

Investigating the Impacts of Truck Platooning on Transportation Infrastructure in the South-Central Region

Christopher Melson Principal Investigator

Sept. 24, 2019

Tran-SET: Project Review Committee (PRC) Meeting #1

Presentation Outline

Background

- Efficient movement of freight critical to region's economy
 - Efficiency muffled by infrastructure system (condition, capacity, congestion)
 - Mitigating negative community impacts

Background (Cont.)

- Truck platooning offers (potential) mobility, safety, environmental benefits
- Self-driving truck technology continually being developed and deployed
- Unclear impacts to infrastructure (pavements)

Project Objectives

Objectives:

- Conduct modeling case studies to estimate operational and environmental impacts of various platooning assumptions
- Conduct finite element modeling (FEM) on related case study to estimate impact on pavement
- 3. Conduct feasibility study and recommendations

Project Overview

Research Approach

Task 1: Stakeholder Engagement
Task 2: Literature Review
Task 3: Operational and Environmental Analysis (Corridor)
Task 4: Operational and Environmental Analysis (Network)
Task 5: Pavement Analysis
Task 6: Feasibility Study and Recommendations

Task 1: Stakeholder Engagement

- Stakeholders to:
 - Identify truck platooning implementations (and locations)
 - Identify existing traffic models and data
 - Identify pavement data
- Support for T2 activities
- Support for Tran-SET deliverables

Task 2: Literature Review

- Identify a set of:
 - Truck platooning models
 - Truck platooning configurations/assumptions
 - Platoon strategies, platoon formations, platoon sizes, following distances, market penetrations, etc.
 - Infrastructure impacts

Task 3: Operational and Environmental Analysis (Corridor)

- Model heavily utilized truck corridor:
 - Various truck platooning implementations/configurations (Task 2)
 - Conduct "traditional" microscopic analysis
 - Integrate car-following, lane-changing, platoon formation models/logic
 - Quantify operational and environmental impacts
 - Identify most efficient configurations
- Access to VISSIM (and other softwares)

Task 4: Operational and Environmental Analysis (Network)

- Model network w/ heavily utilized truck corridor:
 - Various truck platooning implementations/configurations (Task 2)
 - Conduct mesoscopic analysis
 - Re-routing decisions, congestion at corridor ingress and egress points, etc.
 - Quantify operational and environmental impacts
- Access to Dynameq (and other software programs)

Task 5: Pavement Analysis

- Conduct finite element (FE) modeling:
 - Subset of truck platooning configurations/assumptions (Task 2, Task 3)
 - Conduct pavement analysis:
 - Utilize detailed pavement layer data for heavily utilized truck corridor (Task 3)
 - Utilize traffic (and other data outputted) from Task 3
 - Quantify pavement damage
- Access to ABAQUS

Task 6: Feasibility Study and Recommendations

- Quantify:
 - (Potential) environmental benefits (Tasks 3, 4)
 - E.g.: reduction in carbon and greenhouse gas emissions
 - (Potential) operational benefits (Tasks 3, 4)
 - E.g.: Reduction in congestion and increase in throughput
 - (Potential) pavement damage
 - E.g.: Damage and reduction in service life
- Compare to "base case"
- Possible pavement design recommendations

