
Diagnostic Trouble Code (DTC) by the WIRE

by Bernie Thompson

The triode was invented by Lee De Forest in the early1900s. The triode was built on
vacuum tube technology and it was the first electrical amplifier, which gave us the ability
to turn an electric circuit on or off by current flow. No longer was a mechanical switch
needed in order to control an electric circuit, but voltage could now be used in the
operational control of the circuit. This new control strategy would enable the start of
modern electronics.

The use of the triode to switch voltage from a low potential to that of a high potential was
instrumental in the construction of the early electric telephones, radios, and calculators.
In the early 1950s, a new technology based on semiconductor construction would
replace the triode with the transistor in cases where low power amplification was
needed. These transistors, when fully saturated, would enable a circuit to change states
by turning it on or off, which then could be used to control an electric circuit or store
information in an electric circuit. By allowing the on-off states of these transistors to
represent a “low (0)” usually near zero voltage, and a “high (1)” at source voltage,
information can be transmitted or stored in a circuit. This is accomplished by Boolean
logic which is the logic of digital numbers “0” and “1”. The electric circuit can be set up
so that one or more logic inputs can be processed to a single logic output. This
electronic circuit is referred to as a logic gate (figure 1). There are several logic gate
configurations such as; AND gate, NAND gate, OR gate, NOR gate, EXCLUSIVE OR
gate, EXCLUSIVE NOR gate, and there are many other configurations of gates in use
as well.

In order to process data, many logic circuits would be used in conjunction with one
another. These “0s” and “1s” can set up a logical decision circuit that can convey
information in a digital format. All modern microprocessors use digital logic circuits in
order to process data. Each “0”or “1” is called a bit and it is the maximum amount of
information that can be used or stored by a device that only has two possible states; off
or on, “0”or “1”, no or yes, false or true. In computers, these two states are binary digits
and they are designated as “0” and “1’. It maybe hard to understand how using just two
states of operation could be used for the storage and transmission of information;
however, you are already aware of such systems. One early use of digital binary bit
encoding to send information in an electrical format was the telegraph which used Morse
code. Morse code uses a binary bit of “dot” or “dash” to convey data. With just two
states of operation [“dot”(0) or “dash”(1)], Morse code allows very complex information
to be transmitted or stored.

In modern computers, the encoding scheme to program the microprocessor can vary
with many different languages and they are seen by the programmer as the source
codes. However when the source code is compiled to be used by the microprocessor,
they are all based on “0” and “1”. In computers when four bit’s are combined to convey
information; it is called a nibble, if eight bit’s are used it is called a byte. Computers use
a binary code or base-2 system to convey information. The base-2 system makes for
very long encoded messages or bit width so programmers came up with a way to
shorten this encoding based on the hexadecimal system (figure 2). Instead of a count
system based on 10 such as the decimal system, the hexadecimal system uses a count
system of 16 to convey information. The hexadecimal system uses numbers 0-9 and
letters A-F to encode information. The technician will see this hexadecimal encoding
when reading mode 6 data from the engine control module.

fig 1

pg 1

https://www.automotivetestsolutions.com/assets/fig25.jpg
https://www.automotivetestsolutions.com/assets/fig15.jpg
https://www.automotivetestsolutions.com/customerservice.html
https://www.automotivetestsolutions.com/software-updates.html
https://www.automotivetestsolutions.com/registration.html
https://www.automotivetestsolutions.com/events.html
https://www.automotivetestsolutions.com/tva.html
https://www.automotivetestsolutions.com/index.html
https://www.automotivetestsolutions.com/ats-products.html

