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Abstract

Spectrum auction design has seen a number innovations in the recent years.
Regulators have used various types of combinatorial auction formats includ-
ing simple ascending combinatorial clock auctions and first-price sealed-bid
combinatorial auctions. The Simultaneous Multi-Round Auction (SMRA)
and the two-stage Combinatorial Clock Auction (CCA) are the most wide-
spread auction formats for spectrum sales to date. We provide an accessible
overview of strategic problems in these auction formats and summarize re-
search challenges in this field for a broader audience of readers in industrial
organization.
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1. Introduction

The 1994 sale of radio spectrum for personal communication services
(PCS) marked a sharp change in policy by the US Federal Communications
Commission (FCC). Before turning to auctions the FCC had allocated valu-
able spectrum on the basis of comparative hearings (also known as beauty
contests) and lotteries. Nobel laureate Ronald Coase long advocated that
market-based mechanisms would improve the allocation of scarce spectrum
resources, but his early insights were ignored for decades (Coase, 1959).
While there were significant successes in the award of spectrum licenses via
auction, there is still no consensus about the best way to auction off spectrum
licenses, and many new requirements became known in the last 20 years.

Economic theory provides a well-known solution to the sale of multiple
objects in a model with independent and private values and quasi-linear
utility functions: the celebrated Vickrey-Clarke-Groves (VCG) mechanism.
It is the unique mechanism to provide dominant strategies to bid truthfully.
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The result is beautiful, but the mechanism is rarely if ever used (Ausubel
and Milgrom, 2006).

There has been a long discussion about appropriate auction mechanisms
for the sale of spectrum rights (Porter and Smith, 2006). Since 1994, the
Simultaneous Multi-Round Auction (SMRA) has been used worldwide (Mil-
grom, 2000). The SMRA design was very successful, but also led to a number
of strategic problems for bidders (Cramton, 2009b). The exposure problem
is central and refers to the risk for a bidder to make a loss due to winning
only a fraction of the bundle of licenses (or blocks of spectrum) he has bid
on at a price which exceeds his valuation of this subset. This has led to the
design of combinatorial auctions. The Combinatorial Clock Auction (CCA)
is the most wide-spread combinatorial auction design for spectrum sales. The
auction format has led to some new issues and currently there is an ongoing
debate among regulators, telecoms, consultants, and academics about the
future of spectrum auction designs.

In this paper we briefly revisit SMRA and the CCA and some of the
known strategic challenges in these auction formats. For this we draw on a
new edited volume on spectrum auction design, which covers these and other
auction formats in great depth (Bichler and Goeree, 2016). Then we discuss
assumptions in game-theoretical models which should be revisited to better
reflect requirements of regulators and preferences of bidders in the field.

2. The Simultaneous Multi-Round Auction

Let us first discuss the SMRA, which has been used for selling spectrum
licenses for more than 20 years.

2.1. Auction Rules

The SMRA is an extension of the English auction to more than one
license. All the licenses are sold at the same time, each with a price associated
with it, and the bidders can bid on any one of the licenses. The auction
proceeds in rounds, which is a specific period of time in which all bidders
can submit bids. After the round is closed, the auctioneer discloses, who is
winning and the prices of each license, which coincide with the highest bid
submitted on each license. There are differences in the level of information
revealed about other bidders’ bids. Sometimes all bids are revealed after each
round, sometimes only prices of the currently winning bids are published.
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The bidding continues until no bidder is willing to raise the bid on any of
the licenses any more. In other words, if in one round no new bids are placed,
the bidders receive the spectrum for which they hold the highest active bid,
then the auction ends with each bidder winning the licenses on which he has
the high bid, and paying its bid for any license won.

SMRA uses simple activity rules which forces bidders to be active from
the start. Monotonicity rules are regularly used, where bidders cannot bid on
more licenses in later rounds. This forces bidders to be active from the start.
Activity rules can be considered a major innovation of this auction format.
Typically, bidders get eligibility points assigned at the start of the auction,
which define the number of licenses they are allowed to bid on maximally.
If the number of licenses they win in a round and the new bids they submit
require less eligibility points than in the last round, then they lose points.

Apart from the activity rules, there are typically additional rules that
matter. Auctioneers set reserve prices for each license, which describe prices
below which an license will not be sold. They need to define bid increments
and how bid increments might change throughout the auction. A bid incre-
ment is the minimum amount by which a bidder needs to increase his bid
beyond the ask price in the next round. Sometimes, auctioneers allow for
bid withdrawals and sometimes bidders get bid waivers, which allow bidders
not to bid in a round without losing eligibility points. Finally, auctioneers
often set bidding floors and caps, which are limits on how much a winner in
the auction needs to win at a minimum and how much he can win at most.
These rules should avoid unwanted outcomes such as a monopoly after the
auction or a winner who wins so little spectrum that it is not sufficient for a
viable business.

