Coded Computing

A Transformative Framework for Resilient, Secure, and
Private Distributed Learning

Salman Avestimehr (USC)

In collaboration with: QianYu, Songze Li, Basak Guler, Jinhyun So, Payman Mohassel, and Mahdi Soltanolkotabi

LIDS Seminar, Feb, 2019

Motivating Example

Consider a hospital that wants to train a machine learning model using patients’ healthcare
records

‘ Predict heart disease
Sensitive data \\

Motivating Example

* Training a machine learning model is a compute and storage intensive task that is desired to
be offloaded to cloud/edge

+\\ A = =
il > - og o=

oo
ooo

ooo

Motivating Example

* Training a machine learning model is a compute and storage intensive task that is desired to

be offloaded to cloud/edge
failures/stragglers

\\ D @ ﬁg’ adversarial attacks

ooo
ooo

i
0og SS ﬁ | ﬁ
\ aws ﬁg
. /
N __¥
i Privacy breaches

How to develop a resilient, secure, and privacy-preserving framework for
distributed computing/learning?

4
A

Setting

Setting

» What if some nodes straggle/fail?
> What if some nodes are malicious?

> What if we want to keep data private?

Wants to compute f(X,), f(X,), ..., f(Xy)

Setting

e.g., to tolerate one straggler each computation is repeated twice!

e.g., to tolerate one error each computation is repeated three times!

inefficient replication

> | What if some nodes straggle/fail?

> | What if some nodes are malicious?

> | What if we want to keep data private?

differential privacy
homomorphic encryption
secure multi-party computing

Our proposal: Coded Computing

Shannon’s Coding Theory von Neumann’s Computing Theory

Coded Computing

Our proposal: Coded Computing

Shannon’s Coding Theory von Neumann’s Computing Theory

v

Communication channel

Our proposal: Coded Computing

Shannon’s Coding Theory von Neumann’s Computing Theory

channel
decoder

channel
encoder

\ 4

Communication channel

Our proposal: Coded Computing

Shannon’s Coding Theory von Neumann’s Computing Theory

o

Central Processing Unit

Control Unit

Input Arithmetic/Logic Unit Output
Device Device

Memory Unit

Our proposal: Coded Computing

Shannon’s Coding Theory von Neumann’s Computing Theory

o

Central Processing Unit

Control Unit

Input computation Arithmetic/Logic Unit computation Output
Device encoder decoder > Device

Memory Unit

Coded Computing in a Nutshell

f(x,) f(xq) f(x,)

f(x4)

N\)
Y

inefficient replication!

Coded Computing in a Nutshell

1

f(x4) f(x,) f(c(xq,%z))
_ %
'

coded computation!

Key Challenge: how to design codes so that computation on coded data is meaningful?

special case of “linear functions” have been the focus of most (all) prior works, MDS coding, ShortDot, sparse coding, ...

Note that for linear functions coding and computation commute: f(x,+x;)=f(x,)+f(x,)

Key idea: injecting computation redundancy in unorthodox coded forms.

Bi-Linear Computation: Massive Matrix Multiplication

The key algebraic building block of many ML algorithms

Bi-Linear Computation: Massive Matrix Multiplication

Bi-Linear Computation: Massive Matrix Multiplication

Slowest server determines the speed of computation!

How to deal with stragglers/failures?

Naive Repetition

8 servers used, 1 straggler is tolerated

Can we tolerate 4 stragglers (the same as MDS codes)??!!

Polynomial Codes sz

i

f(il?) = AO —|— Al.CU

g(xr) =By + B2

Servericalculates: h(i) = 1 (i)g(i)

Polynomial Codes wes

|| | -

- |- |-

f(ac) =Ap+ Az
g(z) = By + Byz?

Polynomial Codes sz

2 s
flr)=Ag+ Az
g(z) = By + B12?
h(z) = f1(x)g(x) = (Ag + Aj 2)(Bo + Bia?)
h(z) = fH(z)g(x) = A{Bo+ A{Boz + A} B12* + A{ By 2*

Result of any 4 servers is enough to calculate A’B.

The code is Reed-Solomon after multiplication. It is MDS!

