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ABSTRACT 

Recent applications of chromosome conformation capture with deep sequencing (Hi-C and 
other C techniques) has enabled high throughput investigations and driven major advances 
in understanding chromosome organization in bacteria and eukaryotes. C techniques reveal 
systematically the identities of interacting DNA and the frequency of each interaction in vivo. 
Beyond a bird’s-eye view survey of the global chromosome architecture, C techniques 
together with genetic perturbation have proven to be powerful in understanding factors that 
shape chromosome architectures. The Structural Maintenance of Chromosomes (SMC) 
proteins play major roles in organizing the chromosomes from bacteria to humans, and C 
techniques have contributed to understanding their mechanism and impact on genome 
organization in a cellular context. Here, I describe a Hi-C protocol, a variant of C techniques, 
to construct genome-wide DNA contact maps for bacteria. This protocol is optimized for the 
Gram-negative bacterium Caulobacter crescentus, but it can be readily adapted for any 
bacterial species of interest. 

Keywords: chromosome conformation capture, Hi-C, deep sequencing, chromosome 
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1 INTRODUCTION 

The Structural Maintenance of Chromosomes 
(SMC) proteins are highly conserved from 
bacteria to humans. They regulate nearly all 
aspects of chromosome biology [1–6]. In 
eukaryotes, SMC1/3 together with non-SMC 
accessory proteins form a cohesin complex that is 
required for the establishment and maintenance 
of sister-chromatid cohesion until all sister 
chromatids achieve bipolar attachment to the 
mitotic spindle. Therefore, cohesin is crucial for a 
proper chromosome segregation. On the other 
hand, condensin complex (SMC2/4 with 
accessory proteins) is required for chromosome 
condensation during mitosis. Both cohesin and 
condensin also have crucial functions in 
regulating gene expression. Lastly, SMC5/6 
complex has multiple roles in DNA damage 
repair. In evolutionary terms, SMCs are of 
bacterial origin, and yet the function of bacterial 
SMC is less well studied than the function of its 
eukaryotic counterparts. Much like eukaryotic 
chromosomes, bacterial chromosomes cannot be 
packed haphazardly. Instead, they must be 
organized and adopt structures that are 
compatible with chromosome replication, 
chromosome segregation, DNA damage repair, 
and gene expression regulation [7, 8]. Although 
molecular insight into the structure and 
mechanism of bacterial SMC has been gained in 
vitro [9–12], our understanding of its mechanism 
and impact on genome organization in a cellular 
context is still limited. 

Recent applications of chromosome conformation 
capture with deep sequencing (Hi-C) (see Fig. 1) 
has enabled a high throughput investigation and 
driven advances in understanding chromosome 
organization in bacteria and eukaryotes [13–26]. 
Hi-C reveals systematically the identities of 
interacting DNA and the frequency of each 
interaction in vivo [13]. We and others have 
applied Hi-C to various bacterial species to reveal 
the global organization of their chromosomes in 
vivo [19, 21–24]. The first application of Hi-C to 
bacteria examined the Caulobacter crescentus 
chromosome [19, 27]. Hi-C analysis confirmed the 
global pattern of chromosome organization in 
Caulobacter: in cells with a single chromosome, 
the origin of replication (ori) and the terminus (ter) 
are at opposite cell poles, and the two 
chromosomal arms are well-aligned, running in 
parallel down the long axis of the cell [19, 28] (see 
Fig. 2). Hi-C analysis showed that Caulobacter 

and Bacillus subtilis lacking SMC has reduced 
interactions between opposite chromosomal 
arms, suggesting a role of SMC in chromosome 
organization, potentially by actively tethering the 
two chromosome arms [17, 18] (see Fig. 2). Hi-C 
and genetic perturbation have proven to be 
powerful in investigating the molecular 
mechanism of SMC in vivo. 