The auction format is popular, because it is easy to implement and the
rules are simple. If the valuations of all bidders were additive, the properties
of a single-object ascending auction carry over. Unfortunately, this is rarely
the case and bidders have often synergies for specific licenses in a package or
their preferences are substitutes. Only if bidders have substitutes preferences
and bid straightforwardly, then the SMRA terminates at a Walrasian equilib-
rium, i.e., an equilibrium with linear prices (Milgrom, 2000). Straightforward
bidding means that a bidder bids on the bundles of licenses, which together
maximize the payoff at the current ask prices in each round. Milgrom (2000)
also showed that with at least three bidders and at least one non-substitutes
valuation (for example super-additive valuations for a package if licenses) no
Walrasian equilibrium exists.
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2.2. Strategic Challenges

Despite the simplicity of its rules there can be considerable strategic com-
plexity in the SMRA when there are synergies between licenses that cover
adjacent geographic regions or between licenses. Such complementarities
violate the gross substitutes property of valuations. Bidders who compete
aggressively for a certain combination of licenses risk being exposed when
they end up winning an inferior subset at high prices. When bidders ratio-
nally anticipate this exposure problem, competition will be suppressed with
adverse consequences for the auction’s performance. A number of labora-
tory experiments document the negative impact of the exposure problem on
the performance of the SMRA (Brunner et al., 2010; Goeree and Holt, 2010;
Kwasnica et al., 2005; Kagel et al., 2010).

Goeree and Lien (2014) report the first Bayes-Nash equilibrium analysis of
the exposure problem. They consider a general setup where “local” bidders
interested in a single item compete against “global” bidders who wish to
aggregate many licenses because of demand complementarities. For instance,
suppose there are two local bidders who value items A and B respectively and
a single global bidder who only values the package AB. Suppose all bidders’
values are independently and uniformly distributed. Goeree and Lien (2014)
show that the global bidder’s optimal drop-out level when both local bidders
are still active is given by

B(V ) =
1

3

(
1 + V −

√
1 + 2V − 2V 2

)
where V is the global bidder’s value for the package AB. When V = 1
the global bidder drops out when the prices for A and B reach one-third, i.e.
when the cost of the package is only 67% of its value. The intuition is that at
a per-unit price of one-third, even if one of the local bidders were to drop out
immediately, the global bidder expects the other local bidder to have a value
of 2

3
, so staying in the auction is not profitable. Goeree and Lien (2014) show

that the exposure problem is even worse when the local bidders do not care
which of the two items they win. In this case, the local bidders can switch
back and forth between the items (“arbitrage”) as is commonly observed in
actual spectrum auctions. Now the equilibrium is for a global bidder with
V = 1 to drop out right away, resulting in zero prices and zero revenue for
the seller! The intuition is that, even if one of the local bidders would drop
out at zero, the global bidder expects the other local bidder to drive up the
price to 1

2
on both items, so staying in the auction is not profitable.
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Other strategic challenges are due to the activity rules. The monotonicity
rule does not allow bidders to submit bids on more licenses than in the pre-
vious round. Sometimes, a less preferred alternative can have more licenses,
which can lead to inefficiencies, in case a bidder is outbid on the preferred al-
location. These activity rules lead to eligibility management and the parking
of eligibility points in less desirable licenses, which have been observed in the
context of spectrum auctions (Porter and Smith, 2006). Sometimes a bidder
might also prefer to bid on a bundle with a higher number of eligibility points
rather than the preferred bundle of licenses, in order to have the option to
return to it later.

The SMRA also allows for various forms of signaling and tacit collusion.
Jump bidding is usually seen as a strategy to signal strength and preferences
and post threats. Sometimes, even the standing bidder increases his winning
bid for the same purpose. However, there are more reasons for jump bids.
In later rounds, jump bids are used to avoid ties (Boergers and Dustmann,
2003). Retaliatory bids are bids submitted on licenses, which are desired
by rivals to force them not to bid on the licenses the bidder desires. For
example, if a bidder is interested in license X and another bidder is interested
in licenses X and Y, the first bidder can drive up the price of Y, signaling
that the second bidder should cease bidding on X. Sometimes bidders might
also be interested not to signal interest in a license, as others could take
advantage of this interest to park and maintain their own eligibility at no
cost, because they know they will be overbid (Salant, 1997). We will provide
a more detailed example for tacit collusion in the next subsection.

Also budget bluffing is a well known tactic (Porter and Smith, 2006).
Bidders typically track the bid exposure of other bidders. The bid exposure
is the sum of a bidder’s previous round provisionally winning bids plus new
bids in a round. This can provide an indication into a competitor’s potential
budget (Bulow et al., 2009). Bidders can bid above their budget, knowing
that they will be outbid on some licenses, in order to fool rivals into believing
their budget is larger than it is. Strategies like this lead to a complex decision
situation for bidders.

Furthermore, demand reduction is an issue. Demand reduction can easily
occur in the presence of budget constraints and no complementarities, as
the following example illustrates. Suppose, there are two bidders (1 and 2)
and two licenses. We assume complete information, where bidder 1 has a
valuation of v1 = 10 for each license, and bidder 2 a valuation of v2 = 11,
respectively. Bidder 1 has a binding budget constraint of w1 = 10. When
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bidder 1 reduces demand to 1 license, bidder 2 has an incentive to reduce
demand as well. If bidder 2 does not reduce demand, bidder 1 could drive up
the price to 10 on the first license until he is overbid, and then drive up the
price on the second license. This leaves bidder 2 with a payoff of 11-10=1
for each of the two licenses. In contrast, if bidder 1 reduces demand at zero
prices and bidder 2 agrees, they achieve payoffs of 10 and 11 respectively.

