Moving FHWA Work Zone Driver Model towards Practical Application

A work zone add-on for microsimulation tools

Volpe, The National Transportation Systems Center

U.S. Department of Transportation **Research and Innovative Technology Administration** John A. Volpe National Transportation Systems Center

Turner Fairbank Highway Research Center (TFHRC)

U.S. Department of Transportation Federal Highway Administration Turner Fairbank Highway Research Center Saxton Transportation Operations Laboratory

Problem

- Work zones can have significant operational impacts.
- The number of freeway work zones in the US is projected to increase.

- DOTs need accurate tools that can accurately predict work zone impacts.
 - FHWA identified microscopic models as having the potential to better predict work zone operational impacts.¹
- Most microsimulation tools are not designed to simulate driver behavior through work zones.
 - Therefore, they cannot be used to accurately predict work zone impacts (such as queue, delay, etc).

Project Overview

Project Goal:

Create a work zone software to interface with existing microsimulation software tools, that enables them to accurately simulate car-following behavior through freeway work zones

Project Purpose:

To provide engineers and planners at State/local DOTs and consulting firms with a tool that can better predict the operational impacts of freeway work zones

Project Overview

Project Objectives:

- □ Identify & review the most prevalently used microsimulation tools
- Process <u>FHWA Living Laboratory Work Zone Driving Data</u>
- Calibrate and validate the work zone driver behavior algorithms
- Using an instrumented vehicle & data from MassDOT, collect work zone driver behavior data in freeway work zones in MA
- Create a Work Zone Software to interface microsimulation tools
- □ Interface the Work Zone Software with one (1) of the microsimulation tools
- Demonstrate capabilities of the Work Zone Software by interfacing with a microsimulation software tool
- Create a User's Guide
- Conduct R&D in a manner that fosters T2

Project Overview

Timeline for Project:

\checkmark	1. Kick-Off Project:	August 27 th & 28 th , 2015
\checkmark	2. Review Microsimulation Software Tools:	January 2016
\checkmark	3a. Process TFHRC LL Data:	May 2016
	3b. Data Collection in MA Work Zones:	October 2016
	4a. Calibrate and Validate Algorithms:	November 2016
	4b. Create Work Zone Software:	October 2016
	5. Demonstrate the Work Zone Software using VIS	SIM:May 2017
	6. Create a User's Guide:	October 2017

Background: Car-Following

Background: FHWA Work Zone Model

¹ <u>Lochrane (2015).</u> "A New Multidimensional Psycho-Physical Framework for Modeling Car-Following in a Freeway Work Zone"

Background: FHWA Work Zone Model

Multidimensional Psycho-Physical Car-Following Framework¹

Modified Field Theory²

- ¹ Lochrane (2015). "A New Multidimensional Psycho-Physical Framework for Modeling Car-Following in a Freeway Work Zone"
- ² <u>Berthaume (2015).</u> "Microscopic Modeling of Driver Behavior Based on Modifying Field Theory for Work Zone Application"

Background: TFHRC Living Laboratory Work Zone Data

- Car-following data, collected at 40Hz for every vehicle & reported at 10 Hz for each run.
- Includes: relative distance, velocity, accel/decel, etc.

Remote Traffic Microwave Sensor (RTMS) Units

- Macroscopic data, collected & reported per lane, per 15 minute interval
- Includes: volume, occupancy, 85th percentile speeds, & average gap

3a. Process Work Zone Data

.....

