Exploration of Existence and Uniqueness Issues of Dynamic Traffic Assignment Equilibrium

> Chris Melson Tarun Rambha Dr. Stephen Boyles The University of Texas at Austin 2012 INFORMS Annual Meeting --- Tuesday, October 16th

Outline of Presentation

- Introduction
- Earlier Research and Motivation
- Examples
 - No Equilibrium
 - Infinite Number of Equilibrium
- Possible Solution
 - Piecewise linear fundamental diagram
- Future Work

Introduction

- Dynamic traffic assignment (DTA) provides hope for accurately modeling traffic
 - Addresses issues of static traffic assignment: time-varying demand, queue formation, congestion spillback, etc.
 - Needed in order to model time-dependent demand policies and most ITS technologies

 Simulation-based DTA models do not provide a universal solution or guarantee that equilibrium exists

- Equilibrium is heuristically approximated
- Multiple equilibrium are possible
- Equilibrium may not exist

Earlier Work

(Daganzo, 1998)

• Addressed the importance of queue spillback prevention and its chaotic behavior (small perturbations of c_2 can dramatically effect the state of the network)

• (Nie, 2010)

- Showed that four distinct user equilibria can develop
- Categorized equilibria by stability and efficiency properties

Motivation

- Contribute to the limited research regarding DTA equilibrium issues and propose game theory as a potential solution method
 - First example
- Previous research has focused on the nature of DTA equilibrium at the merge or as a result of a downstream obstruction
 - Second example showcases the complications at the diverge

DTA as a Large-Scale Economic Game

- A game is made up of three elements:
 - I number of players [individual drivers]
 - Set of actions A_i for each player i [paths available to each driver]
 - Resulting utility of each action $u_i : A \rightarrow \mathbb{R}$ [path travel times]
- Any game with a finite number of players and a finite set of strategies is guaranteed to have a mixed-strategy Nash Equilibrium
 - Players are rational
 - Players act independently of one another
 - (Nash, 1951)

No Equilibrium Case

- Horizontal/Vertical Links: I minute travel time
- Diagonal Links: I.5 minute travel time
- Yield Time: I minute
- Player I travels from Origin 3 to Destination 4
- Player 2 travels from Origin 1 to Destination 2
- Players will continually switch paths

	L	R
Т	(4.5, 4.5)	(4.5, 4)
В	(5, 3.5)	(4, 4)

No Equilibrium Case (cont.)

	L	R
Т	(4.5, 4.5)	(4.5, 4)
В	(5, 3.5)	(4, 4)

- ▶ No pure strategy Nash equilibrium $u_i(a_i, a_{-i}) \ge u_i(a'_i, a_{-i}) \forall i \in I$
- Mixed-strategy Nash equilibrium
 - Player I will choose Path T and Path B 50% of the time
 - Player 2 will choose Path L and Path R 50% of the time

Infinitely Many Equilibrium Case

- Triangular or trapezoidal fundamental diagram
 - $[0, k_c]$ traffic travels at free-flow speed

Infinitely Many Equilibrium Case (cont.)

- User Equilibrium: all used paths connecting the same origin and destination have equal and minimal travel time
 - At UE users cannot switch paths and save travel time
- One unique system optimal solution: $p_1 = p_2 = \frac{1}{2}$
- Infinitely many user equilibrium: p_1 and p_2 can vary from [0,1]

Effect on Surrounding Network

Piecewise Linear Fundamental Diagram

- $[0, k_r]$ traffic travels at free-flow speed
- $[k_r, k_c]$ traffic speeds vary; speeds are truly a function of density
- Unique travel time when link is operating at capacity

Numerical Example

• Compare Case I (links I and 2 have triangular fundamental diagrams) and Case II (links have piecewise linear diagrams) when $p_1 = 1$ and $p_2 = 0$

Case I

• Links I and 2 are identical and have the following fundamental diagram:

Case II

• Links I and 2 are identical and have the following fundamental diagram:

Case I Results

▶ $\forall n \in [0, N], \tau_1 = 1.0 \min = \tau_f$

 $\bullet \quad \tau_1 = \tau_2$

• $[p_1 = 1, p_2 = 0]$ satisfies user equilibrium

Case II Results

Time (t) -- in min

Case II Results (cont.)

- Unique link speed/travel time at capacity [$\tau_1 = 1.2 min$]
- The piecewise linear fundamental diagram results in **one**, **unique user** equilibrium [$\tau_1 = \tau_2 = 1.2 min$ and $p_1 = p_2 = \frac{1}{2}$]

Future Work

• Defining u_r and k_r

References

- 1. Daganzo, C.F. (1998). "Queue Spillovers in Transportation Networks with a Route Choice." *Transportation Science* 32(1), 3–11.
- 2. Nie, Y. (2010). "Equilibrium Analysis of Macroscopic Traffic Oscillations." *Transportation Research Part B* 44(1), 62–72.
- 3. Nash, J. (1951). "Noncooperative Games." Annals of Mathematics 54, 286–295.