Here, I describe an optimized Hi-C protocol to 
generate genome-wide DNA contact maps for 
Caulobacter. Caulobacter is well suited for Hi-C 
analysis because the cells are easily 
synchronized [29], enabling us to generate 
genome-wide data for a homogenous population 
of G1-phase cells that each contain a single 
chromosome. As there is no active DNA 
replication in the G1 cells, the effect of 
transcription on SMC translocation and global 
chromosome organization can be isolated and 
studied, without confounding effects from 
replication-transcription conflicts [18]. However, 
Hi-C is applicable to a wide-range of bacterial 
species, and this protocol here can be readily 
adapted for any bacterial species of interest, 
without the need for synchronization (see Note 1). 
We also recommend that researchers consult 
other excellent protocols and reviews on C 
techniques in bacteria and eukaryotes to be best 
informed about critical parameters such as the 
choice of restriction enzymes, crosslinking 
conditions, and sequencing depth before 
embarking on optimizing Hi-C for your species of 
interest [13, 30–36]. For in silico analysis of Hi-C 
data, we routinely use and adapt scripts from the 
Mirny lab to analyze bacterial Hi-C data [19, 24, 
37] (see Note 2). Computational analysis of C 
data is outside the scope of this methods article, 
hence is not covered here. 

 

 

 

 

 

 

 

 

 

 



2 MATERIALS 

2.1 Culture fixation 

1. 1 x M2 salts buffer: 6.1 mM Na2HPO4, 3.9 mM 
KH2PO4, 9.3 mM NH4Cl, 0.5 mM MgSO4, 10 
μM FeSO4, and 0.5 mM CaCl2 

2. 0.5 mL and 1.5 mL standard microcentrifuge 
tubes 

3. 36.5% (v/v) formaldehyde solution 

4. 2.5 M glycine solution: weigh 46.8 g of glycine 
and transfer to a 500 mL beaker. Add ultrapure 
water to a volume of 250 mL, and dissolve 
glycine using a magnetic stirrer. Apply gentle 
heating to facilitate the dissolution of glycine. 
Filter the solution on a 0.22 µm filtering unit. 
The solution is stable for a month at room 
temperature (RT).   

2.2 Hi-C library construction 

1. Ready-Lyse lysozyme 

2. 50,000 units/mL BglII restriction enzyme 

3. 10,000 units/mL ClaI restriction enzyme 

4. Restriction enzyme buffer 2 and 3 

5. 2,000,000 units/mL T4 DNA ligase 

6. 10 x T4 ligase buffer 

7. 3,000 units/mL T4 DNA polymerase 

8. 10,000 units/mL T4 polynucleotide kinase 

9. 5,000 units/mL Klenow large fragment 

10. 5,000 units/mL Klenow 3’-5’ exo- 

11. 2 mM dGTP, 2mM dTTP, and 2mM dCTP 

12. 0.4 mM biotin-14-dATP 

13. 20 mg/mL proteinase K solution 

14. 5% (w/v) sodium dodecyl sulfate (SDS) 

15. 10% (v/v) Triton X-100 

16. 10 mg/mL bovine serum albumin (BSA) 

17. 15 mg/mL GlycoBlue co-precipitant 

18. 0.25 M EDTA solution pH 8.0 

19. 3 M sodium acetate solution pH 5.2 

20. 25:24:1 phenol:chloroform:isoamyl alcohol 
pH 8.0 

21. 100% isopropanol 

22. 1 x TE buffer pH 8.0: 10 mM Tris-HCl pH 
8.0 and 1mM EDTA 

23. 1 x NTB buffer: 5 mM Tris-HCl pH 8.0, 0.5 
mM EDTA, and 1M NaCl 

24. 0.5 mL and 1.5 mL standard and LoBind 
microcentrifuge tubes 

25. 0.2 mL PCR tubes 

26. Magnetic rack 

27. Water baths at 10oC, 25oC, 37oC, and 
65oC 

28. Refrigerated benchtop centrifuges 

29. Bioruptor sonication device for DNA 
shearing (Diagenode) 

30. 1.5 mL TPX microcentrifuge tubes and 
adaptor (Diagenode) 

2.3 Illumina sequencing library construction 

1. 400,000 units/mL T4 DNA ligase 

2. MinElute Reaction CleanUp columns 

3. Qiaquick Gel Extraction columns 

4. 1% and 2% agarose gel 

5. 1xTAE buffer for agarose gel electrophoresis 

6. NEBNext Multiplex Oligos kit for Illumina that 
includes NEBNext Adaptor, USER (Uracil-
Specific Excision Reagent) enzyme, NEBNext 
Universal PCR Primer, and NEBNext Index 
Primers. 

