Cytoplasmic Dynein Moves Through Uncoordinated Stepping of the AAA+ Ring Domains
Mark A. DeWitt et al.
Science 335, 221 (2012);
DOI: 10.1126/science.1215804

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of August 9, 2012):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/335/6065/221.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2011/12/08/science.1215804.DC1.html
This article cites 29 articles, 9 of which can be accessed free:
http://www.sciencemag.org/content/335/6065/221.full.html#ref-list-1

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/335/6065/221.full.html#related-urls

This article appears in the following subject collections:
Cell Biology
http://www.sciencemag.org/cgi/collection/cell_biol
ancestors of micronemes (24, 25). Although PTDOC2.1 knockdown in P. falciparum has a clear effect on invasion, at this level of knockdown it did not result in an egress defect, suggesting that Plasmodium merozoites may rely on microneme secretion for invasion but on qualitatively different exosome secretion for egress from the erythrocyte (26). However, in Toxoplasma mutant F-P2 both invasion and egress were defective because microneme secretion plays a central role in both of these processes (27), highlighting divergent roles for secretory organelles in egress between these organisms. This multilayered Ca2+-mediated control of microneme secretion may underscore tight temporal regulation, and this mechanism appears ancestral to the ciliates and the Apicomplexa.

References and Notes

Cytoplasmic Dynein Moves Through Uncoordinated Stepping of the AAA+ Ring Domains
Mark A. DeWitt, Amy Y. Chang, Peter A. Combs, Ahmet Yildiz*

Cytoplasmic dynein is a homodimeric AAA+ motor that transports a multitude of cargos toward the microtubule minus end. How the two catalytic head domains interact and move relative to each other during processive movement is unclear. Here, we tracked the relative positions of both heads with nanometer precision and directly observed the heads moving independently along the microtubule. The heads remained widely separated, and their stepping behavior varied as a function of interhead separation. One active head was sufficient for processive movement, and an active head could drag an inactive partner head forward. Thus, dynein moves processively without interhead coordination, a mechanism fundamentally distinct from the hand-over-hand stepping of kinesin and myosin.

Cytoplasmic dynein forms a 1.2-MD complex that uses adenosine triphosphate (ATP) hydrolysis to power minus-end-directed motility along microtubules. The catalytic head domain is composed of six AAA+ [adenosine triphosphatases (ATPases) associated with diverse cellular activities] modules arranged in a ring (I). ATPase activity at AAA1 is essential for dynein motility (2). The two rings are connected by the dimerization of N-terminal tail domains and bind to the microtubule through a ~15-nm coiled-coil stalk bearing a small microtubule-binding do-
main (MTBD). Dynein is required for many cellular processes, including organelle transport and cell division, and dynein malfunction can lead to motor neuron degeneration (3).

Despite recent advances in understanding dynein’s structure (4) and mechanism (5, 6), the stepping mechanism of dimeric dynein during processive motion remains unclear. Studies of kinesin and myosin motors have shown that their heads take alternating steps in a hand-over-hand (HoH) fashion (7–9). Dynein motility also requires two heads (6), but it is unclear whether they coordinate with each other to achieve processive motion (10). Dynein’s structure and origin are distinct from kinesin and myosin, suggesting that it may use a different mechanism.

To investigate dynein’s stepping mechanism, we tracked the movement of an artificially dimerized, tail-truncated yeast cytoplasmic dynein [glutathione S-transferase-Dyn1316D (GST-Dyn1316D), which has similar stepping properties to native dynein (6)]. First, we tracked the movement of dynein labeled with a single quantum dot (QD) at 2 msec temporal resolution in the presence of rate-limiting ATP (Fig. 1A and fig. S1). As reported previously (5, 6), the distribution of step sizes was multimodal. The step-size histogram of head-labeled dynein revealed two major peaks at 9.3 ± 0.7 and 17.5 ± 1.2 nm that were nearly twice as large as the peaks observed in the tail histogram (4.8 ± 0.3 and 8.7 ± 0.9 nm) (Fig. 1B). The probability of backward stepping (pBW) was 0.2. The dwell-time histogram for head-labeled dynein at 12 μM ATP (Fig. 1C) was best fit by a convolution of one slow (k1 = 2.1 ± 0.2 sec–1) and one fast (k2 = 14.1 ± 2.5 sec–1) exponential rate constant. The product of k1 and the average head step size (Shead = 10.2 nm) agrees well with the average velocity of dynein at saturating ATP (124 nm/sec). This data excludes the symmetric HoH model, which predicts the stepping kinetics of a head to be a convolution of two equal rate constants (fig. S2). Instead, the dwell-time histogram of tail-labeled dynein was well described by a kinetic model in which the heads can step independently and the tail moves each time either head takes a step (k′1 = 1.2 ± 0.1 sec–1; k′2 = 12.2 ± 2.7 sec–1) (fig. S2).