2											Acres and and														and a second second second	
2	Latitude	Longitude ID	Time	Work.		AvgOfs_P /	AvgOfy_P	AvgOfSp	e AvgOfSpe 0	bject ID	Accelerati AC	C inver A	2	Part_ID	Vehicle_I	_25electV Hertz	Speed	Longituid: Late	ral Ac	follow ID	Time Sine NW2 v	s W Order ID #	Order ID # C	rder ID # O	bject ID Speed_X (Speed_X (Spe
3	38.81503	-77.1380	15 07:13:43:1		2	9.088	0.368	-1.1	1 0	174	-0.17	0.17		1	1.068+09	10501024	10 2.839705	0 0	0	15174	04357.8	2	03370	03370	03370 0.085444	1.30011 1.
4	38.81563	-77.1386	15 07:13:43:2		2	8.992001	0.256	-1.1	1 0	174	-0.07	0.07		1	5 1.06E+09	10561025	10 2.834564	1 0	0	15174	64357.9	2 0		63376	63376 0.085444	1.30011 1.
5	38.81563	-77.1386	15 07:13:43:3		2	8.928	0.16	-1	1 0	174	0.01	-0.01		1	5 1.06E+09	10561026	10 2.813983	7 0	0	15174	64358	2 0		63376	63376 0.085444	1.30011 1.
6	38.81562	-77.1386	15 07:13:43:4		2	8.864	0.176	-0.5	9 0	174	0.21	-0.21		1	5 1.06E+09	10561027	10 2.690521	0	0	15174	64358.1	2 0		63376	63376 0.085444	1.30011 1.
2	38,81562	-77.1386	15 07:13:43:5		2	8.8	0.128	0.8	8 O	174	0.26	0.26		1	5 1.06E+09	10561028	10 2.649366	5 0	0	15174	64358,2	2 0		63376	63376 0.085444	1.30011 1.
5	38-81562	-77.1386	15 07:13:43:6	i	2	8.765001	0.032	-0.7	7 0	174	0.38	-0.38	-0.357	1	5 1.06E+09	10561029	10 2.669944	i 0	0	15174	64358.3	2 0		63376	63376 0.085444	1.30011 1.
.9	38.81562	-77.1386	15 07:13:43:7		2	8.672001	0	-0.6	6 0	174	0.48	-0.48	-0.48	1	5 1.06E+09	10561030	10 2,582485	0 0	0	15174	64358.4	2 0		63376	63376 0.085444	1.30011 1.
10	38.81562	-77.1386	15 07:13:43:8		2	8.64	0.016	-0.5	5 -0.1	174	0.66	-0.66	-0.571	1	5 1.06€+09	10561031	10 2.582485	0 0	0	15174	64358.5	2 0		63376	63376 0.085444	1.30011 1.
11	38.81562	-77.1386	15 07:13:43:9		2	8.608001	0.016	-0.3	3 -0.1	174	0.83	-0.83	-0.664	3 (3)	5 1.06E+09	10561032	10 2.567056	5 0	0	15174	64358.6	2 .0		63376	63376 0.085444	1.30011 1.
12	38.81562	-77.1386	15 07:13:44:0	(2	8.608001	0.064	-0.3	2 -0.1	174	0.83	-0.83	0.762	1	5 1.062+09	10561033	10 2.597922	2 0	0	15174	64358.7	2 0		63376	63376 0.085444	1.30011 1.
13	38.81562	-77.1380	15 07:13:44:1		2	8.576	0.08	-0.2	2 -0.1	174	0.83	-0.83	-0.857	1	5 1.06E+09	10561034	10 2.340702	2 0	0	15174	64358.8	2 0		63376	63376 0.085444	1.30011 1.