7. DynaBead MyOne Streptavidin C1 

8. Phusion polymerase enzyme, 100% DMSO, 5x 
HF buffer, and 10 mM dNTP for polymerase 
chain reaction (PCR) 

9. Thermocycler 

 

 

 

 

 

 



3 METHODS 

The general scheme for Hi-C library construction 
is summarized in Fig. 1. Hi-C technique utilizes 
formaldehyde to crosslink protein-DNA and DNA-
DNA to preserve the chromosome conformation. 
Proximity ligation is then used to join DNA 
fragments together. The ligated junctions 
containing information on which DNA loci are 
interacting together in vivo are then pulled down 
and subjected to deep sequencing. Two important 
sets of information are retrieved: (i) the sequence 
identities of interacting DNA, and (ii) the 
frequencies of their interactions. It is worth 
remembering that Hi-C (and other C techniques) 
measures interaction frequencies, not physical 
distances between DNA loci.  

The preparation of Hi-C libraries can take two to 
three days, and the generation of Illumina 
sequencing libraries take an additional day, 
depending on the number of libraries being 
processed in parallel. I have indicated below 
when reactions can be safely stopped and stored 
without affecting the quality of the libraries. We 
routinely prepare four Hi-C libraries in parallel. I 
do not recommend handling more than ten Hi-C 
samples at the same time.  
 
3.1 Culture fixation 
1. Incubate Caulobacter cells at OD600 of 0.2 with 

formaldehyde (final concentration of 1%) in the 
culturing broth with gentle shaking (see Note 
3). Formaldehyde crosslinks protein-DNA and 
DNA-DNA together, thereby capturing the 
structure of the chromosome at the time of 
fixation (see Fig. 1). Allow the crosslinking 
reaction to proceed for 30 min at RT. 

2. Add 2.5 M glycine to a final concentration of 
0.125 M, and incubate with gentle shaking for 
15 min at RT to quench the fixation by 
formaldehyde. 

3. Pellet fixed cells by centrifugation (10,000 x g 
for 10 min, at 4oC) and discard the 
supernatant. 

4. Wash the fixed cells twice with 1 x M2 salts 
buffer before resuspending them in an 
appropriate volume of 1 x TE buffer to a final 
concentration of 107 cells/µL (see Note 4). 

5. Divide the resuspended cells into 25 µL 
aliquots and store them individually in 0.5 mL 
microcentrifuge tubes at -80°C for no more 
than four weeks. 
 

3.2 Hi-C library construction 

6. Two 25 µL aliquots of the same sample are 
routinely used for each Hi-C experiment. Add 
0.25 µL of Ready-Lyse lysozyme to each 25 µL 
cell aliquot, mix gently by pipetting up and 
down several times, and incubate for 15 min at 
RT. 

7. Add 1.25 µL of 5% SDS to the lysozyme-
treated cells aliquot in step 6, mix gently by 
pipetting up and down several times, and 
incubate for a further 15 min at RT to 
completely dissolve cell membranes and to 
release chromosomal DNA (see Note 5). 

8. Add 5 µL of restriction enzyme buffer 3, 5 µL of 
10% Triton X-100, and 11 µL of autoclaved 
ultrapure water to the reaction from step 7. Mix 
gently by pipetting up and down several times, 
and incubate for 15 min at RT (see Note 6). 

9. Add 2.5 µL of 50,000 units/mL BglII restriction 
enzyme, mix gently by pipetting, and incubate 
at 37°C for 3 hours to digest the chromosomal 
DNA (Fig. 1B) (see Note 7). 

10. Cool the reaction on ice before proceeding 
to label sticky ends with biotin-14-dATP (Fig. 
1B). Assemble the following reaction: 50 µL of 
restriction enzyme digestion mix from step 9, 
0.9 µL of 2mM dGTP, 0.9 µL of 2mM dTTP, 0.9 
µL of 2mM dCTP, 4.5 µL of 0.4 mM biotin-14-
dATP, 1.6 µL of autoclaved ultrapure water, 
and 1.2 µL of Klenow large fragment. 

