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Thermal Oxidation of Silicon
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X, Inc. Reprinted with permission from
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© 2002 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This For the exclusive use of adopters of the book
material is protected under all copyright laws as they currently exist. No portion of this Introduction to Microelectronic Fabrication, Second
material may be reproduced, in any form or by any means, without permission in writing Edition by Richard C. Jaeger. ISBN0-201-44494-1.

from the publisher.



VOLUME V.

Thermal Oxidation
Fick’s First Law of Diffusion

Modular Series on Solid State Devices
Gerold W, Newdeck + Robert F ire,Series Edors

Temperature (°C)

105 1200 1100 1000 900 800 700 600 550
T T I I I T
oMo .
Silicon
dioxide
Z, J Silicon
Ex=118eV 8
10t E g
] 5 N;
£) ] © X
(\IE 02 o
2
t? 103 | Si0, Si
= 1
£ ] X,
[ 1 Distance from surface, x
102F E E A c . .
i ] D=D,exp = Arrhenius Relationship
Ey=079¢eV ]
o1 I ! ! | E , =activation energy
0.7 0.8 0.9 1.0 1.1 1.2
1 ' -23
1000/7 (K™ k =Boltzmann's constant =1.38 x10™ J/K
FIGURE 3.1
Diffusivities of hydrogen, oxygen, T =absolute temperature
sodium, and water vapor in silicon
glass. Copyright John Wiley & Sons,
Inc. Reprinted with permission from
Ref. [4].
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Oxidation Theory
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X, =final oxide thickness

X, =initial oxide thickness

+(‘Tj‘\)_r

J(X,)=kN,

XO
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B (B/A)
5 2DN,
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X,(t)=0.5 1+4%(z+ 7) -1

D =diffusion coefficient

N =concentration of oxygen

7 = time required to grow initial oxide k =rate constant at S, — S.0,interface
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Rate Constants e
Wet and Dry Oxidation

TABLE 3.1 Values for Coefficient D, and Activation Energy E , for Wet and Dry Oxygen®

Wet O,(X; =0nm) Dry O,(X; =25 nm)

<100> Silicon

Linear (B/A) 9.70 X 107 yum/hr 2.05eV 3.71 X 10%um/hr 2.00 eV
Parabolic (B)  386um?/hr 0.78 eV 772um?*/hr 1.23eV
<111> Silicon

Linear (B/A) 1.63 X 108um/hr 2.05eV 6.23u10°um/hr 2.00 eV
Parabolic (B)  386um?%hr 0.78 eV 772um?*/hr 1.23eV
“Data from Ref.[9]

e Wet oxidation is much more rapid than dry oxidation

* Note that dry oxidation appears to always have some initial oxide
present

* Dry oxidation (slow) produces higher quality oxide than wet oxidation
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Thermal Oxidation
Oxidation on <100> Silicon
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FIGURE 3.6

Wet and dry silicon dioxide
growth for <100> silicon
calculated using the data
from Table 3.1. (The dots
represent data used in
examples.)
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FIGURE 3.7

Wet and dry silicon dioxide
growth for <111> silicon
calculated using the data
from Table 3.1.
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Example 3.2

A <100> wafer has a 2000-A oxide on its surface.
(a) How long did it take to grow this oxide at 1100 °C in dry oxygen?

(b) 'The wafer is put back in the furnace in wet oxygen at 1000 °C. How long will it
take to grow an additional 3000 A of oxide? Solve this problem graphically using Figs.
3.6 and 3.7 as appropriate.

(¢) Repeat part (b) using the oxidation theory presented in Eqgs. (3.3) through (3.12).

Solution: (a) According to Fig. 3.6, it would take 2.8 hr to grow a 0.2-um oxide in dry
oxygen at 1100 °C.

(b) We can solve part (b) graphically using Fig. 3.6. The total oxide at the end of the
oxidation would be 0.5 um. If there were no oxide on the surface, it would take 1.5 hr to
grow 0.5 ym. However, there is already a 0.2um oxide on the surface, and the wafer
“thinks” that it has already been in the furnace for 0.4 hr. The time required to grow the
additional 0.3 um of oxide is the difference in these two times: At=(1.5—0.4) hr=1.1 hr.

(¢) From Table 3.1, B = 3.86 X 10 * exp(—0.78/kT) um *hr and (B/A) = 0.97 X 10
exp( —2.05/kT) ym/hr. Using T=1,273 K and k =8.617 X 10 eV/Kg, B =0.314 um?* X
/hr and (B/A) = 0.738 um/hr. Using these values and an initial oxide thickness of 0.2m
yields a value of 0.398 hr for the effective initial oxidation time 7. Using 7 and a final
oxide thickness of 0.5 pum yields an oxidation time of 1.08 hr. Note that both the values
of t and 7 are close to those found in part (b). Of course, the graphical results depend
on our ability to interpolate logarithmic scales!
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Thermal Oxidation Example

A <100> silicon wafer has a 2000-A oxide on its surface

(a) How long did it take to grow this oxide at 1100°C in
dry oxygen?

