DONNÉES À PAS VARIABLE DÉTECTION DU LIEN

OBJECTIFS

Énoncer une hypothèse sur le lien entre deux variables à l'aide de représentations graphiques à diverses échelles.

À l'aide du logiciel, calculer les paramètres du modèle par la méthode des moindres carrés.

© 2019, Prodafor

Mise en situation

On a mesuré la vitesse de la roue d'inertie d'un appareil à différents moments après la mise hors tension du moteur. Les données recueillies sont regroupées dans le tableau présenté.

Préparer une feuille où figure la représentation graphique des couples (x; y), $(x; \ln y)$, $(\ln x; \ln y)$ et $(\ln x; y)$. Construire à l'aide de ces graphiques le modèle le plus approprié pour décrire le lien entre les variables, puis calculer les paramètres du modèle.

À l'aide du modèle, déterminer la vitesse de rotation au moment de la coupure de l'alimentation.

Detection-lien

Construction du tableau

ACTION

- 1. Préparer une feuille de calcul.
- Dans la plage A10:D10, écrire l'en-tête de tableau en utilisant les identificateurs « x », « ln(x) », « y » et « ln(y) ».
- 3. Dans la plage A11:A19, entrer les valeurs de la variable indépendante de la mise en situation.
- Sélectionner la plage A10:A19 et choisir Insertion < Nom < Définir... Excel suggère « x »; cliquer sur OK.
- Dans la cellule B11, définir le calcul « =ln(x) », puis valider. Faire une copie incrémentée jusqu'en B20.
- Sélectionner la plage B10:B19 et choisir Insertion < Nom < Définir... Excel suggère « ln_x »; cliquer sur OK.
- 7. Dans la plage C11:C19, entrer les valeurs de la variable dépendante de la mise en situation.
- Sélectionner la plage C10:C19 et choisir Insertion < Nom < Définir... Excel suggère « y »; cliquer sur OK.
- Dans la cellule D11, définir le calcul « =ln(y) », puis valider. Faire une copie incrémentée jusqu'en D19.
- 10. Sélectionner la plage D10:D19 et choisir Insertion < Nom < Définir... Excel suggère « ln_y »; cliquer sur OK. Laboratoires Excel

Temps t (min)	Vitesse N (r/min)	
0,50	1 750	
0,75	1 520	
1,00	1 320	
1,50	960	
1,70	840	
2,50	530	
3,00	380	
4,00	200	
5,00	120	

Commentaire

Si on choisit « x » et « y » comme en-têtes du tableau, celui-ci peut servir à représenter différents phénomènes. Pour remettre un travail particulier, on peut avoir à modifier les titres de colonnes.

Données expérimentales			
x	$\ln(x)$	у	$\ln(y)$
0,50	-0,693 1	1 750	7,467 37
0,75	-0,287 7	1 520	7,326 46
1,00	0,000 0	1 320	7,185 38
1,50	0,405 5	960	6,866 93
1,70	0,530 6	840	6,733 40
2,50	0,916 3	530	6,272 87
3,00	1,098 6	380	5,940 17
4,00	1,386 3	200	5,298 32
5,00	1,609 4	120	4,787 49

Représentations graphiques

- Sélectionner les plages non contiguës de cellules A11:A19 et C11:C19 et représenter graphiquement en choisissant l'option « Nuage de points » et le sous-type avec marques. Donner le titre « Papier bilinéaire » à ce graphique.
- 2. Sélectionner la plage de cellules B11:C19 et représenter graphiquement. Donner le titre « Semilog horizontal ».
- 3. Sélectionner la plage de cellules C11:D19 et représenter graphiquement. Donner le titre « Semilog vertical ».
- Sélectionner les plages non contiguës de cellules B11:B19 et D11:D19, représenter graphiquement. Donner le titre « Log-log » au graphique.

La représentation graphique sur papier semi-log vertical est celle présentant le meilleur alignement des points. Le modèle le plus approprié est donc un modèle exponentiel.

Calcul des paramètres

1. Dans la plage E11:F11, définir le paramètre « A » et faire calculer sa valeur par la fonction

 $\ll = \operatorname{PENTE}(\ln_y; x) \gg.$

2. Dans la plage E12:F12, définir la paramètre « B » et faire calculer sa valeur par la fonction

 $\ll = ORDONNEE.ORIGINE(ln_y;x) \gg.$

3. Dans la plage E13;F13, définir le paramètre « corr » et faire calculer sa valeur par la fonction

 $\ll = \text{COEFFICIENT.CORRELATION}(\ln_y; x) \gg.$

Puisque ln y = Ax + B et en isolant y, on a $y = e^{Ax} e^B$ ou $y = e^B e^{Ax}$, où $e^B \approx 2$ 380.

Le modèle est $y = 2 \ 384e^{-0.606x}$.

