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1 Introduction

In nature, spirals have found there way into the very genetics plant life.
Spirals can be observed in flower petals, tree brand formation, and even every
day fruits. There is no explanation to this phenomenon, other than it must
be the most efficient formation in nature. This spiral can be approximated
by the Fibonacci sequence, using each term as a length of a square, we
can rearrange them into a specific way, and approximate the Golden Spiral.
Within the Golden Spiral is an important number. As the Golden Spiral

Figure 1: Approximation of Golden Spiral

spirals out, every quarter turn in it, the spiral grows by a factor of 1+
√
5

2
more well known as the Golden Ratio, φ.

The Fibonacci Sequence can be defined as a sequence of terms, which
are the sum of the two previous terms. It can be written as:

Fn = Fn−1 + Fn−2, F0 = 1, F1 = 1

If we solve this recurrence relation in the usual way of using a characteristic
equation, we find the explicit formula to be very interesting:
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Figure 2: A Weird Looking Golden Spiral

Professor Farris posed the question to me: what if we used the same re-
currence relation for Fibonacci numbers, but instead we had F0 = 1 and
F1 = i, where i2 = −1. We wonder if there is another way we can visualize
the a Golden Spiral once again with this new sequence. Sadly, visualization
is not so easy, imaginary numbers are a bit more fickle. Complex numbers
can be visualized with a specific set of tools; especially, logarithmic spirals,
and the complex exponential map. Using these ideas, we can create lines or
contours for our curves, and hope to create spirals out of them using these
ideas.

2 Inquiry

Investigating the new complex Fibonacci sequence, we will return to a fa-
miliar recurrence relation with new initial values:

Gn = Gn−1 +Gn−2, for n ≥ 2

Here are the first few terms: 1, i, 1 + i, 1 + 2i, 2 + 3i, 3 + 5i, 5 + 8i, 8 + 13i, ....
Like the Fibonacci sequence, finding the explicit formula may be helpful
in understanding or observing anything special about this specific problem.
Solving in the usual way of the characteristic equation we will find that:

Gn =
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√
5 + 2i

2
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2
√
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)n
, for any n

You may notice that the real and imaginary components seem to fol-
low an interesting pattern: Re(Gn) : 1, 0, 1, 1, 2, 3, 5, 8, ... and Im(Gn) :
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0, 1, 1, 2, 3, 5, 8, 13, ..., both seem to be very related to the Fibonacci se-
quence. We may now write Gn in terms of Fn:

Gn = Fn−2 + Fn−1i, for n ≥ 2

In an attempt to visualize this sequence, I graphed the terms on a com-
plex plane to see what kind of intuition might be present:

(a) points plotted (b) points connected

Figure 3: Basic Plotting of the terms in Gn on the complex plane

This graph seems to approach a constant slope, as the terms grow suc-
cessively larger. This may be due to the explicit formula for Fn = Fn =
1√
5
(φn − −1φ

n
). Where if you notice, for sufficiently large n, Fn ≈ φn.

Then Professor Farris suggested that I investigate this ratio of successive
terms in our Gn.

Rn =
Gn
Gn+1

: (1)
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=

1

i
· −i
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1
(2)
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=
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=
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=
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=
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=
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=
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We then may find it worthwhile to investigate Gn
Gn+1

in terms of Fn, let us
call it Rn.

Rn =
Gn
Gn+1

=
Fn−2 + Fn−1i

Fn−1 + Fni

Multiplying by the conjugate to remove the i from denominator as we did
before, we can find that:

Rn =
Fn−2 + Fn−1i

Fn−1 + Fni
·Fn−1 − Fni
Fn−1 − Fni

=
(Fn−2Fn−1 + Fn−1Fn) + (F 2

n−1 − Fn−2Fn)i

F 2
n−1 + F 2

n

Observing each major term, We can see that the first term in the numera-
tor constantly grows, and looks like it gives every even numbered Fibonacci
number, while the denominator gives every odd Fibonacci number, specifi-
cally in pairs F2n−1 and F2n, respectively. And the coefficient in front of i,
we can see is just a (−1)n+1 from the terms we have already listed. As n
gets sufficiently large, the imaginary part of this function drops out, and we
are left with approximately:

lim
n−>∞

F2n−1
F2n

≈ φn

φn+1
≈ 1

φ

Now we have solved for the slope we saw earlier in our Figure 2. We can
observe that since our Gn has the specific property of its real and imaginary
coefficients being successive Fibonacci terms. We make a realization of the
ratio by taking a ratio of the magnitude of the complex numbers, and whose
argument is the difference in arguments of the successive terms. Approxi-
mating to the reciprocal of the familiar φ have been working with.

We may conjecture:

1. (Fn−2Fn−1 + Fn−1Fn) = F2n−1

2. F 2
n−1 + F 2

n = F2n

3. (F 2
n−1 − Fn−2Fn) = (−1)n+1

Proof: Fn−2Fn−1 + Fn−1Fn = F2n−1 and F 2
n−1 + F 2

n = F2n

Initially, since these two conjectures are separate, it would make sense
to solve them separately by induction. However, in the method of doing
induction on recurrence relations, there will be issues, since the right side
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will always be decomposed into some term less than it and two less than
it. Therefore, using both of the inductive hypotheses from these separate
proofs in conjunction will lead to a finished proof for both.