Whichever method of encoding or language is chosen to operate the computer on, it is
just a set of instructions that will be executed by the central processing unit (CPU). The
CPU contains thousands and thousands of transistors and logic circuits that have
become packaged in a very small design known as the integrated circuit (IC). This
package of transistors allows for logical decision circuits to operate with the encoded
messages known as the program. These logical decision circuits, when operating with
the encoded messages, will have a predictable outcome. Since the outcome can be
predicted, a logic path can be written to obtain a desired outcome. The CPU’s task is to
execute a sequence of stored instructions, layer by layer, as indicated by the program.
The program will have the primary instruction set running layer by layer with many
subroutines, loops, conditions, and exceptions running layer by layer at the same time.
The CPU gets the instructions, decodes the instruction and carries out the instructions
all based on the physical layer of the IC and the process scheduling from the program
control flow. The computers IC and program instruction set will be based on which
system the controller is in operation of; such as, the engine management system, wheel
antilock control system, air conditioning control system, etc. Regardless of the type of
control system that is used, the program will work with the CPU to carry out its tasks.
The first task is to initiate its base program that will control and operate the device. In
one of the subroutines, the CPU will do a self test on its internal circuits. This self test is
based on what the programmer decided was necessary to check for the operation of the
device. This is important because the programmer is checking the circuit based on an
analysis of a good circuit and what might fail within that circuit. To accomplish this, a set
of instructions are written that allows set points or thresholds to be above or below a set
value for a set time period. If these predetermined set points are broken, the code in the
program will show that this is equal to “true” and the instructions for this outcome will be
to activate the warning lamp and set a diagnostic trouble code (DTC). If this test is to
check the CPU, the DTC may read “internal failure” and the diagnostic trouble tree
would instructed you to replace the control unit. What needs to be understood here is
that the instructions did not account for someone putting in an extra fuse or relay in a
spare location or possibly a short circuit. This additional circuit now allows a power to be
applied to the CPU that can change the internal voltage on the circuit that the program is
looking at, thus setting a false DTC.

Once the subroutine self test for the internal circuit has run and passed, the program will
initiate the next subroutine to check the basic circuits of the system that it controls. Each
one of these subroutines will be labeled with the circuit that is to be tested. One example
of this is a P0122, a program label that has an instruction set that will check the
powertrain throttle position sensor (TPS) for a voltage that is less than 0.2volts for one
second. If the voltage is below 0.2volts for one second, the program will equal “true” and
the DTC label P0122 will be stored. The program instruction will be written to check
each circuit that the programmer deems important. The circuit tests will have set points
against time that are assigned to each of these individual circuits. These set points will
be programmed at values that are above and below the operational voltage range of the
circuit. The purpose of these initial tests is to find a circuit that is in a gross failure at
system start. If a circuit breaks the set point over the correct time period, the program
will be equal to “true” and will carry out the correct program instructions. These
instructions may be to set this DTC in a pending column or to set a mature DTC and turn
on the warning lamp. What is important here is to understand that a circuit that is within
its operational range may not set a DTC. One example of this is if the TPS has
unwanted resistance in the ground circuit that causes the sensed voltage to rise above
the clear flood mode set point (figure 3). This is a mode to shut the injector pulse down
during cranking so the spark plugs can dry. However if the engine is not flooded, this
unwanted condition will cause a no start condition. The program instructions would be; if
the crank signal equals “true”, and if the TPS voltage is greater than 4.0 volts equals
“true”, disable fuel injector pulse. The CPU acts on the data that are present. It has no
way to check the driver intent other than the actual TPS voltage, and that TPS voltage is
in range.

When writing the program, the programmer never assumed the TPS signal would fail.
The program is written on the assumption that the system is working correctly. There will
be no DTC set for a problem such as this because the CPU carried out its instruction set
correctly. Once the subroutine self test has run to completion, the tests may be
suspended until the next key cycle or they may be run in a continuous loop. The base
program will be running to control the device, taking inputs through logic circuits that
have program instructions. These instructions are based on algorithms so the proper

fig 2

pg 2

https://www.automotivetestsolutions.com/assets/fig25.jpg

outputs can be obtained. During the control of the device, DTC subroutines will be run to
check the operation of the circuits, sensors and actuators. In order to obtain the highest
probability of a successful DTC subroutine test, enabling criteria will be used, which is a
way of controlling the outcome of the test by controlling the variables. Just as in a
laboratory to obtain consistent results, the test must hold the variables to a minimum
and it must have a set procedure that will be used to accomplish this.