Project Overview

Project Timeline

13

Project Tasks							Te	chnical	Phase								Im	plement	atio	n Pha	se			
		ug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	l A	ug	Sep	0	ct No	v	Dec	J۶	n	Fe	b
Task 1 – Stakeholder Engagement			В	1		A				3 A		С	7	B A	D	9 10)	А			11	12	A	E
Task 2 – Literature Review				2																				
Task 3 – Operational and Environmental Analysis at the Corridor Level		95 9	S	20						4								9 9 9 9	22	(b		S		
Task 4 – Operational and Environmental Analysis at the Network-Level													5					70 70 70 70 80 80	00	10				
Task 5 – Pavement Analysis		1	1 1		M	lileston	es						6											
Task 6 – Economic Study and Final Recommendations	ID		Descrip	tion					Ant. Da	ite				8			().							
	1	S	elected t	ruck pla	tooning	implem	entation	15	Oct. 15,	2019							5.1	ti ki ki	-	4 **- 12 * 5		<u> </u>		
	2	L	iterature	e review	(comple	eted)			Oct. 15,	2019														
	3	2	020 Trai	n-SET C	onferen	ce		0	Apr. 20	20 (Est.)														
	4	C	orridor-	level and	alysis (c	omplete	d)		Apr. 15	, 2020														
	5	N	letwork-	level an	alysis (c	omplete	ed)		Jul. 15,	2020														
	6	P	avement	t analysi	s (comp	leted)			Jul. 15,	2020														
	7	Р	resentati	ion at A	V Symp	osium			Jul. 202	0														
	8	E	conomic	c study (complet	ed)			Aug. 15	, 2020	8													
	9	P	resentati	ion at Si	mCap L	ouisiana	n meetin	g	Sep. 202	20 (Est.)														
	10	P	resentati	ion at Jo	int Tran	-SET W	ebinar s	series	Sep. 202	20 (Est.)														
	11	2	021 TRE	3 Annua	l Meetir	ng			Jan. 202	1														
	12	S	ubmissio	on of tw	o journa	l public	ations		Feb. 202	21	°													

Project Team

Christopher Melson Principal Investigator Louisiana State University (225) 578-3805 cmelson1@lsu.edu

Samer Dessouky Co Principal Investigator University of Texas at San Antonio (210) 458-6475 **samer.dessouky@utsa.edu**

Alireza Talebpour Co Principal Investigator Texas A&M University (979) 845-0875 atalebpour@tamu.edu

T2 Plan: Objectives

ID	Objective
T1	Truck platooning operational, environmental, and pavement analyses inform local and state transportation agencies' activities in order to better prepare their transportation systems for such implementation
Т2	Aid the research community by applying (possibly modifying) their models (and possibly developing new models) to truck platooning case studies important to practitioners, identifying limitations, and communicating "lessons learned"
Т3	Educate local transportation modelers on current models/tools available for truck platooning

T2 Plan: Stakeholders

ID	Stakeholder Name	Stakeholder Type	Category(ies)	Project-Specific Category(ies)
A	LaDOTD: CAV Technology Team	State DOT	Late potential adopter; Ally	Policy-Related
В	Local governments: Capital Region Planning Commission (CRPC), City of San Antonio, and Bexar County	Local government	Late potential adopter; Ally	Policy-Related; Modelers
С	Early State Adopters: TxDOT	State DOT	Early potential adopter; Ally	Policy-Related
D	Late State Adopters: ArDOT, NMDOT, ODOT	State DOT	Late potential adopter; Ally	Policy-Related
E	Corridor and Freight Coalitions: I-10 Corridor Coalition, others	Local government	Early potential adopter; Ally	Policy-Related
F	Research Communities: Traffic Simulation Models Joint Subcommittee [AHB45(10)]; Traffic Flow Modeling for Connected and Automated Vehicles Subcommittee [AHB45(3)]; Vehicle- Highway Automation Committee [AHB30]; Pavement Structural Modeling and Evaluation [AFD80]; General and Emerging Pavement Design [AFD30]	Other	Researchers	Research
G	SimCap Louisiana	Non-profit	Ally	Modelers
Н	Modeling vendors: PTV Group, Aimsun, Caliper, INRO	Industry	Developers; Ally	Modelers
I	Trucking Associations and Companies: American Trucking Associations, National Association of Independent Truckers, Knight-Swift, JB Hunt Transportation Company, others	Industry	Deployment team; Early potential adopter; Ally	Freight
J	Applicable OEMs: Daimler, Ford, General Motors, Tesla, Volvo, others	Industry	Developers; deployment team; ally	OEMs