There are additional problems in the presence of budget constraints.
Overall budget constraints are often ignored in theory, but they often matter
in the field. Let’s assume a spectrum sale with only three licenses and two
bidders. Bidder 1 wants to win all three licenses. If bidder 2 has a budget
limit of w and is willing to spend the whole budget even on a single license,
he could drive up prices on all three licenses to w, until he gets overbid. In
order for bidder 1 to win all three licenses, he would have to invest 3 times
the budget of bidder 2. Note, that in a combinatorial auction it would be
sufficient for the bidder to submit a bundle bid on all three licenses, which
is w + ε, in order to win all three licenses. Weak bidders can also drive
up prices on licenses, which are of interest to their rivals, in order to bind
the rivals’ budget and have less competition on licenses they prefer. This
is sometimes referred to as budget binding. Brusco and Lopomo (2009) pro-
vides a game-theoretical analysis considering complementarities and budget
constraints.

In summary, the following strategic considerations come into play when
bidders prepare for an SMRA:

• tactics to deal with the exposure problem

• eligibility management

• signaling and tacit collusion

• budget bluffing

• demand reduction

• budget binding

Bidders need to have a good understanding of other bidders’ preferences
and their financial strength such that they can find a best response to the
opposing strategies. As a consequence, telecom operators typically spend
months or even years to prepare for high-stakes spectrum auctions using
SMRA.
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3. The Combinatorial Clock Auction

Combinatorial auctions (CAs) allow for bids on indivisible bundles avoid-
ing the exposure problem. The design of such auctions, however, led to a
number of fundamental problems, and many theoretical and experimental
contributions during the past 15 years (Cramton et al., 2006). The exist-
ing experimental literature comparing SMRAs and CAs suggests that in the
presence of significant complementarities in bidders’ valuations and a setting
with independent private and quasi-linear valuations, combinatorial auctions
achieve higher efficiency than simultaneous auctions (Banks et al., 1989; Led-
yard et al., 1997; Porter et al., 2003; Kwasnica et al., 2005; Brunner et al.,
2010; Goeree and Holt, 2010).

Since 2008 several countries such as the U.K., Ireland, the Netherlands,
Denmark, Austria, Switzerland, Canada, and the U.S. have adopted com-
binatorial auctions for selling spectrum rights (Cramton, 2009b). While the
U.S. used an auction format called Hierarchical Package Bidding (HPB) (Go-
eree and Holt, 2010), which accounts for the large number of regional licenses,
many countries used a Combinatorial Clock Auction (CCA) (Maldoom, 2007;
Cramton, 2009a), a two-phase auction format with primary bid rounds (aka.
clock phase) for price discovery, which is extended by a supplementary bids
round (aka. supplementary phase). The CCA design used in those countries
is based on the Clock-Proxy auction, which was proposed by Ausubel et al.
(2006).1

3.1. Auction Process

The auction process consists of a clock phase and a supplementary bids
phase. In the clock phase or primary bid rounds, the auctioneer announces
ask prices for all licenses at the beginning of each round. In every round
bidders communicate their demand for each license at the current prices.
At the end of a round, the auctioneer determines a set of over-demanded
licenses for which the bidders’ demand exceeds the supply. The price for all
over-demanded licenses is increased by a bid increment for the next round.
This clock phase continues until there are no over-demanded licenses left. If
all bidders follow a straightforward strategy and all licenses were sold after

1Note that Porter et al. (2003) have defined a combinatorial clock auction, which is
different to the one described in this paper and in Maldoom (2007) and Cramton (2009b),
and only consists of a single clock phase.
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the clock phase terminates, then the auction outcome is efficient (Ausubel
et al., 2006).

The supplementary stage is designed to eliminate inefficiency from the
single-stage clock phase. In this sealed-bid stage bidders are able to increase
bids from the clock phase or submit bids on bundles they have not bid on
in the clock phase. Bidders can submit as many bids as they want, but the
bid price is restricted subject to the CCA activity rule (see next subsection).
Finally, all bids from both phases of the auction are considered in the winner
determination and the computation of payments for the winners. The bids
by a single bidder are mutually exclusive (i.e., the CCA uses an XOR bidding
language).

For the computation of payments, a Vickrey-nearest bidder-optimal core-
pricing rule is used (Day and Cramton, 2012) in spectrum auctions, although
there have been proposals for other types of core-payments (Erdil and Klem-
perer, 2010). To illustrate, suppose two local bidders bid $8 for items A and
B respectively, while a single global bidder bids $10 for the package AB.
Then the local bidders each get an item and Vickrey prices are $2 each. This
outcome is not in the core, e.g. the seller and global bidder could block it
by settling on a package price higher than $4. The idea of core-pricing is to
make such a blocking coalition impossible, i.e. by imposing that the sum of
the item prices is no less than the losing package bid: pA + pB ≥ 10. Bid-
der optimality resolves part of the resulting indeterminacy by replacing the
inequality by an equality, and, finally, a unique set of prices is found by se-
lecting prices that are nearest to the Vickrey prices, which yields pA = pB = 5
in this example.

Of course, changing the pricing rule has consequences for bidders’ be-
havior. Goeree and Lien (2016) show for a simple example with two local
bidders and one global bidder that the change in behavior may be such that
core-pricing yields lower revenues than the original Vickrey auction. Fur-
thermore, Goeree and Lien (2016) prove that when the Vickrey outcome is
not in the core then there exists no mechanism that can implement core out-
comes. This result has several implications. First, in the presence of value
complementarities, it is well-known that a Walrasian equilibrium may not
exist and one might conjecture that core prices are the correct generaliza-
tion (Milgrom, 2000). However, this intuition is wrong as core outcomes are
not implementable when Vickrey is not in the core. Second, it implies that
straightforward bidding is generally not an equilibrium as it would lead to
Walrasian prices, which are not generally implementable.
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3.2. Activity Rules

The CCA combines two auctions in the clock and in the supplementary
phase. This requires additional rules setting incentives to bid consistently
throughout the two phases. Without activity rules, bidders might not bid in
the clock phase, but wait for the other bidders to reveal their preferences,
and only bid in the supplementary phase. These activity rules play a crucial
role for the bidding strategies, as we will see.

