

Traffic Flow Impacts of Adaptive Cruise Control and Cooperative Adaptive Cruise Control: An Investigation using Microscopic and Mesoscopic Models

Christopher Melson Program Manager

April 25, 2018

Gulf Region ITS – 2018 Spring Workshop

Presentation Topics

Introduction

Tran-SET

- USDOT University Transportation Centers (UTC) Program
 - National (5), Regional (10), and Tier 1 (20)
- Tran-SET
 - Grantee of Region 6 UTC
 - Consortium of 11 partnering institutions

ARKANSAS STATE UTSA

Tran-SET Research

- Research Themes
 - Enhancing durability and service life of infrastructure
 - Preserving existing transportation systems
 - Preserving the environment
 - Addressing immediate Region 6 transportation needs
- 70 research projects (33 FY17, 33 FY18)
- \$9.1 million in research funds

Ο

Tran-SET Website

6

FHWA-Related Efforts

U.S. Department of Transportation Federal Highway Administration

About Programs Resources Briefing Room Contact Search FHWA

Federal Highway Administration Research and Technology

Coordinating, Developing, and Delivering Highway Transportation Innovations

Research Home	Overview Projects Publications Contacts
TFHRC Home	
	Analysis Modeling and Simulation (AMS)

Objectives

Connected Automation

- 1. Develop methodologies that improve existing AMS tools to incorporate CAV technologies.
- 2. Develop AMS tools for and analyze potential impacts of prominent CAV applications.
- 3. Disseminate improved AMS tools to State and local agency partners. This includes collaborating with industry to push the adoption of CAV AMS capabilities into commercial software.
- 4. Develop and disseminate guidance on applying CAV AMS tools.

www.fhwa.dot.gov/research/tfhrc/project s/operations/ams/index.cfm

Tran-SET

FHWA

Characterizing the Impact of Production Adaptive Cruise Control on Traffic Flow: An Investigation

Background

- ACC utilizes radar to maintain desired constant time gap
- ACC capability in vehicles is on the rise
 - 2.2% of new 2014 models
 - 7.2% of new 2020 models
- ACC is a convenience feature
- ACC throughput estimations in literature are highly variable

Contribution

- Comprehensive assessment of the likely impact of ACC on traffic flow
- Four ACC car-following models are simulated using VISSIM's External Driver Model functionally under consistent simulation conditions
- Models are (re)calibrated using carfollowing data from two ACC-equipped 2013 Cadillac SRXs
- Corridor throughput and traffic flow characteristics are explored in detail

Background	Methodology	Results	Conclusions
Daekgroona	//temedolog/	Resens	Conclosions

ACC Car-Following Models (CFMs)

- MIXIC or AACC
 - One of the original models for automated highway systems
 - Highly unstable lacks a collision warning system (CWS)
- Improved Intelligent Driver Model (IIDM)
 - Originally developed for naturalistic driving
 - Additional heuristics added to IIDM for ACC
 - Collision free (without human takeover)
- California PATH Empirical Model
 - Calibrated using data collected from ACC-enabled Infiniti M56s
- TU Delft Empirical Model
 - Based on PATH algorithm
 - Includes approach mode and dynamic spacing margin

Background	Methodology	Results	Conclusions
------------	-------------	---------	-------------

(Re)calibration of ACC CFMs

- Data collected July 2015
- **Dulles Access Road, Northern** Virginia
- 2013 ACC-enabled Cadillac SRXs
- Acceleration/deceleration scenarios between 25-75 mph
- Calibration optimization problem:
 - Minimize RMSE between observed and predicted acceleration
 - Split into calibration and validation dataset

Results

S1

Calibration Coefficients

Model	Calibration coefficients	Purpose of coefficient	Original	(Re)calibrated
			coefficients found	coefficients using
			in literature	Cadillac SRX data
AACC	k_v	Sensitivity to difference in	0.58	0.27
		relative velocity		
	k _d	Sensitivity to difference in	0.10	0.06
		physical gap and reference		
		distance		
IIDM	а	Represents maximum	1.96	1.00
		acceleration		
	b	Represents maximum	2.94	2.55
		deceleration		
PATH	k_1	Sensitivity to distance error	0.23	0.07
	<i>k</i> ₂	Sensitivity to speed error	0.07	0.27
Delft	<i>k</i> ₁	Sensitivity to distance error	0.23	0.02
	k ₂	Sensitivity to speed error	0.07	0.33