11. Incubate for 45 min at RT before adding 3 
µL of 5% SDS to stop the reaction.  

12. In this step, filled-in DNA ends are ligated 
together in a dilute condition so that DNA 
fragments that were spatially close in vivo and 
fixed together by formaldehyde would be 
preferably ligated together while ligation 
between randomly colliding DNA fragments in 
the microcentrifuge tube is minimized (see Fig. 
1). Prepare the ligation buffer consisting of 75 
µL of 10% Triton X-100, 100 µL of 10 x T4 
ligation buffer, 5 µL of 10 mg/mL BSA, and 800 
µL of autoclaved ultrapure water in a 1.5 mL 
microcentrifuge tube. Mix all the components 
well by inverting the tube several times and 
leave on ice for 15 min. 

13. Mix the content of the labeling reaction in 
step 11 with the ligation buffer in a 1.5 mL 
microcentrifuge tube, and leave at RT for at 
least 15 min (see Note 8). 

14. Transfer the microcentrifuge tube back on 
ice for at least 15 min before proceeding to the 
next step. 

15. Add 3 µL of concentrated T4 DNA ligase 
(2,000,000 units/mL) to the ligation reaction, 



mix all the components well, and incubate at 
10oC for 5 hours (see Note 9). 

16. Add 40 µL of 0.25 M EDTA pH 8.0 to stop 
the ligation reaction, mix all the components 
well by inverting the tube several times. 

17. Add 2.5 µL of 20 mg/mL proteinase K, mix 
all the components well by inverting the tube 
several times. 

18. Incubate the reaction in a 65oC water bath 
overnight to reverse crosslinks and remove 
bound proteins. 

19. In the next day, extract DNA from step 18 
twice with phenol/chloroform/isoamyl alcohol 
pH 8.0, precipitate DNA using isopropanol with 
the help of the GlycoBlue co-precipitant,  and 
finally dry and resuspend the DNA pellet in 60 
µL of water (see Note 10). The purified DNA 
can be safely stored at -20oC after this step. 

20. In this step, unligated but biotin-labeled 
fragments are eliminated using the 3’-5’ 
exonuclease activity of T4 DNA polymerase. 
Assemble the following reaction in a 0.2 mL 
PCR tube: 60 µL of purified DNA from step 19, 
10 µL of restriction enzyme buffer 2, 1 µL of 10 
mg/mL BSA, 5 µL of 2 mM dGTP, 23.5 µL of  
water, and 0.5 µL of T4 DNA polymerase. 
Incubate the reaction at 12°C for 2 hours. Use 
a thermocycler set at 12oC to maintain an 
accurate temperature. 

21. Extract DNA using 
phenol/chloroform/isoamyl alcohol pH 8.0, 
precipitate DNA using isopropanol and 
GlycoBlue co-precipitant, and finally dry and 
resuspend the DNA pellet in 100 µL of water 
(see Note 10). The purified DNA can be safely 
stored at -20oC after this step. 

22. Transfer 100 µL of purified DNA to a 1.5 
mL TPX microcentrifuge tubes for shearing in 
the Bioruptor sonication device (Fig. 1). Shear 
DNA to 200 bp-500 bp fragments using the 
Bioruptor sonicator (see Note 11).  

23. Electrophorese the fragmented DNA on a 
2% agarose gel. Excise the gel band 
containing DNA between 200 bp and 500 bp, 
and purify DNA from the agarose using gel 
extraction columns (see Note 12). Elute the 
DNA with 50 µL of autoclaved water. The 
purified DNA can be safely stored at -20oC 
after this step. 