3.2.1. Activity Rules in the Clock Phase

Originally, the clock phase of the CCA employed a simple monotonicity
rule which does not allow to increase the size of the package in later rounds as
prices increase. It has been shown that with substitutes preferences straight-
forward bidding is impossible with such an activity rule (Bichler et al., 2011b,
2013a). Later versions use a hybrid activity rule using a monotonicity rule
and a revealed preference rule (Ausubel et al., 2006). Revealed preference
rules allow bidders to bid straightforward in the clock phase. If they do, then
bidders are able to bid on all possible packages up to their true valuation in
the supplementary stage (Bichler et al., 2013a).

First, an eligibility points rule is used in the clock phase to enforce activity
in the primary bid rounds. The number of bidder’s eligibility points is non-
increasing between rounds, such that bidders cannot bid on more licenses
when the prices rise. A bidder may place a bid on any package that is within
its current eligibility. Second, in any round, the bidder is also permitted
to bid on a package that exceeds its current eligibility provided that the
package satisfies revealed preference with respect to each prior eligibility-
reducing round. Bidding on a larger package does not increase the bidder’s
eligibility in subsequent rounds.

The revealed preference rule works as follows: A package in clock round
t satisfies revealed preference with respect to an earlier clock round s for a
given bidder if the bidder’s package xt has become relatively less expensive
than the package bid on in clock round s, xs, as clock prices have progressed
from the clock prices in clock round s to the clock prices in clock round t. xs
and xt are vectors where each component describes the number of licenses
demanded in the respective category, i.e., region or spectrum band. For
example, in a market with three types of licenses or three spectrum bands
with licenses of the same quality, a bidder who is interested in a package
with 2 licenses in the first band and one license of the third band has a bid
xt = (2, 0, 1) at prices pt. The revealed preference constraint is:
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m∑
i=1

(xt,i ∗ (pt,i − ps,i)) ≤
m∑
i=1

(xs,i ∗ (pt,i − ps,i))

where:

• i indexes the licenses;

• m is the number of licenses;

• xt,i is the quantity of the ith license bid in clock round t;

• xs,i is the quantity of the ith license bid in clock round s;

• pt,i is the clock price of the ith license bid in clock round t; and

• ps,i is the clock price of the ith license bid in clock round s.

A bidder’s package, xt, of clock round t is consistent with revealed prefer-
ence in the clock rounds if it satisfies the revealed preference constraint with
respect to all eligibility-reducing rounds prior to clock round t for the given
bidder.

3.2.2. Activity Rules in the Supplementary Phase

Under the activity rule for the supplementary round, there is no limit on
the supplementary bid amount for the final clock package. All supplementary
bids on packages other than the final clock package must satisfy revealed
preference with respect to the final clock round regardless of whether the
supplementary bid package is smaller or larger, in terms of eligibility points,
than the bidder’s eligibility in the final clock round. This is referred to as
the final cap rule.

In addition, supplementary bids for packages that exceed the bidder’s eli-
gibility in the final clock round must satisfy revealed preference with respect
to the last clock round in which the bidder was eligible to bid on the package
and every subsequent clock round in which the bidder reduced eligibility.
This is also called the relative cap rule.

Let x denote the package on which the bidder wishes to place a supple-
mentary bid. Let xs denote the package on which the bidder bid in clock
round s and let bs denote the bidder’s highest monetary amount bid in the
auction on package xs, whether the highest amount was placed in a clock
round or the supplementary round.
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A supplementary bid b on package x satisfies revealed preference with
respect to a clock round s, if b is less than or equal to the highest monetary
amount bid on the package bid in clock round s, that is, bs plus the price
difference in the respective packages, x and xs, using the clock prices of clock
round s. Algebraically, the revealed preference limit is the condition that:

b ≤ bs +
m∑
i=1

(ps,i ∗ (xi − xs,i))

where:

• xi is the quantity of the ith license in package x;

• b is the maximum monetary amount of the supplementary bid on pack-
age x; and

• bs is the highest monetary amount bid on package x either in a clock
round or in the supplementary round.

In addition, for supplementary bid package x, let t(x) denote the last clock
round in which the bidder’s eligibility was at least the number of eligibility
points associated with package x.

A given bidder’s collection of supplementary bids is consistent with the
revealed preference limit if the supplementary bid for package x, with a
monetary amount b for the given bidder satisfies the following condition: for
any package x, the monetary amount b must satisfy the revealed preference
constraint, as specified above with respect to the final clock round and with
respect to every eligibility-reducing round equal to t(x) or later.

Note that, in the application of the formula above, the package xs may
itself be subject to a revealed preference constraint with respect to another
package. Thus, the rule may have the effect of creating a chain of constraints
on the monetary amount of a supplementary bid for a package x relative to
the monetary amounts of other clock bids or supplementary bids.

