Improving the Operational Performance of Existing Heat Exchangers used in the Hydrocarbon Processing Industries
(UKHTC 2017)

Martin Gough (Managing Director)
Heat Exchanger Considerations

Not all designs take into account the following…

• Fouling (type)
• Maldistribution
• Phase stratification
• Thermal stratification
• Mechanical problems (e.g. vibration)
• Corrosion/Erosion
• And more…
Examples of Heat Exchanger Revamp Goals

1. Increased exchanger duty in laminar flow, mitigating thermal stratification
 • Product heater case study

2. Improved fluid distribution
 • Condensing case study

3. More stable operation by suppressing film boiling and mist flow
 • Vapouriser case study
hiTRAN® Thermal Systems

Working Principle
How hiTRAN Works?

- Removes the laminar boundary layer
- Mixes fluid with bulk flow
- Reduces residence time at the tube wall
hiTRAN® Range in Comparison to Empty Tube Data
1. Product Heater Case Study

Improved Duty
Viscous Product Heater
Revamp Goal: Increased outlet temperature

TEMA Type: AEL
372 Tubes

4 Pass
25.4mm x 1.65mm x 4000mm
Viscous Product Heater Revamp

<table>
<thead>
<tr>
<th></th>
<th>Empty 9.2 bar</th>
<th>hiTRAN 2.7 bar</th>
<th>hiTRAN 6.3 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of passes</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Steam Pressure (bar)</td>
<td>9.2</td>
<td>2.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Steam temp. (°C)</td>
<td>176</td>
<td>128</td>
<td>160</td>
</tr>
<tr>
<td>Tube side HTC (W/m²K)</td>
<td>100</td>
<td>207</td>
<td>206</td>
</tr>
<tr>
<td>Tube side outlet temp (°C)</td>
<td>101</td>
<td>101</td>
<td>124</td>
</tr>
<tr>
<td>Tube side dP (bar)</td>
<td>2.7</td>
<td>3.3</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Steam temperature (176°C)

Inlet temperature (38°C)
2. Condensing Case Study

Improved Fluid Distribution
Introduction – Revamps to Improve Fluid Distribution

Heat exchanger design programs assume equal distribution for...

- Bundles
- Inside Tubes

Differences in distributions can have considerable implications on exchanger performance

hiTRAN effect on distribution

- Improved mixing affects the tube side distribution
- Can be used as a tool, if necessary, to increase the bundle pressure drop, affecting bundle distribution
Case Study – Feed/Effluent Exchanger Retrofit

User: LUKOIL Refinery
Location: Volgograd, Russia
Service: Feed/Effluent exchanger upstream of a hydrotreater reactor

Condition:
• Boiling feed on the shell side
• Condensing effluent on the tube side

Problem description:
• Calculated performance should be 60% higher
• No spare capacity of fired heater to increase throughput
Exchanger Configuration

Shells: 3 in series, 2 in parallel
Bundle: 2521 tubes, 1 pass
20mm x 1.8mm x 9000mm

Calculated Exchanger Performance
Tube side dP calc./allowed: 2.5kPa / 45kPa
Shell side HTC: 900 W/m²K
Tube side HTC: 285 W/m²K
Duty: Measured 20MW / real +60%

Application is heavily tube side controlled, therefore targeting tube side performance
Problem Identification!
Bundle Maldistribution

Expected severe fluid maldistribution in the bundle on the tube side

• Tube side pressure drop of 25mbar very low with 85% of dP within the nozzles
 (allowable tube side dP 450mbar!)

• Axial Tube side nozzles contribute to maldistribution

Higher tube side pressure drop would be beneficial!
Bundle CFD Simulation of first shell De-superheating; \(x = 1 \)
CFD simulation continued…

Empty Tube, Tube side dP: 25mbar (>85% nozzles)

hiTRAN Tube, Tube side dP: 200mbar (~10% nozzles)
Tube Side Maldistribution

Calculation show that tube side flow regimes for Shell 2 and Shell 3 are *wavy stratified*.

Liquid Re ~ 1500

Vapour Re ~ 11000

Poor cooling heat transfer to liquid

Poor cooling heat transfer to vapour

Snapshot 2nd shell

\[m \text{ Flux} = 25\text{kg/m}^2\text{s} \]

\[x = 0.54 \]

Accumulation of non-condensables
hiTRAN enhancement

Much improved vapour cooling

Improved mass transfer: vapour - liquid

Much improved liquid cooling
hiTRAN Installation & Benefits

<table>
<thead>
<tr>
<th></th>
<th>Before (Empty)</th>
<th>After (hiTRAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube side pressure drop</td>
<td>25mbar (>85% nozzles)</td>
<td>200mbar (~10% nozzles)</td>
</tr>
<tr>
<td>Tube side heat transfer</td>
<td><285 W/m2K</td>
<td>~980 W/m2K</td>
</tr>
<tr>
<td>Shell side feed outlet temperature</td>
<td>240°C</td>
<td>314°C</td>
</tr>
<tr>
<td>Tube side effluent outlet temperature</td>
<td>115°C</td>
<td>82°C</td>
</tr>
<tr>
<td>Mass Flow</td>
<td>27 kg/sec</td>
<td>42 kg/sec</td>
</tr>
<tr>
<td>Load on Fired Heater</td>
<td>4.2 MW</td>
<td>2 MW</td>
</tr>
</tbody>
</table>

Annual Energy Savings of $233000
3. Vapouriser Case Study

Supressed film boiling / mist flow
Ethylene Evaporator

After commissioning the exchanger did not perform

<table>
<thead>
<tr>
<th>TEMA Type</th>
<th>BEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of passes</td>
<td>2</td>
</tr>
<tr>
<td>Tube length (mm)</td>
<td>4000</td>
</tr>
<tr>
<td>Tube OD (mm)</td>
<td>25.4</td>
</tr>
<tr>
<td>Tube count</td>
<td>702</td>
</tr>
</tbody>
</table>
Detailed Investigation Along the Tubes

- Inlet leg
- Outlet leg

Graphs showing tube side HTC (W/m²K) as a function of length from entry (mm). The graphs illustrate different boiling mechanisms and temperature conditions, including Enhanced Convective Boiling and Enhanced Superheating.
Summary Before / After

<table>
<thead>
<tr>
<th></th>
<th>Empty Tube</th>
<th>hiTRAN installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Rate (t/hr)</td>
<td>52</td>
<td>76</td>
</tr>
<tr>
<td>Temperature In/Out (°C)</td>
<td>-100 / -1 (sat)</td>
<td>-100 / 30 (superheated)</td>
</tr>
<tr>
<td>Pressure In/Out (bar)</td>
<td>40 / 39.93</td>
<td>40 / 39.74</td>
</tr>
<tr>
<td>Heat Transfer Coefficient (W/m²K)</td>
<td>613</td>
<td>2390</td>
</tr>
<tr>
<td>Pressure Drop (kPa)</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Shell Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure In/Out (bar)</td>
<td>10.1 / 10.1</td>
<td>2.2 / 2.19</td>
</tr>
<tr>
<td>Temperature In/Out (°C)</td>
<td>138 / 137</td>
<td>86 / 85</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Duty (kW)</td>
<td>261</td>
<td>618</td>
</tr>
<tr>
<td>EMTD (°C)</td>
<td>164</td>
<td>100</td>
</tr>
</tbody>
</table>
Any questions?

• Working in Industry for over 35 years
• More than 20,000 exchangers enhanced worldwide
• Business ~90% export
• Engineering Services include…
 • Analytical Engineering
 • Design Services
 • CFD Services
 • ACHE Troubleshooting

Martin.Gough@calgavin.com