The *International Journal of Self-Directed Learning* (ISSN 1934-3701) is published biannually by the International Society for Self-Directed Learning. It is a refereed, electronic journal founded to disseminate scholarly papers that document research, theory, or innovative or exemplary practice in self-directed learning. Submission guidelines can be found at www.sdlglobal.com

SUBSCRIPTION or BACK COPY ORDERS: Contact:

International Journal of Self-Directed Learning

7339 Reserve Creek Drive, Port Saint Lucie, FL 34986

issdl.sdlglobal@gmail.com

© 2016, International Society for Self-Directed Learning. All rights reserved. No portion of this journal may be reproduced without written consent. Exceptions are limited to copying as permitted by Sections 107 (“fair use”) and 108 (“libraries and archives”) of the U. S. Copyright Law. To obtain permission for article reproduction, contact the editors at:

International Journal of Self-Directed Learning

issdl.sdlglobal@gmail.com

Cover design by Gabrielle Consulting
Preface

This issue is emblematic of the current diversity of research approaches used to study self-directed learning (SDL) and associated constructs such as autonomy and self-regulation.

In the first article, Seifert, Newbold, and Chapman suggest the importance of performance coaching in improving programmatic concerns such as retention and completion rates in addition to developing SDL. Their conclusions were based upon a case study of competency-based education (CBE) used in two master’s level programs. Upon review, one *IJSDL* editorial board member asserted the following:

> With many college-level programs...relying on CBE, methods to increase student competency through self-directed learning are critical.... [The] findings are relatively preliminary but compelling... [and] certainly a starting point for further investigation.

The second article by Ponton and Carr presents a causal comparative study in which extant data were analyzed in an attempt to determine if higher education plays a developmental role in learner autonomy. Their analysis does not stop at null hypothesis statistical testing but rather proposes effect size arguments to counter rival hypotheses. A reviewing board member concluded the following:

> The authors have effectively presented a professionally described research question that is adequately constructed within contemporary theoretical frameworks.... The inferences made within the manuscript are adequate... [and] the suggestions for further study that are included do provide an avenue for further developmental strategies.

Finally, the third article by Brewer discusses the work of Leni Dam, who was a middle school English teacher working in Denmark (retired in 2006). The idea of promoting autonomy in language learning extends back several decades; thus, Dam’s three decades of teaching and developing learner self-direction is of particular interest to both the language instruction and SDL fields. A reviewing board member wrote the following:

> The author clearly pinpoints specific limitations of language learning that is confined to the classroom space and the need for language educators to instill SDL initiative in these learners to enable not only an understanding of the “fluency” of the language but the cultural implications of language learning as well.

I want to thank these authors for sharing their work with the *IJSDL* readership.

Michael K. Ponton, 2016 Guest Editor
CONTENTS

Preface ii

Put Me In, Coach: Self-Regulated Directed Learning as Tactical Power

Christine Seifert, Curtis Newbold, and Richard Chapman 1

The Possible Role of Higher Education in Developing Learner Autonomy:
A Quantitative Exploration

Michael K. Ponton and Paul B. Carr 12

Developing Self-Directed Learning in the Language Classroom:
The Work of Leni Dam

Stephen Scott Brewer 26
PUT ME IN, COACH: SELF-REGULATED DIRECTED LEARNING AS TACTICAL POWER

Christine Seifert, Curtis Newbold, and Richard Chapman

Based on student feedback and performance, we argue that coaching—particularly performance coaching—is one possible way to encourage and support strategic learning. We assert that coaching is the key to providing strategic moves to learners to help them develop self-regulated learning.

Keywords: coaching, competency-based education, tactics, strategies

A clear and growing trend in higher education in the last few years has been the rise of competency-based education (CBE) programs. The Competency-based Education Network (C-BEN) defined CBE to represent all the flavors and varieties of CBE happening across the United States. That definition is as follows:

CBE is a flexible way for students to get credit for what they know, build on their knowledge and skills by learning more at their own pace, and earn high-quality degrees, certificates, and other credentials that help them in their lives and careers. CBE focuses on what students must know and be able to do to earn degrees and other credentials. Progress is measured by students demonstrating through valid, reliably assessed learning objectives that they have acquired knowledge and skills required to earn degrees or other credentials in a particular academic discipline or field of study, regardless of the amount of time spent. (C-BEN frequently asked questions, n.d., para. 2)

From this definition, we might recognize a few key components to the learning method(s) intended for students in CBE programs that differ somewhat from traditional, hierarchy-model learning environments: CBE learning is meant to be flexible, student-paced, and knowledge-building (as opposed to content-acquiring).