3.3. Strategic Challenges

An equilibrium analysis of a CCA with all its detailed rules is difficult.
However, there are a number of papers, who analyzed simplified environments
game-theoretically. Levin and Skrzypacz (2014) showed that truthful bidding
is not dominant in an environment with homogeneous goods, and that there
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is a wide range of ex post equilibria with demand expansion, demand reduc-
tion and predation. In the following, we focus on possibilities to raise rivals’
costs in a CCA. These possibilities arise due to the payment rule, which
charges bidders differential payments, and the possibility to submit safe sup-
plementary bids, i.e., bids which will definitely be losing, but possibly im-
pact the payments of competitors (Bichler et al., 2011b, 2013a). Janssen and
Karamychev (2013) provides motivation for spiteful bidding behavior and
a game-theoretical model with complete information, where bidders raise ri-
vals’ cost. These strategic challenges are due to the non-anonymous payment
rule and the possibility of submitting safe supplementary bids, which we will
discuss in the following.

3.3.1. Non-Anonymous Payments

Neither the two-stage CCA nor the VCG mechanism have anonymous
prices. Let us provide a simple example to illustrate this well-known fact.
Suppose there are two bidders and two homogeneous units of one license.
Bidder 1 submits a bid of $5 on one unit, while bidder 2 submits a bid of $5
on one unit and a bid of $9 on two units. Each bidder wins one unit, but
bidder 1 pays $4 and bidder 2 pays zero.

This difference is due to the asymmetry of bidders, and this asymmetry
leads to a violation of the law of one price, a criterion, which is often seen
desirable in market design. Although arbitrage is avoided as bidders typically
cannot sell licenses among each other immediately after a spectrum auction,
different prices for the same spectrum are difficult to justify in the public and
violate the anonymity of prices. This has become a topic of debate in the
Swiss spectrum auction in 2012, a CCA where two bidders paid substantially
different prices for almost the same allocation.

3.3.2. Safe Supplementary Bids

After the clock rounds, if a bidder has a standing bid on his most preferred
bundle, he might not have an incentive to bid truthfully in the supplemen-
tary phase, because he can submit a bid price, which is sufficient to win this
standing bid with certainty. The following two theorems define ”safe supple-
mentary bids”, which cannot become losing based on the final cap activity
rule if the bidders have a standing bid after the primary bid rounds. These
bids also introduce a possibility for riskless spiteful bidding, as we will see
later.
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Theorem 1. (Bichler et al., 2013a) If demand equals supply in the final pri-
mary bid round, any single supplementary bid bsj(xj) > bpj(xj) cannot become
losing.

Here, bsj(xj) describes a supplementary bid of a bidder j ∈ I on a package
xj, while bpj(xj) is the standing bid of bidder j from the primary bid rounds.
The intuition is that the supplementary bids of competitors on their standing
bundle bid from the final primary bid round does not impact the safe supple-
mentary bid of a bidder j ∈ I. Any additional licenses added by competitors
to their standing bundle bid cannot increase the supplementary bid price by
more than the ask price in the last of the primary bid rounds. If the bidder
submits additional supplementary bids on packages not containing xj, his
bid bsj(xj) can well become losing, as can easily be shown by examples. The
activity rule also applies to bundles which are smaller than the standing bid
of the last primary bid round.

If there is excess supply in the last round of the primary bid phase, a
last primary round bid bpj(xj) can become losing, because even if no supple-
mentary bids were submitted, the auctioneer conducts an optimization with
all bids submitted at the end, which might displace bpj(xj). This raises the
question for the safe supplementary bid bsj(xj), which ensures that the bid-
der j wins the bundle xj of his standing bid from the primary round after
the supplementary bids phase. We will denote the price vector of the last
primary bid round as α.

Theorem 2. (Bichler et al., 2013a) If there is zero demand on bundle y
after the last primary bid round, a single supplementary bid of a standing
bidder bsj(xj) > bpj(xj) + αy cannot become losing.

Let’s take the example with four bidders (B1 to B4) described in Table 1
to illustrate this point. There is a supply of 6 units of a single license. The
number in brackets after round 1 to 3 is the ask price for the licenses in this
round. There is excess demand until round 3, when bidders 2, 3 and 4 reduce
to a demand of zero. In the supplementary bid round (S) these two bidders
increase their last bid to a maximum of 300 Euro for 3 licenses. They would
become winning, while the standing bid of bidder 1 after the primary bid
rounds is displaced. In the example, bidder B1 only needs to increase his bid
price by 100 $ and not by α ∗ 4 = 400$. This is the difference between the
allocation with B3 and B4, and the best allocation with B1’s bid winning,
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B1 B2 B3 B4
Round 1 (80) 2 2 3 3
Round 2 (90) 2 2 3 3
Round 3 (100) 2 0 0 0
Round S 2(200) 3(300) 3(300)

Table 1: Example with supplementary bid phase (S)

which is B1’s bid on 2 licenses for 200 $ and the bid by bidder B3 or B4 on
3 units.

As a consequence of safe supplementary bids, bidders can submit riskless
spiteful bids to drive up payments of other bidders. Bidders in spectrum
markets may spitefully prefer that their rivals earn a lower surplus. This
is different from the expected utility maximizers typically assumed in the
literature.

Spiteful bidding has been analyzed by Morgan et al. (2003) and Brandt
et al. (2007), who show that the expected revenue in second-price auctions
is higher than the revenue in first-price auctions with spiteful bidders in a
Bayes Nash equilibrium. While spiteful bidding is possible in any auction,
the two-stage CCA provides possibilities to submit spiteful supplementary
bids with no risk of actually winning such a bid, if all licenses are sold after
the primary bid rounds and the standing bidders only want to win their
standing bid in the supplementary bids round with a small bid increment.
The latter is a relatively mild assumption.

