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Introduction

» Dynamic traffic assignment (DTA) provides hope for accurately
modeling traffic

Addresses issues of static traffic assignment: time-varying demand, queue
formation, congestion spillback, etc.

Needed in order to model time-dependent demand policies and most ITS
technologies

» Simulation-based DTA models do not provide a universal solution or
guarantee that equilibrium exists
Equilibrium is heuristically approximated
Multiple equilibrium are possible

Equilibrium may not exist



Earlier Work
» (Daganzo, 1998)

Addressed the importance of queue spillback prevention and its chaotic behavior
(small perturbations of ¢, can dramatically effect the state of the network)
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Showed that four distinct user equilibria can develop

Categorized equilibria by stability and efficiency properties
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(a) A Diverge-Merge (D-M) Network
k is the ratio of the capacities of link 1 and link 2.
ris the proportion of traffic heading for link 1.




Motivation

» Contribute to the limited research regarding DTA equilibrium issues
and propose game theory as a potential solution method

First example

» Previous research has focused on the nature of DTA equilibrium at the
merge or as a result of a downstream obstruction

Second example showcases the complications at the diverge



DTA as a Large-Scale Economic Game

» A game is made up of three elements:
I number of players [individual drivers]
Set of actions A; for each player i [paths available to each driver]

Resulting utility of each action u; : A — R [path travel times]

» Any game with a finite number of players and a finite set of strategies is
guaranteed to have a mixed-strategy Nash Equilibrium

Players are rational

Players act independently of one another
(Nash, 1951)



No Equilibrium Case

» Horizontal/Vertical Links: |
minute travel time

» Diagonal Links: 1.5 minute travel
time

» Yield Time: | minute

» Player | travels from Origin 3 to
Destination 4

» Player 2 travels from Origin | to
Destination 2

» Players will continually switch
paths

Windicates the
approach yielding
nght-of-way
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No Equilibrium Case (cont.)

L R
T |(45,45) (45 4)
B (5,35) (4 4)

» No pure strategy Nash equilibrium
ui(a;,ay) = wa'yay) Viel

» Mixed-strategy Nash equilibrium
Player | will choose Path T and Path B 50% of the time
Player 2 will choose Path L and Path R 50% of the time



Infinitely Many Equilibrium Case

» Triangular or trapezoidal fundamental diagram

[0, k] - traffic travels at free-flow speed
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Infinitely Many Equilibrium Case (cont.)

» User Equilibrium: all used paths connecting the same origin and
destination have equal and minimal travel time

At UE users cannot switch paths and save travel time

1

» One unique system optimal solution: p; = p, = >

» Infinitely many user equilibrium: p;and p, can vary from [0, 1]




Effect on Surrounding Network




Infinite Price of Anarchy

TSTT at UE

» Price of Anarchy =

TSTT at SO

veh
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Piecewise Linear Fundamental Diagram

» [0, k,] - traffic travels at free-flow speed
» [k, k] - traffic speeds vary; speeds are truly a function of density

» Unique travel time when link is operating at capacity
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Numerical Example

» Compare Case | (links | and 2 have triangular fundamental diagrams)
and Case Il (links have piecewise linear diagrams) when p; = 1 and

p, =0

Qinfiow = 100 veh/min

qoa™ = 100 veh/min
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Case |

» Links | and 2 are identical and have the following fundamental diagram:
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Case Il

» Links | and 2 are identical and have the following fundamental diagram:
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Case I Results

» Vne[ON], 7, =1.0min = 1;
1 =12
» [p1 = 1,p, = 0] satisfies user equilibrium
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Case II Results

» nef040], 7, = %+ 1
» n€[40,N], 7, =1.2min

7, > 1, ===>[p; = 1,p, = 0] does not satisfies user equilibrium
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Case II Results (cont.)

» Unique link speed/travel time at capacity [ 7= 1.2 min ]
» The piecewise linear fundamental diagram results in one, unique user
ey . 1
equilibrium [7;=17, = 1.2 minand p;=p, = E]
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Future Work

» Defining u,- and k,
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