(b)The wafer 1s put back in the furnace in wet oxygen at
1000°C. How long will 1t take to grow an additional 3000
A of oxide?
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Thermal Oxidation Example = =
Graphical Solution

L <uosilcon 1 (a) According to Fig. 3.6, it would take

2.8 hr to grow 0.2 pm oxide in dry
oxygen at 1100° C.

(b) The total oxide thickness at the end
of the oxidation would be 0.5 im
which would require 1.5 hr to grow
if there was no oxide on the surface
to begin with. However, the wafer
“thinks” it has already been in the
furnace . Thus the additional
time needed to grow the 0.3 um

T HSES—T oxide is 1.5-0.4 = 1.1 hr.

Oxidation time (hr)

Oxide thickness (pm)
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Thermal Oxidation Example
Mathematical Solution

(a) From Table 3.1,

e 2 —
B =7.72x10 exp( 123} s B 3915106 exp( 2‘0()) X =25mm
kT hr A kT ) hr

2
For T=1273 K, B=0.0236/"" and 2 =0.1604"

hr A hr

__ (0.025um)’ , 0.025m
- 2
0.02364™  0.169°™

hr hr

0.2umY
__Q2pm) 02 74— 270 hr
002364 0.1692™"

hr hr

=0.174 hr

5
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Thermal Oxidation Example
Mathematical Solution

(b) From Table 3.1,
E— 2 —
B= 3.86x1026xp[ 078)”’" B_ 9.7Ox107exp( 205 j"m X, =0
kT hr A kT ) hr
2
For T=1273 K. B=0314" and B —07404™
hr A hr
0.2 .
_( ”m) 0.24m _ _ 398 hr
0.3144m° 0.742ﬂ
hr hr
0.5 .
_( ”m) 0.54m 39811 =1.07 hr
0.314 1™ 0.742@
hr hr
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i Oxidation duration: 60 min | Wet oxide growth at increased pressures. Reprinted with
permission of Solid State Technology, published by
01 | | | | | | Technical Publishing, a company of Dun and Bradstreet,

800 900 1000 from Ref. [12].
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Thermal Oxidation =2
Impurity Redistribution

Oxide takes up impurity (m < 1) FI G U RE 3 9
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Y i | The effects of oxidation
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0 L0 0 L0 diffusion in oxide (boron
e . with hydrogen ambient);

(c) slow diffusion in
i | oxide (phosphorus); (d)
Lo} Lo} - fast diffusion in oxide
- . - . (gallium). Cy is the bulk

G| N 1 & T N h concentration in the sili-
| Silicon ] | Silicon _
i i B | con. Copyright John
R B R B Wiley & Sons, Inc.
0 1.0 0 1.0 . . .
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Thermal Oxidation
Masking Properties ot S10,
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mask boron and phosphorus diffusions
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diffusion of boron - wet
oo - e oxidation release hydrogen
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Thermal Oxidation
Oxide Quality

e Dry oxidation (slow) produces higher quality oxide than
wet oxidation

e Oxidations often consist of sequence of dry-wet-dry
oxidation cycles -Most of oxide 1s grown during wet phase

* Dry phase yields higher density oxide with improved
breakdown voltage (5-10 MV/cm)

e Dry oxidation usually used to grow gate oxides

e Nitrogen being added to form oxynitrides for very thin
gate oxides
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Thermal Oxidation
Oxidation Systems

Figure 3.11 Furnaces used for oxidation and diffusion
(a) A three-tube horizontal furnace with multizone
temperature control

(b) Vertical furnace (Courtesy of Crystec, Inc.)
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I_ocal Oxidation of Silicon
(LOCOS)
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FIGURE 3.12

e Fully recessed process
;121)s(sbs)efc:;](;nrgsssl;g;_;;tflll(c):::es:equence for local oxidation of silicon (LOCOS): (a) semirecessed attempts tO minimize
bird’s beak
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(1) Trench etching with SiN mask and oxidation
SiN
[ | | - |

™ Pad Sio,

Si0,

A4

Often used in dynamic
(2) Poly-Si deposition and etching back memory ChipS (DRAMS)

| H -
U {J\ Poly-Si

(3) SiN patterning and field oxidation

Deep trenches used in
high performance bipolar

1 |

Fabrication procedure of trench isolation
and field oxide.