Simple examples suggests that there are situations where the clock auc-
tion reveals enough information for a bidder to increase the Vickrey price
of other bidders by losing bids, and therefore also the Vickrey-closest core-
selecting payment of all bidders. Not revealing excess supply after the clock
rounds can mitigate the problem, but, depending on the history of primary
round bids, there might still be a risk of spiteful bids.

The Austrian Auction in 2013 is interesting for this reason. In this auction
bidders could potentially submit up to 12,810 package bids (considering caps)
on the 800 MHz, 900 MHz, and 1800 MHz bands, but they were limited
to 2000 bids in the supplementary phase. The regulator reported that the
three bidders actually submitted 4000 supplementary bids in total. The
regulator also disclosed that most of these bids were submitted on very large
packages up to the price limits imposed by the activity rule. This large
number of supplementary bids can be seen as one reason for the high prices
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paid in Austria. The attempt to drive up prices of other bidders and avoid
having to pay more for an allocation than ones competitors can serve as an
explanation for this bidding behavior. Of course, if all bidders follow this
strategy, this leads to a strategic situation similar to a prisoners’ dilemma.
If none of the bidders submitted high supplementary bids on these large
packages, they would all have had to pay less (see Kroemer et al. (2016)).
Some implementations of the CCA do not reveal the level of excess supply in
the last clock rounds, such that it is harder to determine safe supplementary
bids.

4. Revisiting the Environment of Spectrum Auction Markets

The first sections summarized wide-spread market designs for spectrum
sales and strategic challenges that arise in these auction formats. A lot
has been learned about spectrum auctions in the recent years since the first
auctions have been organized, and it is time to step back and look at re-
quirements for the allocation problem in spectrum auctions that might not
have deemed central in the mid-90s, but turn out to be important to the
market participants. Ultimately, market design is a modeling exercise and
we will only be able to derive adequate market mechanisms, if we model the
preferences of market participants appropriately. In what follows, we want
to discuss objectives of regulators and bidders in spectrum auction markets
and discuss differences from assumptions in standard auction theory.

4.1. The Regulator’s Objectives

Let us first assume that bidders have independent and private valua-
tions. Even under these idealized assumptions, regulators face a number of
problems, which are due to the fact that the preferences of bidders include
complements and substitutes. Such valuation functions have motivated the
use of combinatorial auctions, which have some inherent complexities. By
now, it is well accepted, that complements in bidder valuations matter. We
will start with some fundamental problems arising from welfare maximization
in the presence of complementary valuations, before we discuss how welfare
maximization relates to the policy goals of regulators.

4.1.1. Computational Complexity and Approximation

Even if we assume simple payoff-maximization of bidders, the allocation
problem is a hard computational problem if bidders are allowed to express
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complements and substitutes as in a combinatorial auction. Modern day
optimization software allows solving real-world instances to optimality, but
very large markets such as in the USA might still be a challenge. For some
auctions such as the incentive auctions in the USA,2 the regulator cannot
aim for welfare maximization, but needs to restrict to approximations of the
welfare-maximizing allocation. This has led to fruitful research in computer
science on approximation mechanisms, and new mechanisms which maintain
strategy-proofness, but relax the goal of maximizing social welfare (Nisan
and Ronen, 2001). By now, we know worst-case bounds of approximation
algorithms for a number of problem types, which still exhibit strong game-
theoretical solution concepts.

4.1.2. Communication Complexity and Compact Bid Languages

Communication complexity turned out to be an equally fundamental
problem. Communication complexity refers to the amount of information
that bidders need to communicate to the auctioneer for him to make an
efficient allocation. For some spectrum auctions, such as in the Canadian
auction in 2014, there were around 100 licenses for sale. Bidders cannot enu-
merate all possible packages ( 2100 ignoring caps and floors) and the selection
of package bids by bidders can have a substantial impact on allocation and
prices. This leads to a considerable level of randomness in the allocation.
Simplification has been introduced as a guiding principle in market design
(Milgrom, 2010), and regulators need to be aware of the fact that higher
expressiveness of the bid language does not always lead to higher efficiency.
Bichler et al. (2014) showed that compact bid languages can have a substan-
tial impact on efficiency in larger auctions with many items, but it has largely
been ignored in spectrum auction design. Compact bid languages leverage
prior information about the structure of the bidders’ preferences and elicit
these with a small number of parameters. Examples are hierarchical pack-
age bidding (Goeree and Holt, 2010), which reduces the packages allowed in
the auction to a hierarchy, or domain-specific languages as they are used in
procurement auctions (Bichler et al., 2011a).

4.1.3. Policy Goals and Allocation Constraints

Even if a regulator is able to compute the welfare maximizing allocation
and bidders express their valuations truthfully, welfare maximization might

2https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions
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not be what the regulator wants. The welfare maximizing allocation could
well be a monopoly. However, regulators are concerned with efficiency of the
downstream market not with welfare maximization in the auction market.
They need to strike a balance between incentives for investments and enough
competition in the end consumer market such that there are low prices for
the end consumer and good quality of service. Caps and set-aside licenses
are frequently used by regulators to avoid unwanted allocations or encour-
age participation by additional companies. It is important that regulators
are able to implement policy decisions in the mechanism to avoid unwanted
outcomes. While it is simple to consider allocation constraints in an op-
timization model computing the optimal allocation, such constraints have
received little attention in the auction design literature, in particular with
ascending auction designs (Petrakis et al., 2013).