 
3.3 Illumina sequencing library construction 
24. From this step onwards, LoBind 

microcentrifuge tubes are used to minimize 
DNA loss. End-repair DNA in a reaction 
consisting of: 50 µL of sheared Hi-C DNA 

from step 23, 10 µL of 10 x T4 DNA ligase 
buffer, 2.5 µL of 10 mM dNTPs, 28.75 µL of 
water, 4 µL of T4 DNA polymerase, 4 µL of 
T4 polynucleotide kinase, 0.75 µL of Klenow 
large fragment. Mix all the components well 
by pipetting up and down several times, and 
incubate at 25°C for 30 min (see Note 13). 

25. Purify DNA using MinElute Reaction CleanUp 
columns, and elute DNA with 30 µL of water 
(see Note 14). 

26. Attach A-overhangs to the 3’ ends of the 
repaired DNA by incubating 30 µL of  DNA 
from step 25 with 4 µL of 10 x restriction 
enzyme buffer 2, 4 µL of 2 mM dATP, and 3 
µL of Klenow 3’-5’ exo-. Mix all the 
components well by pipetting up and down 
several times, incubate the reaction at 37oC 
for 45 min. 

27. Purify DNA again using MinElute Reaction 
CleanUp columns, and elute DNA with 15 µL 
of water. 

28. Ligate purified DNA from step 27 with the 
NEBNext adaptor in the following reaction:  
15 µL of DNA from step 27, 5 µL of NEBNext 
adaptor, 2.5 µL of 10 x T4 ligase buffer, 1 µL 
of water, and 1.5 µL of T4 ligase enzyme 
(400,000 units/mL). Mix all the components 
well and incubate the reaction at 25°C for 30 
min (see Note 15). 

29. Add 1 µL of USER enzyme, mix gently by 
pipetting up and down several times, and 
incubate the reaction at 37oC for 15 min to 
process the NEBNext adaptor. 

30. In this step, biotin-labeled DNA are purified 
away from non-labeled DNA using DynaBead 
MyOne Streptavidin C1 beads (see Fig. 1). 
Wash 25 µL of Streptavidin C1 beads in 200 
µL of NTB buffer twice by repeating a cycle of 
resuspension and pull-down by magnetic 
attraction. 

31. Transfer the washed beads to the ligation 
mixture in step 29, and incubate with a gentle 
agitation at RT for 30 min to capture the 
biotin-labeled DNA.  

32. Pull down beads using a magnetic rack and 
discard the unwanted supernatant. 

33. Wash beads from step 32 twice in 200 µL of 
NTB buffer, twice in 200 µL of water, and 
finally resuspend the beads in 10 µL of water.  

34. Enrich DNA bound on beads by PCR using 
primers compatible with Illumina paired-end 
sequencing chemistry. Assemble the 
following PCR reaction: 1 µL of NEBNext 
Universal PCR primer, 1 µL of NEBNext 
Index primer, 1 µL of 10mM dNTP, 10 µL of 5 



x HF buffer, 1.5 µL of 100% DMSO, 35 µL of  
water, 0.5 µL of Phusion DNA polymerase 
enzyme, and 1.2 µL of the resuspended 
beads from step 33 (see Note 16).  

35. Amplify DNA using the following PCR 
program: 30 sec at 98oC, (10 sec at 98°C, 20 
sec at 60°C, 25 s at 72 °C) x 14 cycles, 5 min 
at 72oC, 5 min at 4oC.  

36. Purify PCR products by gel extraction before 
sequencing on Illumina HiSeq platforms (see 
Note 17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 NOTES 
1. Without synchronization of cell cultures, the 

background signal of DNA contact maps are 
likely to be high. However, most of the 
constant features of the chromosome are still 
observable [17, 21, 22, 24].  

2. Toolboxes and scripts for analysis of 
Caulobacter Hi-C data can be found at: 
https://bitbucket.org/mirnylab/hiclib. We also 
recommend that researchers consult other 
excellent reviews and protocols on 
computational analysis of C data here [31, 38].  

3. The concentration of formaldehyde is 
optimized empirically for each species of 
interest. We routinely use 1% formaldehyde to 
fix Caulobacter cells for Hi-C experiments [19], 
other research groups use 3% to 5% 
formaldehyde to fix cultures of Bacillus subtilis 
or Escherichia coli for Hi-C/3C-seq 
experiments [22–24]. 