T2 Plan: Engagement Plan

ID	Obj. ID	Engagement Activity [Approx. Date]	Stakeholder(s) Involved	Info Communicated <u>to</u> Stakeholder	Info Gathered <u>from</u> Stakeholder	Resources Required
1	T1	Stakeholder Meeting #1 [Sep. 2019]	A, B, C, D, E	Introduce project (goals, tasks, timeline, stakeholder roles)	Gather general/technical feedback on project; input in truck platooning implementations to analyze	Webinar capabilities; dedicated time to coordinate
2	T2	Presentation at 2020 Tran-SET Conference [Apr. 2020]	A, B, C, D, E, F	Project updates and preliminary results	General and minimal feedback	Travel funds; submitting presentation topic
3	T1, T2	Presentation at AV Symposium [Jul. 2020]	F, H, I, J	Project updates and preliminary results	General and minimal feedback	Travel funds; submitting presentation topic
4	T1, T2, T3	Stakeholder Meeting #2 (TRL Assessment) [Sep. 2021]	A, B, C, D, E, H, I, J	Main results of research project	General and technical feedback of results, TRL assessment, recommendations for further activities	Webinar capabilities; dedicated time to coordinate
5	тз	Presentation at SimCap Louisiana meeting [Sep. 2020]	B, G, H	Main results of research project, modeling of truck platooning	General and minimal feedback	Submitting presentation topic
6	T1, T2, T3	Presentation at Join Tran-SET Webinar Series [Sep. 2020]	A, B, C, D, E, F, H	Main results of research project	Minimal	Submitting presentation topic
7	T2	Presentation at 2021 TRB Annual Meeting [Jan. 2021]	F, H, J	Main results of research project	General and minimal feedback	Travel funds; submitting presentation topic
8	T2	Prepared manuscripts for journal publications [Feb. 2021]	F	Main results of research project	Minimal	Dedicated time to prepare

T2 Plan

Technology Readiness Level

Categories	TRL Score	Description	To achieve the given TRL score, you must answer "Yes" to <u>EVERY</u> question at that level.
Basic Research	1	Basic principles & research	 Do basic scientific principles support the concept of the project outcome?
_			 Has the outcome development methodology or approach been developed?
	2	Application formulated	Are potential framework applications identified?
			 Are outcome components and the user at least partly described?
			 Do preliminary analyses or experiments confirm that the application might meet the user need?
I [3	Proof of concept	Are outcome performance metrics established?
			Is outcome feasibility fully established?
			 Do experiments or modeling and simulation validate performance predictions of outcome capability?
			 Does the outcome address a need or introduce an innovation in the field of transportation?
Applied	4	Components validated in laboratory	Are end user requirements documented?
Research		environment	• Were individual components (if any) successfully tested in a <i>laboratory environment</i> (a fully
			controlled test environment)?
	5	Integrated components demonstrated in	 Are target and minimum operational/functional requirements developed?
		a laboratory environment	 Is component integration demonstrated in a laboratory environment (i.e. fully controlled setting)?
Development	6	Field or full-scale test demonstrated in	• Is the operational/functional environment fully known (i.e. user community, physical environment, and
		relevant environment	input data characteristics as appropriate)?
			• Was the field or the full-scale experiment tested in a realistic environment outside the laboratory (i.e.
			relevant environment)?
			• Does the field or full-scale experiment satisfy all operational/functional requirements when confronted
			with realistic problems?
	7	Fully integrated outcome demonstrated	 Are available components ready to be fully integrated in the final outcome?
		in operational environment	• Is the fully integrated outcome demonstrated in an <i>operational environment</i> (i.e. real-world
			conditions, including the user community)?
			 If applicable, are all outcome components tested individually under expected conditions?
	8	Outcome proven in operational	 Is the outcome proven in an operational environment (i.e. meet target performance measures)?
		environment	 Was a rigorous test and evaluation process completed successfully?
			 Does the outcome meet its stated purpose and functionality as developed?
Implementation	9	Outcome refined & adopted	 Is the outcome deployed in its intended operational environment?
			 Is information about the outcome disseminated to the user community?
			 Is the outcome adopted by the user community?

Questions?