4.2. The Bidders’ Preferences

The standard models used to advocate the use of auctions for the sale of
spectrum licenses are based on the assumption of independent and private
valuations and bidders having a quasi-linear utility function. While these
assumptions appear like a reasonable approximation of bidders in spectrum
markets, models based on these idealized assumptions might lead to wrong
advice for both, bidders and regulators.

4.2.1. Value Uncertainty, Value Interdependencies, and Endogeneity of Val-
ues

Bidders spend substantial time estimating the net present value of certain
packages of licenses. Such estimates are highly uncertain. Bulow et al. (2009)
show that revenues in spectrum auctions are hard to predict and that even
forecasts made just prior to an auction by investment banks tend to have high
variance of several billion dollar in the US. For example, prior to the AWS
auction in the US, analyst estimates of auction revenue ranged from $7 billion
to $15 billion. Calculating a value of spectrum for a single bidder requires
consideration of total market population, market penetration rates, market
share, average revenue per unit, customer acquisition and activation costs,
customer deactivations, and many more factors (Korczyk, 2008), and the
estimated net present values are highly uncertain. For example, the advent of
media streaming and smart phones has probably led to a substantial change
in valuations, compared to those that companies had in 2000.
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Value uncertainty can lead to problems in sealed-bid auctions. For exam-
ple, in a first-price sealed-bid combinatorial auction in Norway 2013, one of
the incumbents was bidding too low such that he did not become a winner
in the auction. Later he had to leave the market.3 Commentators argued
that this would not have happened if it was an ascending auction and the
bidder had a chance to react to the bids of others. Some also argue that
the assumption of independent and private valuations might be too strong in
spectrum auction markets (Goeree and Offerman, 2003). Unfortunately, neg-
ative results show that mechanisms satisfying strong solution concepts such
ex-post implementations cannot be achieved in general Jehiel et al. (2006).

It is also important to note that the way how spectrum is awarded has
an impact on the valuations. If a telecom knows that the next award will
be an efficient auction again, he might have more incentives to invest and
consequently a higher value than if the award will be via lottery. So the
valuations are endogenous to the auction mechanism. On the other hand,
a perfectly efficient auction might deter weaker bidders with a lower budget
from participating at all, possibly leading to a monopoly or oligopoly of only
a few telecoms where there could be a competitive end consumer market
(Klemperer, 2002). Ultimately, these are questions of industrial organization
and the overall objectives of the regulator must not be confused with welfare
maximization.

4.3. Allocative Externalities and Non-Anonymous Pricing

For telecoms in many markets the entire allocation matters, not only the
package that a bidder wins and the price he pays. For example, the number
of competitors and also their allocations can have a substantial impact on the
revenues in the downstream market. End consumers pay a premium for the
telecom with the best network, and this is relative to the spectrum holdings
of competitors. The provider with the best network is able to charge higher
prices to end consumers eventually leading to higher revenues. In other
words, the net present value of a package of licenses can be substantially
different depending on the allocation of competitors.

In the German spectrum auction in 2000 six bidders could have closed the
auction if they all reduced demand to two units at a revenue of EUR 30 bn.,

3http://www.policytracker.com/free-content/blogs/toby-youell/norway-is-now-a-two-
player-mobile-market-for-the-time-being-at-least
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but two bidders eventually drove up the revenue to EUR 50 bn. This was
described as an attempt to drive out another bidder from the downstream
market, and it shows that externalities can be substantial. Bichler et al.
(2016) discuss the impact of allocative externalities in the German spectrum
auction in 2015.

Auction design with externalities has received little attention as of yet
(Jehiel and Moldovanu, 2005). The VCG mechanism would still determine
the efficient allocation in dominant strategies, if bidders could express their
preferences for all possible allocations. This, however, is unreasonable to
assume in realistic markets due to the combinatorial explosion of possible
allocations. Therefore, it is interesting to understand how bidders would bid
in standard auction formats in the presence of allocative externalities.

Allocative externalities refers to situations where the valuation for ob-
jects depends on who obtains which objects. However, it also matters for
telecoms, how much their competitors pay for a license. Payments in the
Vickrey-Clarke-Groves mechanism and in the Combinatorial Clock Auction
are non-anonymous. As we discussed earlier, in the Swiss Combinatorial
Clock Auction in 2012 one bidder payed substantially more than another for
almost the same allocation of spectrum licenses (Kroemer et al., 2016). In
high-stakes spectrum auctions payments are in the billions of dollars, and a
much higher payment in a spectrum auction binds budget of a competitor,
which can be a disadvantage in the downstream market. Spiteful bidding
and according strategies to raise rivals’ costs have been observed in spec-
trum auctions and analyzed theoretically (Janssen and Karamychev, 2013).
Such motives differ from the traditional independent private values model.

4.4. Principal-Agent Relationships and Budget Constraints

If financial markets were perfect, there would be no budget constraints
preventing telecoms from acquiring licenses. In reality, budget constraints
are almost always an issue and they violate the quasi-linear utility func-
tions typically assumed in mechanism design. Such budget constraints defy
strategy-proof mechanisms, even if bidders maximize payoff and they have
independent and private valuations (Dobzinski et al., 2008). It is important
to understand, how these budgets are determined.