The enabling criteria accomplish this by only allowing the DTC subroutine to run under
certain conditions. Once all the conditions have been met, the DTC subroutine is
allowed to run. One example of this would be a small leak detected in EVAP system
when running a DTC P0442. The enabling criteria might read as; fuel tank level greater
than 15% and less than 85% equal “true”, ambient temperature greater than 30°F and
less than 95°F equal “true”, BARO greater than 70kPa equal “true”. Since the test is
dealing with a pressure in the fuel containment system, all criteria must be controlled
that can affect the pressure changes within the system. If the fuel tank is full, the non-
liquid area within the fuel tank is very small and may show a pressure change that is not
an actual leak and thus set a false DTC. If the fuel tank level is empty, the, the non-liquid
area within the fuel tank is very large and may not show a pressure change of an actual
leak. In this case, a DTC is not set that should have been set. If the ambient
temperature is lower than 30°F, the gaseous phase above the fuel could be contracting
and show a pressure change that is not an actual leak, thus setting a false DTC. If the
ambient temperature is higher than 95°F, the gaseous phase above the fuel could be
expanding and may cover up an actual leak. In this case a DTC is not set that should
have been set. If the BARO is below 70kPa (high elevation) the pressure between the
inside of the fuel containment system and the atmosphere will not be enough to change
the sensed pressure inside the tank if a leak is present and may not set a DTC that
should have been set. As you can see, the enabling criteria are a way to control the
results of the DTC subroutine so the best possible conditions are present during the
testing sequence.

It will be important to look at the enabling criteria at the beginning of the trouble tree for
the DTC. This will show which sensors are being used to allow the DTC subroutine to
run. If a sensor reading is inaccurate, it can allow the test to run at the wrong time or
may not run the test at all. In the example of the P0422 the sensors that are used would
be; fuel level sensor, intake air temperature, and manifold absolute pressure sensor. If
the fuel level sensor misread and showed ¾ of a tank when the actual fuel tank was full
it would allow the DTC subroutine to run and would set a false P0422.

When a DTC is set, it will be necessary to check a wiring diagram to see which wires are
present at the controller. In order to set a DTC, the CPU must be able to check the
outcome of the DTC subroutine. To accomplish this, a circuit must be wired to the
control unit that the programmer can use to check the outcome of the test. This can be
done with a direct test or an indirect test. In a direct test, the circuit that is to be tested
can be monitored by an electronic device such as an analog-to-digital converter (A/D). In
this type of test, the programmer can write code that can check the voltage of the circuit
directly with an A/D converter. The A/D converter changes an analog voltage to a digital
code comprised of “0s”and”1s”. The CPU can be programmed to understand the
sequence of “0s”and”1s” on a parallel bus or can be read by a serial converter that can
process this data and send it on a serial line to the CPU.

The CPU can then use this information to check whether the voltage in the circuit had
the correct change that was anticipated. One example of a direct test (figure 4) would be
if a transmission solenoid was commanded to be activated. Once the program set points
for a shift had been met the CPU instructions would turn on the transistor driver for the
solenoid. The program instructions then check to see whether the voltage state of the
solenoid control circuit had changed to the expected value. If the voltage value did not
change within the program set points for a stated time period, a DTC would be stored
and the appropriate instruction set would be carried out. In order for a direct test to
occur, the circuit board must be designed with the physical layer of the A/D converter to
monitor the circuit. This adds an extra expense to the controller that may not be needed
in all of the circuits. In an example of an indirect transmission solenoid activation test
(figure 5), the CPU would command the transistor driver on and then the CPU would
check the input speed sensor and compare it to the output speed sensor. If the solenoid
activation was completed, then the ratio between the input and output speed sensor
would change to a known factor. If this factor did not change within the correct set

fig 3

pg 3

https://www.automotivetestsolutions.com/assets/fig35.jpg

points, a DTC would be stored and the appropriate instruction set would be carried out.
With the indirect design, the physical layer to check the input and output speed sensor is
already on the circuit board so the expense of the controller is less. With this type of
circuit design, it will be important to understand that a scantool will only display the
commanded state, it cannot show whether that state actually occurred.