Microsimulation Case Studies

Vehicle Control

- ACC CFM longitudinal control
- Software lane changing logic lateral control
- Human takeover as prescribed by ACC CFM
- Assumptions:
 - MP rates | [0%-100%], 25%
 - Time gaps | [0.9s, 1.1s], [50.4%, 1.1s; 18.5%, 1.6s; 31.1%, 2.2s]
 - Desired speed distribution | [55-65mph]
 - Ten random seeds

Microsimulation Case Studies

Throughput Analysis

- Four lane basic segment
- Demand | [1800-3000vphpl], 200vphpl
- Over 4200 simulations
- Traffic Flow Characteristics Analysis
 - Three lane basic segment
 - Random reduced speed zones to induce bottlenecks
 - Upstream of emulator congested regime
 - Downstream of emulator uncongested regime

Throughput Analysis – MIXIC/AACC

Throughput Analysis – IIDM

Throughput Analysis – Delft

Throughput Analysis – Path

Throughput Analysis – Comparison

Throughput Analysis – Gap Distribution

Traffic Flow – 100% MP

Traffic Flow – 100% MP

S1

Conclusions

- MIXIC/AACC CFM is most sensitive to calibration coefficients
- IIDM ACC CFM is most sensitive to the desired time gap
- PATH & Delft empirical ACC CFM not sensitive to coefficients
- ACC MP rates \downarrow , throughput \uparrow
- Marginal impact on throughput when MP rate $\leq 50\%$
- MP rates > 50%, average throughput \downarrow
- Scatter in the fundamental diagram \downarrow as MP \uparrow
- Congested regime of FD is sensitive to the ACC CFM

Dynamic Traffic Assignment of Cooperative Adaptive Cruise Control

Background

- CACC utilizes low-latency V2V communication (DSRC)
- Potential to significantly increase freeway capacity (shortened headways)
- Previous CACC studies limited in scope
 - Small corridor studies
 - Rely solely on microsimulation
 - Ignore impacts at ingress/egress points, network-wide impacts

Contribution

- Derived fundamental diagram (flow-density relationship) from MIXIC carfollowing model for CACC
- Verified relationship using microsimulations in VISSIM's External Driver
- Created link transmission model (LTM) from derived relationship; created a mesoscopic model
- Quantified errors in the created LTM
 - Time step
 - Link length
- Conducted series of case studies
 - Corridor example
 - Subnetwork example

Derived Fundamental Diagram

- Mathematically derived from MIXIC car-following model for CACC
- Assumed piecewise linear fundamental diagram
- Assumed steady-state conditions

Validation of Fundamental Diagram

- Assumptions
 - *l* = 14.6 ft
 - $t_{system} = 0.6 \text{ s}$
 - $s_{min} = 6.5 \text{ ft}$
 - $v_f = 50 \text{ mph}$

Background	Methodology	Results	Conclusions
------------	-------------	---------	-------------

Errors due to Link Independence Constraint

Errors due to Link Independence Constraint

I-35 north of Round Rock, TX

Background

Case Study: Corridor Example

32

I-35 north of Round Rock, TX

Background	Methodology	Results	Conclusions
------------	-------------	---------	-------------

Demand scenario	NB peak demand (veh/hr/ln)	SB peak demand (veh/hr/ln)
А	323	260
В	646	520
С	1292	1040
D	1938	1560

Demand Scenario	Sim. Model	0% CACC Penetration 100% CACC Penetration		Improvement between 0% and 100%		
		N. Test Runs	Average Demand	N. Test Runs	Average Demand	% Change Total Travel Time
A	VISSIM DTA	10	2420 2420	10	2420 2419	0.04% 0.02%
В	VISSIM DTA	10	4802 4801	10	4801 4792	0.05% 0.10%
С	VISSIM DTA	10	9621 9619	10	9620 9569	-0.81% -7.60%
D	VISSIM DTA	10	14,412 14,412	10	14,412 14,255	- 23.61% - 31.66%

Case Study: Corridor Example

Case Study: Subnetwork Example

Background	Methodology	Results	Conclusions
------------	-------------	---------	-------------

Case Study: Subnetwork Example

Background Methodology	Results	Conclusions
------------------------	---------	-------------

Case Study: Subnetwork Example

Conclusions

- Unusual shape of fundamental diagram causes errors in created LTM
- At reasonable freeway link lengths (1 km) and short time steps, minimal error
- Travel time reductions from CACC at high demand (corridor case study)
- Decreases in freeway congestion, but average travel times for the entire network increased due to route choice,
- Effective deployment of CACC-exclusive lanes requires DTA analyses that include user route

Questions?

Christopher Melson Program Manager (225) 578-3805 cmelson1@lsu.edu