Coded Computing for more General Computations?

arbitrary multivariate polynomial f
» Matrix algebra
» Tensor algebra
> Typical data processing (filtering, ...)
>

General loss functions in ML
algorithms

1 Wants to compute f(X,), f(X,), ..., f(Xy)

Lagrange Coded Computing wsmarszom

Data encoding

Pick distinct 51, 52, - - -, Bk
Construct Lagrange polynomial u(z)
Pick distinct &1, G2, ..., QN
Compute X; = u(ay)

worker 1

K
éZXj.

z— Bk
Bj — B

=1 k#j

worker N

/\‘
-

XN

A\ 2

AN Bg

Lagrange Coded Computing

* Local computing

— Worker i computes f(Xi) = f(u(a;)) h Z)
— This is equivalent to evaluate the polynomial of degree (K —1)deg fat «;

worker N

worker 1 %

Lagrange Coded Computing

* Computation decoding (recovering f(X,), ..., f(Xy)
— Master interpolates f(u(z)) after receiving results from any (K — 1) deg f + 1 workers
— Evaluate at z = 3; torecover f(u(53,)) = f(X;)

R
f (X]_) “eedg d’ - - Workem

-
? " worker 2
- worke}l ” -

8 ¢

Lagrange Coded Computing

* Data encoding

Pick distinct 51, 52, - - -, Bk
Construct Lagrange polynomial u(z)
Pick distinct &1, G2, ..., QN
Compute X; = u(ay)

* Local computing
— Worker i computesf(X;) = f(u(a;))

— B
Bj — P

éiX.f'H

J=1 k#j

Oblivious of the computation
&
Incremental

— This is equivalent to evaluate the polynomialf(u(z)) of degree (K —1)deg f at «;

* Computation decoding

— Master interpolates f(u(2)) after receiving results from any (K — 1)deg f +1 workers
— Evaluateat 2 = 3; torecoverf(u(5;)) = f(X;)

Lagrange Coded Computing

Theorem:

To evaluate an arbitrary multivariate polynomial f on K input data
blocks using N workers, the optimal recovery threshold T* is

T* = (K — 1)deg f + 1

* Applies to arbitrary polynomials beyond linear functions (General Matrix algebra, tensor algebra, loss functions in ML, ...)
* Areplication scheme would need the results of %N +1

— Example (N=100, K=10, deg=2): LCC needs the results of 19 workers while replication schemes need 91!
* The optimal recovery threshold of LCC does not scale with N

— Adding one more worker, increases the resiliency of LCC by 1

— Faster computation using more workers

* Lagrange Coded Computing (LCC) maps edge computing to polynomial interpolation that can be solved
effectively using information and coding theories

Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi, Salman Avestimehr, “Lagrange Coded
Computing: Optimal Design for Resiliency, Security and Privacy”, AISTATS 2019.

How about malicious nodes?

Theorem:

To evaluate an arbitrary multivariate polynomial f on K input data
blocks using N workers, with possibly A adversary nodes, the
optimal recovery threshold T* is

T* = (K —1)deg f + 24 + 1

Adding one more worker increases the resiliency to adversaries by 1/2

How about private computing?

« If there are T colluding workers: pad the dataset (X;, ..., X) set with Z,, ..., Z;

A _Bk
u(z) = X, - -
qu J L1 Bi = B

* We need to only recover a polynomial with higher degree

ke[K+TI\{j}
K+T 5 6
— Mk
+ Z Zj - H B: — By’
j=K+1 ke[K+TI\{5} "’

Wants to compute f(Xy), f(Xy), ..., f(Xk)

Example

Data set, X;, X, (square matrices)
Computation: f(X)=X?2
N=7 workers

Guarantee information-theoretic privacy of the data set at each worker

f(u(z)) is a degree 4 polynomial I:> can also tolerate 1 adversary

How about private computing?

Theorem:

To evaluate an arbitrary multivariate polynomial f on K input data
blocks using N workers, with possibly A adversary T colluding
nodes, Lagrange Coded Computing achieves recovery threshold of

(K+T—-1)deg f+2A+1

Application to Distributed Learning

* The loss calculation in gradient methods can be modeled as a polynomial
* Can leverage LCC to speed-up computations

Polynomially Coded Regression: Optimal Straggler
Mitigation via Data Encoding

Songze Li, Seyed Mohammadreza Mousavi Kalan, Qian Yu, Mahdi Soltanolkotabi, and A. Salman Avestimehr
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

Linear regression E | i
40 workers é
Amazon EC2 5

E

0 Duncoded scheme [l 0 GC(cyclic repetition scheme) [] 1 PCR ‘

kB L L L

T T T
scenario one scenario two scenario three scenario four

Application to Blockchains

* There is a surge of interest to use “sharding” to increase the efficiency and throughput of
blockchains, but ...