14	38.81562	-77.1386	15 07:13:44:2		2	8.608001	-0.032	0.2	2 0	174	0.86	-0.86	-0.934	1	5 1.06E+09	10561035	10 2.320124	0 0	0	15174	64358.9	2 0		63376	63376 0.085444	1.30011 1.
15	38.81562	-77.1386	15 07:13:44:3		2	8.64	0.016	0.4	4 0	174	1.02	-1.02	-0.984	1	5 1.06E+09	10561036	10 2.242958	3 0	0	15174	64359	2 0		63376	63376 0.085444	1.30011 1.
16	38.81562	-77.1386	15 07:13:44:4		2.	8.704	0.096	0.6	6 0.1	174	1.11	-1.11	-1.013	1	5 1.06E+09	10561037	10 2.160648	0 8	0	15174	64359.1	2 0		63376	63376 0.085444	1.30011 1.
17	38.81562	-77.1386	15 07:13:44:5		2	8.8	0.08	0.7	7 0.1	174	1.19	1.19	0.968	1	5 1.06E+09	10561038	10 2.129782	2 0	0	15174	64359.2	2 0		63376	63376 0.085444	1.30011 1.
18	35.81562	-77.1356	15 07:13:44:6		2	8.896001	-0.064	0.1	9 -0.1	174	1.21	-1.21	-0.966	1	5 1.062+09	10561039	10 2.129782	0 5	0	15174	64359.3	2 0		63376	03376 0.085444	1.30011 1.
19	38.81562	-77.1386	15 07:13:44:7		2	9.024	-0.096	1	1 0.1	174	1,18	-1.18	-0.935	1	5 1.06E+09	10561040	10 2.155504	1 0	0	15174	64359.3	2 0		63376	63376 0.085444	1.30011 1.
20	38.81562	-77.1387	15 07:13:44:8		2	9.120001	-0.016	1.1	1 0.1	174	1.14	-1.14	-0.876	1	5 1.068+09	10561041	10 1.990883	0	0	15174	64359.4	2 0		63376	63376 0.085444	1.30011 1.
21	38.81561	+77.1387	15 07:13:44:9	í	2	9.216001	0	1.3	3 0	174	1.04	+1.04	-0.801	1	5 1.06E+09	10561042	10 1.872562	0 9	0	15174	64359.6	2 0		63376	63376 0.085444	1.30011 1.
22	38.81561	-77.1387	15 07:13:45:0		2	9.440001	-0.016	1.4	4 0.2	174	0.66	-0.66	-0.761	1	5 1.06E+09	10561043	10 2.073193	0	0	15174	64359.7	2 0		63376	63376 0.085444	1.30011 1.
23	38.81561	-77.1387	15 07:13:45:1		2	9.565001	0.08	1.1	3 0.1	174	0.63	-0.63	-0.685	1	1.065+09	10561044	10 1.764525	0 0	0	15174	64359.8	2 0		63376	63376 0.085444	1.30011 1.
24	38.81561	-77.1387	15 07:13:45:2		2	9.76	0.032	1.6	6 0.1	174	0.49	-0.49	-0.648	1	5 1.06E+09	10561045	10 1,903428	3 0	0	15174	64359.9	2 0		63376	63376 0.085444	1.30011 1.
25	38.81561	-77.1387	15 07:13:45:3		2	9.888	0.064	1.6	6 0.1	174	0.23	-0.23	-0.645	1	5 1.06E+09	10561046	10 1.918861	L 0	0	15174	64360	2 0		63376	63376 0.085444	1.30011 1.
26	38.81561	-77.1387	15 07:13:45:4		2	10.048	0.112	1.5	5 0	174	0.17	-0.17	-0.639	1	5 1.06E+09	10561047	10 1.918861	0	0	15174	64360.1	2 0		63376	63376 0.085444	1.30011 1.
27	38.81561	-77.1387	15 07:13:45:5		2	10.24	0.128	1.6	6 0	174	0.33	0.33	-0.646	1	5 1.066+09	10561048	10 1.862273	0	0	15174	64360.2	2 0		63376	63376 0.085444	1.30011 1.