(a) Deep-trench process

FIGURE 3.13

Trench isolation structures. (a) Deep trench isolation - Copyright 1996 IEEE. Reprinted with permission from
Ref. [18]. (b) Shallow trench isolation - Copyright 1998 IEEE. Reprinted with permission from Ref. [20].
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Thermal Oxidation
Example of Deep Trenches

Filled Trenches
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(1) Stack & trench etch (2) Pad oxide undercut (3) Liner oxidation between deViCeS and
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to minimize device
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Silicon . Silicon Silicon . Silicon Silicon . Silicon
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(4) CVD Oxide gap fill (5) CMP & HF dip (6) H, PO, Nitride strip
(e.e. HDP. TEOS-0,)

(b) Steps in a typical STI process tlow

FIGURE 3.13

Trench isolation structures. (a) Deep trench isolation - Copyright 1996 TEEE. Reprinted with permission from
Ref. [18]. (b) Shallow trench isolation - Copyright 1998 IEEE. Reprinted with permission from Ref. [20].
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Chemical Mechanical =

Polishing (CMP)

Downward force

Abrasive slurry Pad conditioner

Pad

Wafer topography

Platen
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Mechanical polishing is widely
used to achieve highly planar
surfaces

Used in multilevel metalization
systems including both aluminum
and copper
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Thermal Oxidation
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Trench Isolation Example

- Shallow trench isolation

_ CMP planarization

Deep trench 1solation

Figure 3.14 Microphotograph of actual deep and
shallow trench 1isolation applied to SIGE HBT
technology. Copyright 1998 IEEE. Reprinted with
permission from Ref. [31].
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Multilevel Metallization
Using CMP

6 TEI L LR L b &
SAEEL L EEERL ]

Figure 3.16 Multilevel metallization fabricated with chemical mechanical polishing

(a) SEM of 6-level thin-wire copper. First-level copper is connected with tungsten studs to
tungsten local interconnect. (b) SEM of 6-level copper with low RC metallization on levels
5 and 6. Copyright 1997 IEEE. Reprinted with permission from Ref. [24].
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TABLE 3.2 Color Chart for Thermally
Lighting. Copyright 1964 by International Business

srown

ilms Observed Perpendicularly Under Daylight Fluorescent
Machines Corporation; reprinted with permission from Ref. [11].

L]
Film Film
e Oxide Color Chart
(um) Color and Comments (pm) Color and Comments
0.05 Tan 0.58 Light orange or yellow to pink . . . .
0.07 Brown 0.60 Carnation pink O d th k f t t t f
0.10 Dark violet to red violet 0.63 Violet red Xl e lc neSS Or Cons ruc IVe ln er erence
0.12 Royal blue 0.68 “Bluish™ (not blue but borderline
0.15 Light blue to metallic blue between violet and blue green; appears
0.17 Metallic to very light more like a mixture between violet
yellow green red and blue green and looks grayish)
0.20 Light gold or yellow; 0.72 Blue green to green (quite broad)
slightly metallic 0.77 “Yellowish” kﬂ(
0.22 Gold with slight 0.80 Orange (rather broad for orange)
yellow orange 0.82 Salmon 2X —_— —
0.25 Orange to melon 0.85 Dull, light red violet o
0.27 Red violet 0.86 Violet n
Blue to violet blue 0.87 Blue violet
Blue 0.89 Blue
Blue to blue green 0.92 Blue green
Light green 0.95 Dull yellow green
Green to yellow green 0.97 Yellow to “yellowish™ . . .
Yellow 0.99 Orange —
n =index of refraction (1.46 for Si0,)
Yellow 1.02 Violet red
Light orange 1.05 Red violet
Carnation pink 1.06 Violet
Violet red 1.07 Blue violet
Red violet 1.10 Green
Violet L.11 Yellow gr k 1 2 3
Blue violet 112 Green
Blue 118 Violet € [ D 0 U 08 ']
Blue green 1.19 Red violet
Green (broad) 1.21 Violet red
Violet red 1.24 Carnation pink to salmon
Red violet 125 Orange
Violet 1.28 “Yellowish™
Blue violet 132 Sky blue to green blue
Blue 1.40 Orange
Blue green 1.45 Violet
Green (broad) 1.46 Blue violet
Yellow green 1.50 Blue
1

0.57

Green yellow

 Ellipsometer - direct measurement

Yellow to “yellowish™ (not yellow but

is in the position where yellow is to be

expected; at times appears to be light

creamy gray or metallic)
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SUPREM Oxidation Example
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SUPREM

Stanford University Process
Engineering Modeling Program
[25-27]

TABLE 3.3 SUPREM-IV Simulation Example

$ Multistep Oxidation
$ Use Automatic Grid Generation and Adaptive Grid

INITIALIZE <100> BORON = 5 RESISTIV

DIFFUSION TEMP=950 TIME=30 F.N2 = 5

DIFFUSION TEMP=950 TIME=30 T.FINAL = 1100 F.02
DIFFUSION TEMP=1100 TIME=300 STEAM

DIFFUSION TEMP=1100 TIME=60 F.02 = 5

DIFFUSION TEMP=1100 TIME=60 T.FINAL = 800 F.N2 = 5
$ Print layer information

I
w

$ Plot results
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