As research in (CBE) has evolved, we have come to recognize the critical importance for learners to take charge of their educational experiences, yet many CBE programs still struggle to implement the obvious ingredient for successful CBE programs: effective self-directed learning (SDL) among learners (Hiemstra, 2013). In a historical narrative of the progression of self-directed learning in the United States, Guglielmino, Long, and Hiemstra (2004) cited Malcolm Knowles’ “best known and most-cited” definition of what it means to be a self-directed learner:
Self-directed learning describes a process in which individuals take the initiative, with or without the help of others, in diagnosing their learning needs, formulating learning goals, identifying human and material resources for learning, choosing and implementing appropriate learning strategies, and evaluating learning outcomes. (p. 5)

The action verbs in Knowles’ definition help us to get a clear sense of what self-directed learning might mean for CBE programs and how it differs from traditional instruction: students, rather than instructors, take the initiative, diagnose the needs, formulate the goals, identify the resources, implement the strategies, and evaluate the outcomes. From this description, we recognize that self-directed learning requires more than a submissive and compliant approach to learning; rather, it requires learners to develop consciously articulated and thoroughly processed tactics—as opposed to acquiescing to otherwise prescriptive processes—for enhancing a personalized learning environment. In essence, SDL is likely a critical ingredient for the success of CBE programs.

Many useful tests and measurements exist that include Guglielmino’s (1977) oft-cited Self-Directed Learning Readiness Scale (SDLRS) to help identify learners who are best suited for this format of learning. However, nearly 40 years after the conceptualization of the SDLRS, Morrison and Premkumar (2014) have noted that even now “there is a clear lack of documentation regarding how to promote and actualize SDL” (p. 1). As a result, many programs continue to struggle in developing specific structures that fully support, encourage, and enable SDL. A possible reason for this lack of documentation and subsequent difficulty may be that our institutions are built and often run in opposition to self-directed learning, thereby making it more difficult for learners to develop individualized tactics. Even CBE programs, which are designed to promote SDL, function within systems and organizations that potentially restrict learners’ abilities to effectively engage in SDL. Potential obstacles such as financial aid regulations, accrediting requirements, admissions policies, semester systems, tenure and promotion processes, registrar and transcript assessment templates, and so forth can serve to hinder even the most motivated and effective self-directed learner.

Whether a program is CBE or not, the challenge begins (at least in part) with several issues within faculty members’ education and experience within traditional systems: Hiemstra (2013) has noted that most doctoral programs do not teach academics teaching and learning best practices; time restrictions impede many faculty members from allowing SDL to develop within learners; ego impairs faculty members’ ability to share control in a learning environment; and professional identity is often tied to the notion of being the “owner and transmitter” of knowledge. In many ways, the traditional system and, by association, the faculty who teach within it inadvertently and implicitly communicate to learners that they cannot or should not learn on their own. If they could, so the logic goes, they would not need the institution. As such, SDL often requires learners to actively fight or subvert this institutional environment in order to improve learning.

To better facilitate self-directed learning in CBE learning environments, we submit that program and course curricula can be structured to support what we label as...
“tactical” moves that empower a learner’s self-direction. Tactical moves work in opposition to what may be defined as “strategic” moves and systems; as learners acquire tactical know-how, we argue, they better adapt to their individual learning needs.

In the following discussion, we submit that, as an effort to improve self-directed learning in CBE programs, (a) learners must work against strategic power systems, (b) they must develop clear tactics in order to do so, and (c) they may benefit from the help of a performance coach that can assist in the development of tactical moves. In a short case study, we then identify how performance coaching at one institution has assisted learners in developing the necessary tactics to succeed in CBE programs that require significant SDL.