Bidding firms often exhibit principal-agent relationships, where the man-
agement is the agent and the board of directors or the stakeholder can be
seen as the principal. The agent typically as a good estimate of the value of
a particular package of licenses, while the principal has not. In contrast, the
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principal wants to maximize payoff, but the agents often have empire build-
ing motives and they prefer more valuable packages to less valuabe ones.
Agents try to win their most preferred package within a budget constraint,
which is different to payoff-maximization. The payments are usually in the
billions and need to be paid by the principal in these environments. Paulsen
and Bichler (2015) show that there are environments where the agents bid
more aggressive than a principal would do in equilibrium. This can lead to
adverse selection and inefficient outcomes. Although, it can be seen as the
responsibility of the principal to set incentives for payoff maximization in the
bidding team, the hidden information problem makes the design of optimal
contracts between principal and agent very difficult in practice.

5. Discussion

The design of spectrum auctions has seen considerable progress, but the
journey has just begun. Mechanism design imposes strategy-proofness as
a constraint first and then tries to satisfy other design desiderata such as
efficiency or revenue. Most of the literature draws on direct revelation mech-
anisms based on the revelation principle (Gibbard, 1973), and iterative pro-
cesses did not play a central role. In the past decade, it became obvious
that the objectives of the regulator and the utility functions of telecoms are
differ from those traditionally discussed in auction theory. These differences
require us to rethink the auction process, the bid language, and the payment
rules used in spectrum auctions.

• Auction process: sealed-bid vs. iterative

– The revelation principle has focused much of the literature in
mechanism design on direct revelation mechanisms. Even in the
recent years, sealed-bid auctions have actually been used in a num-
ber of countries for selling spectrum. Iterative auctions have sev-
eral advantages when bidders have value uncertainties and value
interdependencies. Milgrom and Weber (1982) write ”... when
bidders are uncertain about their valuations, they can acquire
useful information by scrutinizing the bidding behavior of their
competitors during the course of an [iterative] auction. That ex-
tra information weakens the winner’s curse and leads to more ag-
gressive bidding in the [iterative] auction, which accounts for the
higher expected price.”
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– Iterative auctions also make it easier for a board of directors to
control the management bidding in a spectrum auction, which
might have incentives different from payoff-maximization due to
hidden information in a principal-agent relationship within the
firm (Paulsen and Bichler, 2015).

– Finally, iterative auctions with high transparency about the win-
ners in each round allow addressing allocative externalities, be-
cause bidders see an allocation emerge and can veto this allocation
with high bids, if it is not in their interest (Bichler et al., 2016).
Of course, the level of transparency in an auction needs to be de-
cided with care and depends also on the competitive situation in
a market and the likelihood of tacit collusion.

• Bid language: expressiveness vs. compactness

– Telecoms have complex preferences for spectrum licenses including
complements and substitutes. Combinatorial auctions provide a
solution as they allow bidders to fully specify their preferences.
However, a fully enumerative bid language, which allows bidders
to submit bids on every possible package suffers from the fact that
bidders will only specify bids for a small subset of the exponen-
tially many packages, which can lead to substantial inefficiencies.
A compact bid language is less demanding in that it lets bidders
specify packages of licenses with high synergies, but does not re-
quire an exponentially large set of bids. Hierarchical package bid-
ding (HPB) is one example for a compact bidding language with
regional licenses (Goeree and Holt, 2010). Compact bid languages
can also be discussed for the award of national licenses (Bichler
et al., 2014).

– Also regulators need to be able to express their preferences and
constraints. For example, allocation constraints can be used in
the winner determination to avoid very unequal distributions of
spectrum, when the policy goal is to achieve a competitive end-
consumer market.

• Payment rules: non-anonymous vs. anonymous

– The Vickrey-Clarke-Groves mechanism can be considered the cen-
tral result in mechanism design, but it is based on the assumption
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of independent and private valuations in isolated markets. Auc-
tions where bidders compete in a downstream market are different.
If one bidder has to pay considerably more than another for a sim-
ilar allocation, as it can be the case with Vickrey-Clarke-Groves
mechanisms or the CCA, then this is perceived as undesirable by
many participants. This also relates to notions of fairness such as
equitability, which need to be taken seriously. Anonymous prices
as they are used in SMRA, HPB, or the single-stage Combinato-
rial Clock Auction have advantages in this respect, even if they do
not necessarily lead to full efficiency in the traditional independent
and private values model (Bichler et al., 2013b).

Every theoretical model has assumptions, and it is important to have
these assumptions in mind, when we provide policy advice based on such
models. Models which are based on bidders with independent and private
valuations and auctioneers, who want to maximize allocative efficiency of
the auction market, might not provide the right solution for policy makers
and regulators. In spectrum auction markets, we typically have allocative
externalities, we find high value uncertainties for bidders, and regulators
want to achieve a competitive and sustainable downstream market, which is
different from allocative efficiency of the auction market. Market design is
an engineering discipline and as so often in engineering there are conflicting
objectives and one needs to find a satisficing solution (Simon, 1991). We
argue that the design of the auction process (iterative vs. sealed-bid), the bid
language (compact vs. fully enumerative), and the payment rule (anonymous
vs. non-anonymous) need to be revisited for future auction designs.

There might also not be a single optimal auction design for all types
of spectrum sales. Large markets with many bidders and regional licenses
such as in the USA and in Canada are different to small national markets
with a few bidders only. These differences in the market environment will
lead to different bid languages and also pricing rules. Regulators also need to
consider the specific market environment and the financial strength of bidders
in the market. Even if there is no one-size-fits-all auction design for all of
these markets, it might well be possible to develop market designs addressing
the goals and requirements of certain market types. As a community, we
need to think about robust auction designs, which consider the preferences
of telecom companies, and ultimately help regulators achieve their policy
goals.
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