28	38.81561	-77.1387	15 07:13:45:6		2	10.4	0.256	1.7	7 0	174	0.44	-0.44	-0.697	1	5 1.06E+09	10561049	10 1.97545	0 0	0	15174	64360.3	2 0		63376	63376 0.085444	1.30011 1.
29	38.81561	+77.1387	15 07:13:45:7		2	10.56	0.384	1.7	7 0	174	0.66	-0.66	-0.741	1	5 1.06E+09	10561050	10 1.913717	7 0	0	15174	64360.4	2 0		63376	63376 0.085444	1.30011 1.
30	38.81561	-77.1387	15 07:13:45:8		2	10.784	0.384	1.5	9 0.1	174	0.89	-0.89	-0.784	1	5 1.06E+09	10561051	10 1.934294	0	0	15174	64360.5	2 0		63376	63376 0.085444	1.30011 1.
31	38.81561	-77.1387	15 07:13:45:9		2	10.944	0.544		2 0	174	1.02	-1.02	-0.851	1	5 1.06E+09	10561052	10 1.903428	0 8	0	15174	64360.6	2 0		63376	63376 0.085444	1.30011 1.
32	38.81561	-77.1387	15 07:13:46:0	i.	2	11.232	0.576	2.3	2 -0.1	174	1.27	-1.27	-0.906	1	5 1.06E+09	10561053	10 1.980594	0	0	15174	64360.7	2 0		63376	63376 0.085444	1.30011 1.
33	38.81561	-77.1387	15 07:13:46:1		2	11.424	0.64	2.1	3 O	174	1.28	-1.28	-0.965	1	1.06E+09	10561054	10 1.908572	0 1	0	15174	64360.8	2 0		63376	03376 0.085444	1.30011 1.
34	38.81561	-77.1387	15 07:13:46:2		2	11.648	0.688	2.3	3 -0.2	174	1.29	-1.29	-1.012	1	5 1.068+09	10561055	10 1.908572	2 0	0	15174	64360.9	2 0		63376	63376 0.085444	1.30011 1.
35	38.81561	-77.1387	15 07:13:46:3		2	11.936	0.592	2.5	5 0	174	1.15	-1.15	-1.048	1	5 1.06€+09	10561056	10 1.918861	0	0	15174	64360.9	2 0		63376	63376 0.085444	1.30011 1.
36	38.81561	-77.1387	15 07:13:46:4		2	12.16	0.64	2.6	6 0	174	1.03	-1.03	-1.068	1	5 1.06E+09	10561057	10 1.980594	1 0	0	15174	64361.1	2 0		63376	63376 0.085444	1.30011 1.
37	38.81561	-77.1387	15 07:13:46:5		2	12.352	0.704	2.6	6 -0.1	174	0.97	-0.97	-1.069	1	5 1.066+09	10561058	10 1.980594	0 0	0	15174	64361.2	2 0		63376	63376 0.085444	1.30011 1
3.0	38.81561	-77.1387	15 07:13:40:6		2	12.704	0.768	2.7	7 -0.2	174	0.93	-0.93	-1.051	1	5 1.06E+09	10361059	10 1.980594	0	0	15174	64361.3	2 0		63376	63376 0.085444	1.30011 1.
39	38.8156	-77.1387	15 07:13:46:7		2	12.928	0.704	2.5	8 -0.2	174	0.92	-0.92	-1.044	1	5 1.06E+09	10561060	10 2.206948	8 0	0	15174	64361.4	2 0		63376	63376 0.085444	1.30011 1.
40	38.8156	-77.1387	15 07:13:46:8		2	13.28	0.592	2.3	7 0	174	0.88	-0.88	-1.038	1	5 1.06E+09	10561061	10 2.165792	2 0	0	15174	64361.5	2 0		63376	63376 0.085444	1.30011 1.