To directly address how the two heads interact and move relative to each other, we labeled GST-Dyn1316D with different-colored QDs (17 to 22 nm in size) (table S1) at the C termini and simultaneously tracked the positions of the heads during processive movement (11). The fluorescent signal was split into two channels and registered...
to 3-nm precision (figs. S3 to S5). Representative traces (Fig. 2A, fig. S6, and movies S1 and S2) clearly showed that either head could take a step regardless of which head was leading, a mechanism distinct from HoH. Although most steps showed a canonical alternating pattern, one head could take multiple consecutive (nonalternating) steps before the other head moved (Fig. 2B). Nonalternating stepping occurred about half as often as alternating stepping (32% of steps, fig. S7). This may partly be due to the time needed for a head to complete its ATPase cycle before it can take another step.

The heads often walked along different protofilaments (fig. S6), with the leading head preferentially located to the right of the trailing head (Fig. 2C and fig. S8). Measurements using organic dyes showed that the heads were separated by 23.0 ± 13.2 nm (mean \pm SD) (fig. S9), excluding the possibility of a stacking interaction between the AAA+ rings (12).

The heads frequently swapped the lead, but not strictly after every step of the motor. The stepping characteristics of a head in the leading and trailing positions differed substantially depending on interhead separation, forming the basis of the high variability in dynein’s step size (6). The on-axis (parallel to the microtubule long axis) step size decreased by ~ 0.4 nm per nanometer increase in interhead separation (Fig. 3A). The trailing head took larger ($d = 17.5$ nm) forward and fewer ($p_{BW} = 0.14$) backward steps. In contrast, the leading head took significantly shorter ($d = 1.5$ nm) forward and more frequent ($p_{BW} = 0.45$) backward steps. The off-axis (perpendicular to the microtubule long axis) step size also decreased with interhead separation but without a net bias toward left or right (Fig. 3B). The stepping probabilities of the leading and trailing heads were nearly identical when they were positioned close (10 to 20 nm) to each other. At larger separations, 65% of the steps were taken by the trailing head (Fig. 3C).

The heads of native dynein also moved independently, and their stepping behavior varied as a function of interhead separation, similar to GST-Dyn331kD (figs. S10 and S11). The results show that the tail domain is not involved in interhead coordination.

Our results show that dynein’s stepping mechanism is different from processive kinesins and myosins. The stepping motion of these motors is driven by the power stroke of the bound head, which moves the trailing head forward. For dynein, we propose a tethered excursion model (Fig. 3D), in which a conformational change that produces the minus-end bias occurs in the unbound head. Either head can bind ATP at the AAA1 site, followed by its release from the microtubule (13). The linker undergoes a minus-end–directed priming stroke upon ATP hydrolysis (14), which moves its MTBD forward. The large and flexible linker allows the released head to diffuse over a wide area, resulting in both large interhead separations and variable step sizes.

The heads experience intramolecular tension at large separations, and the power stroke of the bound head may occasionally trigger the release of the other head. In fact, we observed that the stepping probability of the trailing head increased at large separations (Fig. 3C). This result is consistent with force-induced movement of dynein, which requires less force when it is pulled toward the minus end (15). In addition, tension can bias the diffusional search of the tethered head toward the bound head, preventing further extension of the dimer (Fig. 3D).

The tethered excursion model predicts that a single force-generating head in a dynein dimer can both take a step and drag an inactive head forward. We tested the motility of a heterodimeric dynein with one wild-type head (WT) and one mutant head lacking the ability to hydrolyze ATP at the AAA1 domain (Mut_h) (6, 16). Mut_h...
Fig. 2. (A) Stepping trace of GST-Dyn331kD labeled with QD-585 (blue) and QD-655 (red) shows that the heads move independently of each other during processive runs. The heads are separated by 28.4 ± 10.7 nm (bottom inset). (B) Examples of nonalternating and lead-head stepping (arrows) show that dynein stepping deviates from the HoH mechanism. (C) Histogram of the angles between the interhead separation vector (red arrow) and the microtubule long axis (blue arrow).