Shard-A Shard-B Shard-C

—>

Ledger

ag

record of all transactions

Application to Blockchains

Shard-A Shard-B Shard-C Coded

© o o o

V() 140

V() V()
)

[decision decision

decision }

* We have developed the concept of coded sharding, in particular polyshard that leverages LCC

ue

Application to Blockchains

* We have developed the concept of coded sharding, in particular polyshard that leverages LCC

PolyShard: Coded Sharding Achieves Linearly
Scaling Efficiency and Security Simultaneously

Songze Li*, Mingchao Yu*, A. Salman Avestimehr*, Sreeram Kannan®, and Pramod Viswanath?

Storage efficiency | Security | Throughput

Full replication O(1) O(N) O(1)
Sharding O(N) O(1) O(N)
Information-theoretic limit O(N) O(N) O(N)

PolyShard (this paper) O(N) O(N) O(N)

Application to Private Machine Learning:
CodedPrivateML

Setting

How to offload the training task to a distributed platform
while keeping the dataset and model private?

* Train a logistic (or linear)

regression model um"'uu \\
: |:1|:||:||:| _
* Any collusions betweenupto T um

from N workers reveals no

information about training data
and the model

ﬁg o=

worker 1 o __ WO d<er'
T colluding workers

Potential Approach 1

Differential Privacy: Mainly used when model is to be released to public

/X+2\ Drawbacks:

* Trades accuracy with privacy:

o % —" Stronger privacy requires more noise
training <—ﬁ

* Doesn’t provide strong privacy

* Protects only the privacy of

released model personally identifiable information
(removal of one data point does not

@‘5 change the model significantly)

[Chaudhuri-Monteleoni 09, Abadi et al.
16, McMahan et al. 18, Rajkumar-
Agarwal 12, Jayaraman et al. 18]

Potential Approach 2

Homomorphic Encryption

L]
. oooo
encryption \\ Boo|oooo
Loy
[

N
encrypted data [} \\

training Eg

Drawbacks:

* Privacy based on computational
assumptions (as opposed to
information-theoretic)

* Computations in encrypted domain

* Orders of magnitude slowdown
(training on MINIST data takes ~2
hours)

[Gilad-Bachrach et al. 16; Hesamifard et
al. 17, Graepel et al. 12, Kim et al. 18,
Wang et al. 18, Han et al. 19]

Potential Approach 3
Secure Multi-Party Computing (MPC)

15
\\ EEE oooo

D o
|ll|

secret shared data
Shamir’s secret shari

training Eé @g

Drawbacks:

* Extensive communication between
parties that limits scalability

* No benefits from parallelization

* Computation load at each party is as
high as training centrally

Gascon et al. 17, Dahl et al. 18, Chen et
al. 19, Mohassel-Rindal]

[Mohassel-Zhang 17, Nikolaenko et al. 13,

Problem Setting

Master offloads computationally-
intensive operations (gradient
computations) to N workers

master

alen

Dataset: X = (X4,...,Xk)
y

P

=22

worker 1

= o=

worker N

Training logistic regression C(w)

Problem Setting

Information-theoretic privacy
guarantee for both the data and
the model.

=22

worker 1
X, Wi

master

Dataset: X = (X4, ...,Xk)

T colluding workers
[(X; X7, {Wf Yrep) = 0,97 C [N],|T| < T,

Overview of CodedPrivateML

X = (X17 . 7XK)
y =
master
X, wit) Xy, W

&= ... &=

worker N

worker 1

=
master

Secret sharing of the
dataset

!

Secret sharing of
model parameters

l

Local computation at
the workers

l

Decoding and model
update

w1

Until
convergence

Secret Sharing of the Dataset and Model Parameters

Key properties.
* Privacy preserving
* Enabling fast and accurate computations on secret shares

Step 1: Quantization.
Use quantization to convert between real & finite domains
* Quantized dataset: X (deterministic rounding of X))

* Quantized weights: W(t) = [W(t),l’ o ’W(t),r]
\ J
I

independent stochastic quantizations of w*)

Secret Sharing of the Dataset and Model Parameters

Step 2: Lagrange encoding.

Use Lagrange coding for
secret sharing the dataset

worker 1 worker N

/\l
8 : - and model parameters.

