramobiles (Premium)	45	55	74	92
PC Market	290	287	299	312
Ultramobiles (Basic and Utility)	196	195	196	198
Computing Devices Market	486	482	495	510
Mobile Phones	1,910	1,959	1,983	2,034
Total Devices Market	2,396	2,441	2,478	2,545

Native Apps

Program device specific

Able to utilize resources better

Better user experience

Complexity? Time?

Mobile Web

Mobile Web

Focus on using browser as the environment

Leverage web-technologies / web-standards

Simpler development process

Offline?

How to use device features?

Hybrid Apps

Combine native & mobile web
Build native apps
Use browser

So

3 basic approaches to develop apps

Native / cross-compiler

Xamarin

Mobile Web

Dreamweaver

Hybrid

Phonegap + JQM

Key issues:

Platforms to be supported

Off-Line operation

Integration with Backend

Mobile Computing + Cloud Computing = MCC

Mark Beccue 2009, ABI research -> Mobile Cloud-Computing
Use cloud to help mobile devices overcome resource constraints

Basic Approaches

Offloading

Mobile device as cloud service consumer

Edge & fog computing

Mobile Devices as Service Consumer

Most often used MCC pattern

Backend in cloud
Integration challenge

Use mobile device to access some functions REST

To overcome network issues apps keep some data local Apps become less dependent on cloud

Mobile Cloud-Computing (MCC)

MCC

Baccue 2009

User: Device

1:1

1:N

M:N

Linking Device Clouds with IoT

M User: N Devices

Using N devices to access cloud-hosted representations

Bandwidth

Only reads?

Cloud-Centric View IBM Internet of **Big Data Analytics** Things Cloud treaming Analytics | Batch Analytics Orchestration Data services Historian | File | Archive Mediation | Composition | Rules **Device Registration & Connectivity** Connectivity | Awareness | Security & Privacy | Asset mgmt

http://www.scientificcomputing.com/sites/scientificcomputing.com/files/IBM_Connects_Internet_of_Things_to_Enterprise_ml.jpg

Cloud-Centric

Idea:

Data moves from devices to cloud

Cloud stores / processes / exposes data

Questions?

How to upload all the data

Edge / Fog Computing Model

Linking Device Clouds with IoT Fog-Centric

Fog computing

Move computing to edge

Distribute processing

Minimize traffic

Possible IoT Protocols

Data-Centric

DDS (OMG)

P2P publish-subscribe

Message-Centric

MQTT / MQTT-S

Message Brokers

Resource-Centric

CoAP

Request/Response + Observe

Data-Centric

Data-Centric

focus on data (type / structure)

Data Distribution Service (DDS)

Global Data Space

Topics (Data types)

Subscribers / Publishers

Microseconds

Global Data Space

MQTT

IBM online article on MQTT [22]

CoAP

RESTful + Observe option

Supported by Cisco

Runtime discovery of resources

Sharing of computational "costs"

Allows web-like infrastructure

Application

Request/Response

O
A
P

Packet Protocol e.g. UDP

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8
```

CoAP

```
CoAP Version
Type of Message
   Non/Confirmable, Acknowledge, Reset
Token Length
Code
   3/bit class + 5 bit detail
   0.1 = GET
   4.03 = forbidden
Message ID
Token (match request with response)
Options / Headers
Payload
```

CoAP ...

Message must fit in single packet

Default MTU 1280 bytes

But differs in different protocols

GET, PUT, POST, DELETE OBSERVE

URI

coap://box1.company.ca/sensor1
coaps://box1.company.ca/sensor1
 DTLS -> symmetric, key exchange challanges

Resource Discovery

.well-known/core

GET to read

GET /.well-known/core?rt=temperature-c

POST to add new resource

CoRE Link Format

Defines how to describe resources

CoAP server

Erlang & Golang servers

CoAP Performance over WIFI

Looking at IoT

Internet of Things

- 1. Read (cloud-hosted) data streams
- 2. Allow 3rd party views on data Ecosystem
- 3. R/W settings of devices

 Access control

Moving away from the cloud

Issues

Access control (e.g. ABAC)

Who can do reads

Who can do writes

Audits

Collaboration

Integration with 3^{rd} party apps and system

Eco-System

Continuous development od SW & solutions

Questions

Ralph Deters deters@cs.usask.ca