Base Case: n = 2, n = 1 respectively for our conjunction:

F0F1 + F1F2 = F3 F 2
0 + F 2

1 = F2 (6)

(1)(1) + (1)(2) = (3) (1)2 + (1)2 = (2) (7)

Our conjunction would now be, suppose for some n = k thatFk−2Fk−1 +
Fk−1Fk = F2k−1 and F 2

k−1 + F 2
k = F2k are true. Now investigate n = k + 1.

We will do each case separately, but will use both inductive hypotheses in
conjunction to prove this.

Inductive Step: for n = k + 1 for Fn−2Fn−1 + Fn−1Fn = F2n−1

Fn = Fn−1 + Fn−2

F 2
n + FnFn−1 = F 2

n−1 + F 2
n + Fn−2Fn−1

Fn−1Fn + Fn(Fn + Fn−1) = F 2
n−1 + F 2

n + Fn−2Fn−1 + Fn−1Fn

Fn−1Fn + Fn(Fn + Fn−1) = F2n + F2n−1

Fn−1Fn + FnFn+1 = F2n+1

Inductive Step: for n = k + 1 for F 2
n−1 + F 2

n = F2n

Fn = Fn−1 + Fn−2

FnFn−1 = F 2
n−1 + Fn−2Fn−1

FnFn−1 + F 2
n−1 = 2F 2

n−1 + Fn−2Fn−1

F 2
n + F 2

n + 2FnFn−1 + F 2
n−1 = 2(F 2

n−1 + F 2
n) + Fn−2Fn−1 + Fn−1F − n

F 2
n + (Fn + Fn−1)

2 = 2(F 2
n−1 + F 2

n) + Fn−2Fn−1 + Fn−1Fn

F 2
n + (Fn + Fn−1)

2 = F2n + F2n−1 + F2n

F 2
n + F 2

n+1 = F2n+1 + F2n

F 2
n + F 2

n+1 = F2n+2

Proof: (F 2
n−1 − Fn−2Fn) = (−1)n+1

Base Case: n = 2
F 2
1 − F2F0 = (−1)2+1

(1)− (2)(1) = (−1)3
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−1 = −1

Inductive Hypothesis: suppose for some n = k that (F 2
k−1 − Fk−2Fk) =

(−1)k+1 is true. Inductive Step: n = k + 1.

Fk = Fk−1 + Fk−2

F 2
k − FkFk−1 = FkFk−2

F 2
k − (Fk + Fk−1)Fk−1 = (F 2

k−1 − FkFk−2)(−1)

F 2
k − Fk+1Fk−1 = (−1)k+2

These Fibonacci identities are useful, in allowing us to know that for
every term in our Gn, this ratio will remain true. And that for any Gn term
we want, we can trust that we will be able to make some spiral out of it.

3 The Recipe

Professor Farris’ book Creating Symmetry: The Artful Mathematics of Wall-
paper Patterns, and some inspiration from work by John Edmark, both pro-
vide strong guidance and inspiration in this project. Professor Farris’ book
focusing alot on wallpapers, has a strong point about explaining lattice coor-
dinates, and how we can create them to satisfy certain function conditions.
John Edmark’s work provides inspiration with his art, and application of
the Golden Angle. Edmark would find spiral in nature, or create his own,

Figure 4: A succulent outside Mayer Theatre

then he would rotate them by the Golden Angle, 2π
φ2

. Each rotation would
map one petal of the succulent to another, but be slightly further out than
the original position of the petal it replaced. By creating a collection of
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images from these rotations, he would create this “blooming” effect on the
plant. Making it seem as if it had infinite growth and petals to give. Why
is that?

What we want now is to define a new coordinate system, where we can
have a curve that is satisfied under certain conditions. Lattice coordinates
are also a step leading into working and creating wallpapers. The most
common, and nice example would be the Gaussian Integers. They are {a+
bi | a, b ∈ Z}, and they are made up of linear combinations of the two
vectors v1 = 1 and v2 = i, this is the dual for the Gaussian Integers. We
similarly would like to construct a lattice coordinate with our own v1 and
v2 that satisfy some conditions we are looking for. We want a function that
is invariant under a specific translation in the coordinate plane. We want
something continuous, so if we are to compose Log with some f , we will
need a period of 2πi to keep it continuous. some function would look like
and satisfy:

f(z) = f

(
z +

2πi

Gn

)
= f

(
z − 2π

Gn

)
We want a function that is invariant under these translations in the lattice
coordinate system, so that we might have a nice looking curve when making
these wave fronts into some desired spirals, wanting integer values is very
reminiscent of an idea from Professor Farris’ book, in order to make the
curves connect. Professor Farris suggested that a family of functions that
will satisfy these conditions would look like:

f(z) = e2πi(jX+kY )