4. One mL of Caulobacter culture at OD600 of 0.1 
contains approximately 108 cells. 

5. A gentle mixing by pipetting slowly up and 
down several times is recommended to 
minimize mechanical shearing of chromosomal 
DNA. It should be easy to pipette up and down, 
and the solution should not be viscous if the 
fixation of the cell culture was done 
adequately. 

6. This is a critical step: incubate the reaction for 
15 min to allow adequate time for Triton X-100 
to inactivate SDS from step 7.  

7. The choice of restriction enzymes and 
digestion buffers is critical for the success of 
Hi-C experiments. Different restriction 
enzymes have different restriction frequency, 
depending on the distributions of their 
recognition sites on bacterial genomes. This 
distribution determines the theoretical 
resolution of Hi-C contact maps. For 
Caulobacter crescentus, we routinely use BglII 
which gives a 10-kb resolution for Hi-C contact 
maps. Beyond the issue of resolution, many 
restriction enzymes do not cut optimally in the 
bacterial cell lysate. Some of the proven 
restriction enzymes for Hi-C experiments are 
BglII, HindIII, EcoRI, and NcoI. Note that we 
use a highly concentrated BglII enzyme in this 
step (see Materials). We recommend that 
researchers determine the efficiency of 
restriction enzyme digestion by agarose gel 
electrophoresis (see [30] for an excellent 
review on quality controls for C libraries in 
Caulobacter crescentus). 

https://bitbucket.org/mirnylab/hiclib


8. This is a critical step: incubate for at least 15 
min to allow adequate time for Triton X-100 to 
inactivate SDS from step 12. 

9. We use a highly-concentrated T4 DNA ligase 
in this step (see Materials). Also, we do not 
add extra ATP to the ligation reaction as the 10 
x T4 DNA ligase buffer (NEB) is already 
supplemented with 1 mM ATP. The final 
concentration of Caulobacter chromosomal 
DNA in the ligation mix is estimated to be ~0.5 
ng/µL i.e. lower than the concentration used in 
the previous 3C study in yeast (~2.5 ng/µL) 
[39]. Given that the Caulobacter genome is ~3 
times smaller than that of yeast, the lower 
concentration of Caulobacter DNA used in a 
ligation reaction gives a comparable low 
background of random ligation products. 

10. We precipitate DNA using 100% ice-cold 
isopropanol instead of ethanol to avoid 
handling a large volume of solvent. One 
volume of isopropanol per volume of aqueous 
DNA solution, instead of three volume of 
ethanol, is required for DNA precipitation. Also, 
we recommend researchers to check the 
integrity of DNA and the efficiency of ligation 
(step 15) by 1% agarose gel electrophoresis 
after DNA has been precipitated and 
resolubilized here. The presence of a relatively 
tight band of high molecular weight (greater 
than 10 kb if BglII was used in step 9) 
indicates a good ligation. We also recommend 
performing PCR or qPCR to confirm the 
abundance of a positive-control Hi-C junction 
(see [30] for an excellent review on quality 
controls for C libraries in Caulobacter 
crescentus). The amplified Hi-C junction is 
resistant to digestion by BglII but susceptible to 
restriction by ClaI (see Fig. 1B). The ClaI 
restriction site can be used to assess biotin-
dATP fill-in efficiency. 

11. Other DNA shearing devices can be used 
to fragment the DNA. We routinely use a 
sonication setting of 30 sec on, 30 sec off, for 
30 min to achieve a desired fragmentation on 
the Bioruptor device. We recommend that 
researchers optimize the sonicator settings 
empirically for each instrument. For the 
Bioruptor device, the use of hard-plastic 1.5 
mL TPX microcentrifuge tubes and exactly 100 
µL of DNA solution ensures a consistent 
fragmentation of DNA. 

12. We include RNaseA in the loading dye for 
agarose gel electrophoresis, this eliminates 
any residual RNA that co-precipitates with 
DNA in previous steps. We recommend that 

excised gel bands are dissolved in the gel 
extraction buffer by vortexing. Avoid the use of 
high heat to dissolve the agarose gel band. 

