Data Sheet: LDS 1363

Product: Mechanical Vernier Measuring Sets

Page 1 of 5

Date: 01-10-2011

Packed Weight and Dimensions

Code	Description	Weight g	W mm	H mm	L mm
50-600-025	Mechanical Measuring Set: Metric	680	140	45	255
50-600-001	Mechanical Measuring Set: Inch	680	140	45	255

Vernier Caliper Fine Adjustment Style

	Hardened stainless steel body Satin chrome finish Fine adjustment Depth Rod Four-way measurement: Outside Inside Step Depth Raised sliding surface to prevent wear to scale
--	--

Code	Range	Metric Grads	Inch Grads	Accuracy	External Jaw Depth	Internal Jaw Depth
51-100-006	145mm/5 ½"	0.02	0.001	±0.02mm	40mm	18mm

Vernier Caliper

A Brief History

The Vernier Caliper is an instrument for making very accurate linear measurements.

The instrument was first introduced in 1631 by Pierre Vernier of France

It utilises two graduated scales:

The main scale which is similar to that on a rule plus a specially graduated sliding scale (called the Vernier scale) The Vernier scale slides parallel to the main scale and enables readings to be made to a fraction of a division on the main scale.

Product: Mechanical Vernier Measuring Sets

Page 2 of 5

Reading a Vernier

Data Sheet: LDS 1363

Date: 01-10-2011

Product: Mechanical Vernier Measuring Sets

Page 3 of 5

Mechanical Micrometers 50-100-Series

Code	Range	Code	Range	Style	Α	В	С	L	Accuracy
					mm	mm	mm	mm	mm
Metric	mm	Inch	inch						
50-100-025	0-25	50-100-001	0-1	Α	3.0	6	24.0	32	0.004

- 1 Heat Resistant Plate
- 2 Frame
- 3 Anvil
- 4 Spindle
- 5 Spindle Lock
- 6 Sleeve
- 7 Thimble
- 8 Barrel
- 9 Taper
- 10 End Cap
- 11 Ratchet Stop
- 12 Spanner
- 13 Setting Standard

Product: Mechanical Vernier Measuring Sets

Page 4 of 5

Mechanical Micrometers 50-100-Series

Cleaning and Basic Checking Procedure

Remove any oil, grease, dust or small particles which may cause damage to the micrometer or affect its accuracy when taking measurements. Use a soft lint free cloth or paper together with a proprietary instrument cleaning agent. Do not use acetone as this can damage parts of the micrometer

Zero Point Checking and Adjustment

Use the ratchet stop to move the spindle until it touches the fixed anvil. Allow the ratchet to turn $1\frac{1}{2}$ to 2 revolutions for the final positioning

The zero point on the thimble should now coincide with the reference graduated base line on the sleeve For micrometers above 25mm / 1" use the supplied setting standard or a gauge block to check the zero position If the zero point does not line up as required, it can be corrected by using the following procedure When the zero point deviation on the thimble is under 2 divisions from the graduated base line Turn the sleeve using the "C" spanner provided until correct alignment is achieved When the zero point deviation on the thimble is over 2 divisions from the graduated base line Hold the frame and the thimble and loosen the ratchet stop using the spanner provided Disconnect the coupling of the thimble to the spindle by giving a light shock to the side of the thimble Turn the thimble against the spindle and re tighten with the base line on the sleeve Press the thimble against the spindle and re tighten with the spanner to achieve a positive coupling Re check the zero position, any final small adjustment can now be made using the "C" spanner to re position the sleeve to the thimble zero

Reading the Micrometer

When reading the micrometer ensure that your line of sight is directly above the graduated scale on the sleeve and the thimble scale to avoid parallax reading errors

Ensure that the micrometer and the work piece are at the same temperature

Handle the instrument with care, if it is dropped or knocked in any way it must be rechecked for correct working and accuracy as above

Reading Example: Metric

Reading Example: Inch

	Best alignment
Example for division 0.01mm Reading: From Sleeve: 6mm From thimble: 0.11mm Final readings should be 6. + 0.11 = 6.11mm	Example for division 0.002mm Reading: From Sleeve: 4mm From thimble: 0.23mm From vernier of sleeve: 0.004mm Final readings should be 4 + 0.23 + 0.004 = 4.234mm

Product: Mechanical Vernier Measuring Sets

Page 5 of 5

Steel Rule Metric and Inch Two Sided with Round End

Code	Length	Туре	Width and	Rule Marking	Rule Marking	Style	End
			Thickness	Front Face (inch)	Reverse Face Metric)		Style
678-006F	150mm / 6"	Rigid	19 x 0.5mm	16ths, 32nds, 64ths	1.0mm and 0.5mm	64R	D
				10ths, 20ths, 50ths, 100ths			End

Accuracy Specification

EEC Directive 73-362 / EEC: Rules Class 1 and 2

For Metric Scales Only: (there is no specification for Inch Scales)

Permissible Errors: For EEC Class 1 Rules

Maximum permissible error between 2 intervals upto 1mm = 0.1mmMaximum permissible error between two intervals not exceeding 10mm = 0.2mmFrom Rule End: Above tolerance increased by 0.1mm

Examples:

Rule End to 1mm graduation = Normal Tol. 0.1mm + Additional Tol. 0.1mm = 0.2mm

Rule End to 10mm graduation = Normal Tol. 0.2mm + Additional Tol. 0.1mm = 0.3mm

Overall Length Tolerance

Tol = [a + (b x L)]

 $a = 0.1 \ for \ class \ 1 \\ b = 0.1 \ for \ class \ 1 \\ L = Length \ of \ scale \ rounded \ up \ to \ the \ nearest \ metre$

Example for a 300mm rule, when measurement is taken from the 10mm graduation to the 300mm graduation: Tol = $[0.1 + (0.1 \times 1)] = 0.2$ mm

Copyright: Linear Tools 2011