44444 XN

Lagrange interpolation
polynomial:

A < — Bk
u(z):ZX-~ ©
e Il P =

ke[K+TN\{j}

a1 /31 a9 BQ 4444444444444444 anN ﬁK K+4+T Z_ﬁk
Y Tl |
Bj — Br

J=K+1 ke[K+TI\{5}

Comparison with MPC

« Secure/Private multi-party computing (MPC) also aims at solving the same problem

« Shamir’s secret sharing scheme is commonly used for private data sharing (e.g., BGW scheme)

PZ(Z) — XZ + Zz-,lz + ...+ Zi,TZT

Pl(Oél)

i) | Lt

BGW LCC
Complexity
per worker K 1
Frac. data
- per worker 1 1/K -
Pr(ay) Randomness KT T Pl(O.éN)
P K Oél PK aN

d N N NN NN

Xl—UOél X2—U042 X3—ua3

- 9 eI I PP

4—“044

X5—UO[5 6—uaf6 7—UO¢7

Secret Sharing of the Dataset and Model Parameters
Step 2: Lagrange encoding.

worker 1 worker 2 worker NV

I T Xy

X

N X
| | W ' "~ Model parameters encoded similarly
aq (e} .« e aIN

Compute f(X1, W), ..., f(Xy, W)

Challenge: Lagrange encoding is designed for polynomial computations, but logistic
regression includes non-polynomial computations due to the sigmoid function

Secret Sharing of the Dataset and Model Parameters

Step 3: Polynomial Approximation.

= Approximate the sigmoid with a polynomial function.

1.2

x Sigmoid (g(z))
o Polynomial approximation (§(z), r = 3)

1+
0.8
0.6
04+ o5

! /r" 9(z) =) ez’

0 1=0

0.2 ‘ ‘ ‘
-10 5 0 5 10

Local Computation at the Workers

W) F(Xy, W)

é - = W

worker 1 worker N
Worker i € [N] locally computes //
F(Xi, Wy = XT (X, W)

and sends the result to master

master

Decoding and Model Update

T,

master

gradient of
batch 1

|
|
|
|
|
|
|
|
|
|
|
1

1
51 a1 %) o o o aN BK

After receiving the results from a sufficient number of workers, master:

= decodes the local gradients using polynomial interpolation
= aggregates the local gradients

= converts the result to real domain

= updates the model

X =

y

System Overview of CodedPrivateML

(X5, Xk Secret sharing of the
=== dataset
master l
X, W Xy, W Secret sharing of
I \ model parameters

ag o EE ‘ Local computation at
L the workers

worker 1 worker N l

Decoding and model

—— update

master

w1

Until
convergence

Convergence and Privacy Guarantees

Theorem. For the distributed training of a logistic regression
model with N workers, given a dataset X = (X1,...,Xk),
CodedPrivateML guarantees:

(t)

(Convergence) w'" converges to w'™,

(Privacy) X remains information-theoretically private
against any T colluding workers,

I(X; Xy, W7 beer) = 09T C [NLIT| < T,
aslongas N> 2r+1)(K+T —-1)+ 1.

Privacy—Parallelization Trade-off

Given N workers, CodedPrivateML can achieve any Kand T, as long

as: N=Qr+D)(K+T-1)+1
Parallelization increases with K: Privacy increases with T:
Computation load at each worker is Dataset remains private against
proportional to 1/K-th of processing T colluding workers
the entire dataset

N
= ...iﬁg = o

worker 1 worker N !

T colluding workers

Experiments

Implementation on Amazon EC2 Cloud

Binary image classification on the MNIST dataset
CodedPrivateML vs. secure MPC applied to our problem
MPC-based scheme: BGW protocol [Ben-Or et al. ’88]

— similar privacy structure (T out of N)

— information-theoretic privacy

4000 -

3000 -

Time (sec)
N
o
o
(o]

1000 -

Experiments

Training for 95.04% accuracy (25 iterations)

-9 CodedPrivateML, case 1
-&~ CodedPrivateML, case 2
~»~ MPC-based scheme

34.1x

N (number of workers)

Case 1 (maximum parallelization):
All resources to parallelization

K=[(N—1)/3J, T=1
Case 2 (equal parallelization and
privacy): Resources split equally
K=T=[(N+2)/6]

Accuracy (%)

8

3

~J
o
i

3

(=

Accuracy

Experiments

—%¥— (CodedPrivateML

== (Conventional logistic regression

T T

10 15
iteration

20

T

25

Cross Entropy

o
w

o
w

o
=
'

o
N
s

0.1 1

CodedPrivateML: 95.04%
Conventional logistic regression: 95.98%

Convergence

—%¥— (odedPrivateML
- Conventional logistic regression

~

0 100 200 300 400 500

iteration

Conclusion

Coded computing is a new promising approach to alleviate key bottlenecks in distributed computing/
learning

— Latency

— Resiliency

— Security and privacy

— Bandwidth consumption (see CodedMapReduce)

Coded Computing can be applied to various applications in distributed learning, fault tolerant
computing, blockchains, ...

There are many exciting research problems ahead
— Generalization to broader class of computations (significant progress made in Lagrange coding)
— Multi-stage and iterative computations in ML
— Heterogeneous and asymmetric computations

