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Figure 2. Static 3-point bending results at various temperatures: (A) e static

force displacement curves, (B) flexural modulus, (C) flexural strength
and flexural strain at break, and (D) energy absorption per volume.
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* Specimen: 101.6 mm x12.7 mm x1.5 mm
provided by Graphtek LLC.

e Quasi-static tests: performed using MTS
Material Testing systems with a Environment
Chamber integrated to enable mechanical
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Figure 6. (A) Dynamic deformation of CFRP at different moments.
Comparison between static and dynamic 3-point bending results: (B)

-100°C
F i energy absorption per gram, (C) maximum deflection at break.
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Figure 7. Temperature effect origin. (A)Temperature dependency of
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