13. Commercial kits can be adapted to 
construct Hi-C Illumina sequencing libraries. 
However, we find the traditional method of 
preparing sequencing libraries that uses 
individual enzymes results in a much higher 
yield. 

14. MinElute Reaction CleanUp columns are 
used to maximize the recovery of eluted DNA.  

15. We use the ready-made NEBNext adaptor 
(see Materials) to construct Hi-C sequencing 
libraries. This necessitates the use of a USER 
enzyme (see Materials) to further process the 
adaptor (step 29). If home-made adaptors or 
adaptors from a different commercial company 
are used, skip step 29 or modify accordingly. 

16. This is a specific PCR protocol to amplify 
DNA from Caulobacter since DNA from this 
organism is high in G+C content. Modify this 
program to suit the bacterial species of 
interest. Use a different NEBNext Index primer 
for each different Hi-C sample, this allows 
samples to be barcoded, pooled, and 
sequenced on the same Illumina sequencing 
lane. 

17. Gel extraction to purify PCR product is 
preferred over size-selection beads as we can 
remove nearly all unwanted Illumina adaptor 
dimers. We routinely pool five to ten barcoded 
samples for each Illumina HiSeq 2500 
sequencing lane. Given the small size of 
Caulobacter genome (~4.2 Mb) and that Hi-C 
junctions are enriched by biotin labeling and 
streptavidin pull-down, 10 million of raw paired-
end sequencing reads are sufficient to 
generate a genome-wide Hi-C contact map at 
the resolution of ~10 kb. After in silico filtering 
of unligated and PCR duplicated DNA 
fragments, researchers should expect more 
than 5 million informative reads for the 
construction of Hi-C contact map. If the fraction 
of informative reads is significantly less than 
50% of the total sequencing reads, it is an 
indication of a sub-optimal Hi-C experiment. 
We recommend that researcher check step 1, 
step 12, or step 20 again.  
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Fig. 1. A scheme for the chromosome conformation capture with deep sequencing (Hi-
C). (a) Hi-C technique utilizes formaldehyde to crosslink protein-DNA and DNA-DNA to 
preserve the chromosome conformation. Chromosomal DNA is digested with restriction 
enzyme, and proximity ligation is then used to join DNA fragments together. The ligated 
junctions containing information on which DNA loci are interacting together in vivo are then 
pulled down and subjected to deep sequencing. In this schematic picture, SMC is depicted as 
a generic protein that binds DNA together. Note that formaldehyde indiscriminately crosslinks 
any DNA-binding proteins to their DNA. (b) Digestion of chromosomal DNA by BglII, fill in 
sticky ends with biotin-dATP, ligation and the creation of the ClaI recognition site at the ligated 
Hi-C junction. The ClaI restriction site can be used to assess fill-in efficiency. 
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Fig. 2. Hi-C combined with genetic perturbation revealed a possible mechanism of SMC 
in Caulobacter crescentus. Normalized Hi-C contact maps use colors to indicate the 
frequency of interactions between locus pairs across the genome. The secondary diagonal 
(dashed box) indicates interactions between opposite chromosome arms in (a) wild-type 
Caulobacter cells and in (b) cells lacking SMC. Cells lacking SMC show a dramatic reduction 
in inter-arm DNA-DNA interactions, suggesting a role of SMC in promoting interactions 
between chromosome arms in Caulobacter. A simplified genomic map of Caulobacter shows 
the origin of replication (ori), the parS site, and the terminus (ter), together with left (green) 
and the right (orange) chromosomal arms. On the genomic map of wild-type cells, DNA 
regions aligned by SMC are presented schematically as grey curved lines connecting the two 
chromosome arms. It is unclear whether SMC can hold both chromosome arms within its 
lumen or two SMC, each encircles a chromosome arm can handcuff to tether both arms 
together. For simplicity, only SMC encircling both arms is shown schematically. Pictures are 
not to scale. 


	Le_etal_Methods_in_MolBio_SMC_HiC_revised_2columns_own_copy
	Le_etal_MethodsMolBio_18_Figure1 copy_OWNCOPY
	Le_etal_MethodsMolBio_18_Figure2_OWNCOPY