3a. Process Work Zone Data (cont.)

3a. Process Work Zone Data (cont.)

3a. Processed Driver Books

62 Processed Driver Books will be published to the Research Data Exchange (RDE), along with a Metadata document, a version of the processing tool we developed, and a short report describing how we processed the radar data.

	А	В	C	D	E	F	G	Н	I			
1												
2			Chart Settings									
з		Axes Bounds	Default									
4		X-Axis	10		Impor	t Instance D	ata					
5		Y-Axis	100		Import P	rocessed Da	ta CSV					
6		Chart Lines	No									
7		Chart Height	225		Plot Delta X vs Delta V							
8		Chart Width	225			1						
9		Marker Size	2		Plot Delta V vs Time							
10		Line Weight	0.5		Run All							
11		Columns	4		LADO		JUK					
12												
13			Data Info		c	ear Data						
14		Processed Data										
15		Instance Data										
16												
17												
-	()}	Tool Bulk	Processing Post Processing (+)						4			

Each booklet contains four tabs:

1. Car Following Instances.

Information about each car-following instance, taken from the Car-Following Identification Template.

	Α	В	С	D		F G		н	I	J	К	L	М	
1		L	eading Vehi	les		Fo	llowing Veh	icles	Time From	Time Until	Roadway Type	Congestion	Speed Lin	.ie
2	NewID	Radar	ID #'s	Vehicle Type passenger car=PC,heavy vehicle=HV, bus=B,	NewID	Radar	ID #'s	Vehicle Type passenger car=PC,heavy vehicle=HV, bus=B,			{HW, IS, AW, TZ, WZ1, or	congestion	opeed em	
3	[Assi 👻	[#] 👻	[Object Class 🔻	motorcycle=M 👻	[Assi	[#] 👻	[Object Class 🔻	motorcycle=M 👻	[h:mm:ss.00] 👻	[h:mm:ss.ss] 💌	WZ2}	{C or U} 🗸	[mi/hr]	-
4	L01	0	127	PC	F01	10	Subject		0:04:23.10	0:04:47.30	HW	uncong	50	
5	L02	10	Subject		F02	1	161/163	PC	0:05:48.10	0:06:11.30	HW	uncong	50	
6	L03	10	Subject		F03	1	161/163	PC	0:06:11.40	0:06:21.20	нw	uncong	50	
7	L04	0	138	PC	F04	10	Subject		0:06:23.00	0:06:34.10	HW	uncong	50	
8	L05	0	141	PC	F05	10	Subject		0:06:38.60	0:07:24.40	HW	uncong	50	
9	L06	0	145	PC	F06	0	146	м	0:07:13.70	0:07:24.40	HW	uncong	50	
10	L07	0	160	PC	F07	10	Subject		0:08:00.90	0:08:29.30	HW	uncong	50	
11	L08	10	Subject		F08	1	200	PC	0:08:51.20	0:09:07.10	HW	uncong	50	
12	L09	0	175	PC	F09	10	Subject		0:09:44.60	0:10:38.60	нw	uncong	40	
13	L10	10	Subject		F10	1	220/226/232	PC	0:10:52.70	0:12:04.20	HW	uncong	40	
14	L11	0	186/193	PC	F11	10	Subject		0:10:57.40	0:11:10.20	HW	uncong	40	
15	L12	0	186/193	PC	F12	1	228/231	PC	0:11:14.10	0:11:28.30	HW	uncong	40	
16	L13	0	204/205/206/	PC	F13	10	Subject		0:12:44.50	0:12:57.50	HW	uncong	45	
17	L14	0	204/205/206/	PC	F14	10	Subject		0:12:57.60	0:13:25.50	HW	uncong	45	
18	L15	0	226/229/232	PC	F15	10	Subject		0:15:59.70	0:16:34.10	HW	uncong	45	
19	L16	0	226/229/233	PC	F16	10	Subject		0:16:43.20	0:17:01.30	HW	uncong	45	
20	L17	0	226/229/234	PC	F17	10	Subject		0:17:01.40	0:18:00.10	HW	uncong	45	
21	L18	0	247/252/253	PC	F18	10	Subject		0:18:41.70	0:19:01.40	IS	uncong	55	
22	L19	0	12/22/27/30	PC	F19	10	Subject		0:20:00.70	0:20:32.50	IS	uncong	55	
23	L20	0	12/22/27/30	PC	F20	10	Subject		0:20:32.60	0:21:09.10	IS	uncong	55	
24	L21	0	37	PC	F21	10	Subject		0:21:18.90	0:21:45.90	IS	uncong	55	
25	L22	10	Subject		F22	1	154	PC	0:22:45.90	0:23:06.90	AW	uncong	55	
26	L23	10	Subject		F23	1	154	PC	0:23:09.70	0:23:17.60	AW	cong	55	
27	L24	0	68/70	PC	F24	10	Subject		0:23:21.10	0:23:37.30	AW	uncong	55	
28	L25	0	74/78	PC	F25	10	Subject		0:23:58.20	0:24:13.10	AW	uncong	55	
29	L26	10	Subject		F26	1	203/206	PC	0:24:01.10	0:24:24.90	AW	uncong	55	
30	L27	0	74/78	PC	F27	10	Subject		0:24:13.20	0:24:38.70	WZ2	uncong	55	
31	L28	0	90/91	PC	F28	10	Subject		0:24:38.80	0:25:09.20	WZ2	uncong	55	
32	L29	0	98	PC	F29	10	Subject		0:25:11.80	0:25:29.70	WZ2	uncong	55	
33	L30	10	Subject		F30	1	245/246	PC	0:25:35.30	0:25:45.70	WZ2	uncong	55	
34	L31	0	103/118	PC	F31	10	Subject		0:25:35.80	0:25:58.10	WZ2	uncong	55	
35	L32	10	Subiect		F32	1	255	PC	0:25:48.10	0:25:58.80	WZ2	uncong	55	
	4		1 dV-time D	ots 3 dV-d	X plots	21	Radar data	1 Car Followi	na Instances	(I)				