Fig. 3. (A) The on-axis step size (blue dots) of GST-Dyn331kD decreases linearly (red line) as a function of interhead separation and is biased forward by 9.1 ± 0.6 nm. The leading head takes shorter ($d = 1.5$ nm) steps with more frequent ($p_{BW} = 0.45$) backward steps, compared with the trailing head ($d = 17.5$ nm; $p_{BW} = 0.14$) (bar graphs). (B) Off-axis step sizes show a linear dependence on interhead separation without a bias to move toward the right (positive) or left (negative). (C) Fraction of the steps taken by the leading and trailing heads at different interhead separations (mean ± SEM). (D) Tethered excursion model for the dynein stepping mechanism. Either the leading or the trailing head can hydrolyze ATP and release from the microtubule. A diffusional search of the trailing head (green) is biased forward by interhead tension and the linker swing, resulting in a large forward step. In contrast, linker swing and tension bias the diffusion of the leading head (blue) in opposing directions, resulting in either a backward step or a short forward step.
cannot undergo a power stroke (17) and is weakly associated with the microtubule (13). The WT₆/Mut₆ heterodimer moved processively toward the microtubule minus end (movies S3 and S4, Fig. 4A, and figs. S12 and S13). WT₆ was found in the leading position 66% of the time (fig. S14). Similarly, during occasional short (4 to 5 steps) backward runs, WT₆ remained in the leading position toward the plus end.

Mut₆ exhibited different stepping characteristics in both the leading and trailing positions (Fig. 4B) than WT₆. The on-axis step size of Mut₆ had reduced (7.1 ± 0.7 nm) minus-end-directed bias, compared with WT₆ (10.9 ± 0.8 nm). The probability of Mut₆ being in the lead decreased as interhead separation increased (~25% at 30+ nm separations) (fig. S15), and Mut₆ was more likely to step backward from the lead (d = -2.6 nm; pₑₑ = 0.44) (Fig. 4B). The average step size and stepping rate of Mut₆ were similar to those of WT₆ (figs. S14 and S15). Mut₆ stepping was mostly directed toward WT₆, whereas the direction of WT₆ stepping was largely independent of the position of Mut₆, (Fig. 4C).

Thus, dynein motility does not require allosteric communication between the AAA1 sites, and only one force-generating head is sufficient for processive movement. WT₆ usually remains in the lead and drives forward movement. The detachment of Mut₆ from the microtubule can be facilitated by ATP binding to its AAA1 site (13). Alternatively, Mut₆ can release under tension generated through the power stroke of WT₆. Because Mut₆ lacks the ability to generate a power stroke, its step size is mainly biased toward the WT₆ under tension (Fig. 4D).

Our results challenge established views of motor processivity that require coordination between the mechanochemical cycles of the heads. Kinesin (18, 19) and myosin (20) motility rely on mechanical and chemical gating mechanisms that allow the leading head to stay bound to its track while the trailing head moves forward. Dynein clearly moves by a different mechanism. We see no evidence of strict gating that keeps the heads out of phase. Processivity requires two heads to be physically connected (6) to prevent detachment of the motor when one of the heads steps forward. It is possible that simultaneous detachment of both heads is stochastic. Dynein’s high duty ratio (21) may allow the motor to take many steps before dissociation. Processivity in the absence of gating is also achieved by multiple monomeric kinesins (22) and engineered dimeric motors that have poor mechanochemical communication between the heads (18, 23). Further understanding of the molecular basis of dynein processivity will require simultaneous monitoring of the linker conformations and stepping motion of the leading and trailing head domains.

References and Notes
Tumor Necrosis Factor Signaling Requires iRhom2 to Promote Trafficking and Activation of TACE

Colin Adrain,†‡ Markus Zettl,†‡† Yonka Christova,† Neil Taylor,‡ Matthew Freeman†‡

The cytokine tumor necrosis factor (TNF) is the primary trigger of inflammation. Like many extracellular signaling proteins, TNF is synthesized as a transmembrane protein; the active signal is its ectodomain, which is shed from cells after cleavage by an ADAM family metalloprotease, ADAM17 (TNF-α-converting enzyme, TACE). We report that iRhom2 (RHBDF2), a proteolytically inactive member of the rhomboid family, is required for TNF release in mice. iRhom2 binds TACE and promotes its exit from the endoplasmic reticulum. The failure of TACE to exit the endoplasmic reticulum in the absence of iRhom2 prevents the furin-mediated maturation and trafficking of TACE to the cell surface, the site of TNF cleavage. Given the role of TNF in autoimmune and inflammatory diseases, iRhom2 may represent an attractive therapeutic target.

‡To whom correspondence should be addressed. E-mail: MF1@mrc-lmb.cam.ac.uk