Another example of a direct or indirect circuit test would be a P0135 oxygen sensor
heater circuit fault. If the oxygen sensor heater circuit is wired directly to the control unit,
an A/D converter with a basic shunt circuit will be used to check directly the current of
the circuit (figure 6). This test circuit will allow a voltage drop to occur that the A/D
converter can read and that is directly proportional to the current flow. Now the
programmer can write an instruction set that will convert this voltage from the A/D
converter to an amperage reading. If this voltage is not within the program set point a
DTC will be stored. In the case of an indirect reading for the oxygen sensor heater
circuit, there will not be a heater circuit wire connected to the control unit (figure 7). The
heater circuit power wire will be supplied directly from the ignition circuit or a relay and
the heater circuit ground will be connected directly to the ground plain.

When you check a wiring diagram and see that the wiring for the associated DTC is not
directly connected to the control unit, you must look for the wire that could convey the
information to the CPU directly. In order for the programmer to write instructions for the
DTC subroutine, a circuit must be connected to the control unit that can be used to
obtain the information for the DTC. With the P0135, the CPU has a circuit inside the
control unit that applies a bias voltage to the oxygen sensor signal wire. When the
zirconium dioxide oxygen sensor sensing bulb is cold, the resistance is greater than
100,000,000 ohms and when this sensing bulb is heated to 700°F, the resistance drops
to less than 100 ohms. This sensing bulb resistance change can be used to check the
operation of the heater circuit by applying a regulated voltage to a very large resistor
inside the control unit that is connected in series to the sensing circuit. This creates a
voltage divider circuit. The resistor inside the control unit is fixed and the sensing bulb
has a variable resistance that changes when heated. If the heater circuit is working, it
will heat the sensing blub thus changing the resistance of the bulb. As the resistance of
the sensing bulb drops, so does
the voltage between the resistor and the sensing bulb. By checking the voltage change
between the fixed resistor and the sensing blub, over a set time period, the programmer
can write an instruction set that can run the DTC subroutine. This can check the oxygen
sensor heater circuit without a direct connection to the CPU. It will be important to
understand how these systems operate so they can be repaired quickly and accurately.

fig 4

fig 5
pg 4

https://www.automotivetestsolutions.com/assets/fig42.jpg
https://www.automotivetestsolutions.com/assets/fig52.jpg

fig 6

fig 7

https://www.automotivetestsolutions.com/assets/fig62.jpg
https://www.automotivetestsolutions.com/assets/fig7.jpg
https://www.automotivetestsolutions.com/ats-warranty.html
https://www.automotivetestsolutions.com/assets/ats_catalog_fall_2018.pdf
https://www.automotivetestsolutions.com/testimonials.html
https://www.automotivetestsolutions.com/about.html
https://visitor.r20.constantcontact.com/manage/optin?v=001slSEbyvZTIhqHIWkXbbMKHJIpeKw3DIN9dss7r6axQR5wzzmMPnBQ-DBZQyfMF36ZM6BpdlgMxkeD-X0HGFYqLZYtPPouwzx97C746a8NjPLTw2rcMaqbUmjx2l_l_iZD32OrpNQoOQHxjgxoXO5SUBu4-6eHMwIbo4ZOzroC_Q%3D
https://www.automotivetestsolutions.com/index.html
tel:+15052655077
tel:+18005726112
mailto:sales@atsnm.com
https://www.facebook.com/pages/Automotive-Test-Solutions/147701821916069
https://www.youtube.com/user/atstube8
https://www.automotivetestsolutions.com/atspatents.html