2. Radar Data. Processed 10 Hz carfollowing data

	A	ВС		D E		F	G	H I		J	К
1	Time	Lead Vehicle				Follo	wing Vehicl	e		∆ Distance	∆ Velocity
2		ID	Radar#	Velocity	Accel.	ID	Radar#	Velocity	Accel.		
3	[hh:mm:ss.s 💌	[L# 🔻	[0=F, 1=R, 10 💌	[m/s] 💌	[m/s/ 🔻	[F#] 🔻	[0=F, 1=R, 10	[m/s] 💌	[m/s^2 💌	[m] 🔽	[m/s]
4	0:04:23.193	L01	0	23.696	0.578	F01	10	14.870	0.090	17.479	-7.826
5	0:04:23.292	L01	0	23.691	0.548	F01	10	14.891	0.090	18.209	-7.800
6	0:04:23.392	L01	0	23.496	0.505	F01	10	14.696	0.020	18.970	-7.800
7	0:04:23.492	L01	0	23.714	0.330	F01	10	14.814	0.040	19.694	-7.900
8	0:04:23.594	L01	0	24.008	0.022	F01	10	15.308	0.110	20.267	-7.700
9	0:04:23.693	L01	0	23.666	0.453	F01	10	15.138	0.040	21.085	-7.528
10	0:04:23.794	L01	0	24.016	0.594	F01	10	15.416	0.100	21.833	-7.600
11	0:04:23.892	L01	0	24.016	0.305	F01	10	15.416	0.070	22.564	-7.600
12	0:04:23.993	L01	0	23.711	0.270	F01	10	15.411	0.060	23.278	-7.300
13	0:04:24.093	L01	0	23.761	0.134	F01	10	15.467	0.060	24.014	-7.294
14	0:04:24.192	L01	0	23.978	-0.084	F01	10	15.827	0.140	24.741	-7.151
15	0:04:24.292	L01	0	23.804	-0.049	F01	10	15.812	0.100	25.426	-6.992
16	0:04:24.393	L01	0	24.244	0.044	F01	10	16.244	0.160	26.135	-7.000
17	0:04:24.493	L01	0	24.118	0.060	F01	10	16.218	0.110	26.846	-6.900
18	0:04:24.593	L01	0	23.926	0.060	F01	10	16.326	0.110	27.461	-6.600
19	0:04:24.693	L01	0	24.026	0.296	F01	10	16.326	0.120	28.185	-6.700
20	0:04:24.793	L01	0	24.176	0.370	F01	10	16.476	0.210	28.871	-6.700
21	0:04:24.892	L01	0	24.559	0.546	F01	10	16.959	0.210	29.523	-6.600
22	0:04:24.993	L01	0	23.894	1.037	F01	10	16.388	0.010	30.209	-6.506
23	0:04:25.092	L01	0	24.317	0.834	F01	10	16.506	0.040	30.889	-6.811
24	0:04:25.192	L01	0	24.384	0.433	F01	10	16.784	0.080	31.545	-6.600
25	0:04:25.293	L01	0	24.164	0.310	F01	10	16.764	0.050	32.202	-6.400
26	0:04:25.393	L01	0	24.251	0.126	F01	10	16.851	0.060	32.829	-6.400
27	0:04:25.493	L01	0	24.116	-0.139	F01	10	16.851	0.150	33.410	-6.265
28	0:04:25.594	L01	0	24.478	-0.238	F01	10	17.278	0.020	34.082	-6.200
29	0:04:25.693	L01	0	23.933	0.049	F01	10	16.923	0.020	34.685	-6.010
30	0:04:25.793	L01	0	24.319	-0.020	F01	10	17.119	0.060	35.315	-6.200
31	0:04:25.892	L01	0	24.335	-0.116	F01	10	17.335	0.100	35.886	-6.000
32	0:04:25.994	L01	0	24.032	-0.080	F01	10	17.232	0.040	36.488	-5.800
33	0:04:26.095	L01	0	24.636	-0.180	F01	10	17.736	0.160	37.138	-5.900
34	0:04:26.194	L01	0	24.073	-0.231	F01	10	17.273	0.000	37.709	-5.800
35	0:04:26.294	L01	0	23.818	0.063	F01	10	17.273	0.050	38.267	-5.545
36	0:04:26.394	L01	0	24.302	0.073	F01	10	17.484	0.010	38.874	-5.818
37	0:04:26.493	L01	0	23.961	0.006	F01	10	17.371	0.010	39.412	-5.590
		4. 0	dV-time Plots	3. d\	/-dX plo	ots	2. Radar dat	ta 1.	Car Follo	wing Instance	es 🔶 🕂