In order to start working with lattice coordinates, we will need some new
variables from Professor Farris’ book. We will begin with coordinates [X,Y ]
for the plane by setting: z = Xk1 + Y k2. we will have our k1 and k2 be:

k1 =
2πi

Gn
, k2 =

−2π

Gn
= ik1

And our dual, v1 and v2 have nice formulas, like:

v1 =
ik2

Im(k1k̄2)
, v2 =

ik1
Im(k2k̄1)

And then from defining this lattice, we want k1 and v1 to stay out of the
way of k2 and v2, so using the fact that we know:

Re

(
(a+ bi)(c+ di)

)
= (ac+ bd) = (a+ bi) · (c+ di)
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So we know that taking the real component of a product of complex numbers,
is the same as taking the dot product. And having ”k1 and v1 to stay out
of the way of k2 and v2”, would be the equivalent of:

Re(k1v̄1) = 1 Re(k1v̄2) = 0

Re(k2v̄1) = 0 Re(k2v̄2) = 1

It is also worth knowing that:

Re(z) =
z + z̄

2
= z + z̄ = 2Re(z)

So we can set up a system of equations like:

k1v̄1 + k̄1v1 = 2 −→ k1k2v̄1 + k̄1k2v1 = 2k2

k2v̄1 + k̄2v1 = 0 −→ k2k1v̄1 + k1k̄2v1 = 0

And we will get that:

2iIm(k̄1k2)v1 = 2k2 −→ v1 =
ik2

Im(k1k̄2)
,

And similiarly for v2:

v2 =
ik1

Im(k2k̄1)

From here we have formulas for our original coordinates we were looking for
[X,Y], in terms of a complex number z and v̄1 and v̄2:

X = Re(zv̄1) (8)

Y = Re(zv̄2) (9)

Now that we have all the necessary pieces and our big equation for our
fronts:

Ψ(n, x, y, j, k) = Re

(
e2πi(jX(n,x,y)+kY (n,x,y))

)
The function Ψ will give us all the graphs on the left for wave fronts, using
only the real part of this function in order to graph something that puts out
real values. This is using the lattice coordinates we solved for earlier, and
give us lines that are invariant under a translation of our k1 and k2. To turn
these lines into spirals, we need to convert from x and y to ω, where:

Ψ(n, ω(x, y), j, k) = Ψ(Log(ω)) = Ψ(ln|ω|+ iArg(ω))

|ω| =
√
x2 + y2,Arg(ω) = arctan

(
y

x

)
Where Arg and arctan are log-like functions functions which translate inter-
estingly using ω.
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4 Spirals

Now for assembling our desired spirals, we will will want to use the second
equation, which will translate our wave fronts in the Lattice coordinates we
defined into interesting spirals, if we sum and rotate the waves using π

2 , by
swapping the values of j and k, and changing their signs.

Ξ =
1

4
(Ψ(n, ω, j, k) + Ψ(n, ω,−k, j) + Ψ(n, ω,−j,−k) + Ψ(n, ω,−k,−j)).

The real parts of the given equations will give us contours. By taking the
real part, we can have our function give Maple something to graph, which
in turn we can make into spirals on the following pages:

(a) Contour 1 (b) Single Pack

Figure 5: Ψ(4, x, y, 0, 1)

In this figure we can see what our waves look like all together, and on
the right is a single pack of waves. As you can see, the lines run and exist on
this sort of tilted axis, if you will, created by the lattice coordinate system.
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(a) Contour 2 (b) Single Pack

Figure 6: Ψ(5, x, y, 0, 1)

(a) Contour 3 (b) Single Pack

Figure 7: Ψ(6, x, y, 0, 1)

Enough of wave packets though. To create spirals, we can use the above
equation with ω(x, y) to create spirals. We create and find interesting pat-
terns and spirals by adding waves together and taking the real part each
time.
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(a) Contour 4 (b) Single Pack

Figure 8: Ψ(6, x, y, 1, 1)

(a) Contour 5.1 (b) Contour 5.2

(c) Spiral 5

Figure 9: Ξ(6, ω(x, y), 3, 0) + 1
2Ξ(5, ω(x, y), 0, 2)
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5 Conclusion

We have observed a distant relative of the famous Fibonacci Sequence, and
from it have created spirals from some wave contours we created using lat-
tice coordinate systems. And translated them using a Log like function to
superimpose them with one another creating spirals from a wallpaper like
function. We have been able to define a family of these curves.

This family, which all produced this “blooming” effect, can be made to
bloom by using a 2π

φ2
rotation. If one were to wish to create an animation

of these curves blooming, you would want to make a movie, with frames
that are the rotation using the Golden Angle. This collection would create
a blooming effect if ran in a counter clockwise way, but an “unblooming”
effect if the opposite direction.

Hopefully this project can be taken further to create 3D models of these
functions. Each one of these spirals is made from contours which have a
value in a third variable. If one could imprint this spiral into a parabola,
half sphere, or even in virtual reality, you could create some 3D objects that
have this nice property of blooming, but sadly would not bloom if rotated
in the normal way.