3. ΔV/ΔX Plots. Relative distance (ΔX) [m] vs. relative velocity (ΔV) [m/s] for each car-following instance.

4. ΔV/ΔT Plots. Relative velocity (ΔV) [m/s] over time (ΔT) [hh:mm:ss.s] for each car-following instance.

3b. Collect Data in MA

- Will collect car-following data in Massachusetts work zones using the IRV
- Will identify and classify car-following instances.
 - Will use the fields from the VA study + additional fields (such as road weather, peak vs. off-peak, rural vs. urban freeways, etc.)
- Working with MassDOT to supplement data with macroscopic data (such as traffic counts, where available) and geometric data for work zones (where available).

4a. Calibrate Model...

4a. ...Validate Model

Aggregate field data for each driving condition & compare calibrated model (*left*) in Excel to field data (*right*).

Use Microscopic Performance Measures

4b. Create Work Zone Software

4b. Create WZ Software (cont.)

* SUMO and VISSIM are used as examples.

* Alternative interfaces can be designed for each software, and/or the FHWA Driver Model Software could be directly incorporated

5. Demonstrate WZ Software in a Microsimulation Package

- Interface Work Zone Software with a microsimulation software package using a DLL interface
- Construct three networks using the software package:
 - 1. A straight work zone segment
 - 2. I-395 in VA (work zones from 2013)
 - 3. I-91 in Springfield, MA (work zones from 2016)
- For each network, compare:

Field vs. Microsim Software vs. Microsim Software w/ WZ Add-On

Use Macroscopic Performance Measures (such as capacity, queue length, total delay, and average travel speed)

6. Create a User's Guide

- Define the type of data you'll need to calibrate your models
- Explain how to process this data
 - How to use data processing tools
- Explain how to calibrate the Work Zone model
- Explain how to use Work Zone Software
 - How to install the software
 - How to use the GUI
 - Documents describing software architecture (for those who wish to modify it)
- Explain how to use Work Zone Software w/ VISSIM

Expert Panel

Volunteer Expert Panelists **provide feedback** on research approach and products.

Panelists include representation from three groups:

- End Users [engineers and planners at State/Local DOTs, MPOs, and private engineering consultancies]
- Technical Experts in Microscopic Modeling [professors, researchers, and FHWA staff]
- Microsimulation Software Companies [software engineers and market analysts]

Thank you

For more information, please contact:

Andrew Berthaume, Ph.D. Project Lead – USDOT/Volpe Center Ofc: (617)-494-3159 Andrew.Berthaume@dot.gov

Chris Melson Project Lead – Turner Fairbank Highway Research Center Christopher.Melson@dot.gov

Taylor Lochrane, Ph.D. Turner Fairbank Highway Research Center Taylor.Lochrane@dot.gov