Learners and the Strategic System: Strategic Moves Preclude Self-Directed Learning

In his book *The Practice of Everyday Life*, de Certeau (1984) argued that everyday practices are simply a series of strategic moves and tactical moves; in other words, the ways in which we navigate the world are “more than just obscure background of social activity” but rather systematic and controlled actions by either a person or an institution (p. xi). Strategy, for de Certeau, can be defined as power we exert in a place that we deem “proper,” a place where “force-relationships” exist (p. xix). Strategic power is wielded by institutions in “a victory of space over time” (de Certeau, 1984, p. xix); it is the power of the institution that “sustains” the strategy (de Certeau, 1984, p. xx). For an individual, strategic moves, then, become a submissive will to learn and succeed within prescriptive set of structures. Kimball (2006) noted that strategies are “written onto the social landscape, forming the rules of individual action” (p. 71).

In terms of higher education, strategies are the pathways and structures the institution creates for students: curricula, syllabi, grading systems, semesters, credit hours, class times and locations, etc. If we view traditional educational models as a strategic apparatus using Agamben’s (2009) parameters, we might view the system from which the self-directed learner must disengage as a “heterogeneous set” of “discourses, institutions, architectural forms, regulatory decisions, laws, administrative measures, [and] scientific statements” (p. 2). Generally, learners have to work methodically within these strategic frameworks to succeed. To disengage from the system in favor of learning that better suits the learner’s idiosyncratic traits, self-directed learners must be consciously tactical; self-aware and prepared enough to know how to adapt, adjust, and re-position.

Self-directed learners—whom we describe as learners who tackle learning by exploring beyond what traditional education offers—find some of their greatest challenges in developing the ability to work against this complicated and powerful system of education that has been culturally engrained for centuries. Learners are often positioned in an environment that encourages them to (often blindly) acquiesce to strategic moves within the power system rather than to explore and develop on their own terms. Cope and Kalantzis (2000) have suggested that relying only on strategic moves precludes a learner’s ability to adapt and explore knowledge in ways that match
his or her learning styles and curiosities because it is controlled by a “hierarchical
command structure” (p. 11).

The very nature of SDL suggests that individuals who are learning-oriented (as
opposed to goal-oriented or activity-oriented, which are often derived from traditional
educational models) accept the responsibility for “designing and pursuing [emphasis
added] an educative activity” (Houle, 1963, p. 92) and must actively use tactics to
disengage from what Davis, Sumara, and Luce-Kapler (2008) identified as the
“equilibrium”—a regulatory state of balance and systematic learning. Learners must, in
other words, operate “far-from-equilibrium forces to explore their spaces of possibility”
(Davis et al., 2008, p. 81).

Developing Tactics: Self-Directed Learning is a Tactical Move in CBE Programs

In contrast to strategic moves, tactical moves are ones in which actors cannot control a
“proper” place but must instead find ways to navigate that place in unique and self-
prescribed ways. Author, consultant, and military strategist Stan Goff (2012) described
it as follows: “The city planning commission may determine what streets there will be
[strategic system], but the local cabbie will figure out how best to navigate the lived
reality of those streets [tactical moves]” (p. 268). Self-directed learners, therefore, must
be tactical about their learning; they must figure out how best to navigate the lived
reality of their applied learning.

de Certeau (1984) argued that “the place of a tactic belongs to the other” and
that a tactic “depends on time” because it is “always on the watch for opportunities that
must be seized ‘on the wing’” (p. xix). Kimball (2006) further noted, “individuals use
tactics to survive and come as close to achieving their purposes as possible” (p. 71).
Learners functioning within a strategic system use well-timed and deliberate tactics to
esptemologically survive and to critically analyze; then they are able to creatively
produce self-determined results. Fuller (2013) suggested that tactical learning methods
might best be described as “know-how” (or *techne*), the Greek philosophical concept
that allows individuals—or learners—to make sense of the “how-to” in a given situation
(p. 272).

But while *techne* is useful as a conceptual definition for how learners might
“make sense” of the how-to in a given situation, application of the perceived how-to is
the real challenge. Utilizing the French concept of *bricolage*—which refers to the actual
ability to construct or create something specific from a diverse range of things or
ideas—we suggest a planned and skillful approach to integrating tactics requires the
assembly of available resources in new and innovative ways that are not always easy to
comprehend given the stronghold of the strategic structure. *Bricolage* as a defined skill
requires individuals to make something out of what they have available in spite of
strategic structures or limitations (de Certeau, 1984, p. xii). We further argue that CBE
education requires learners to use SDL as a form of *bricolage*. Within an institutional
framework that includes fixed pathways, structures, and practices, learners can use self-
directed learning as a tactical move. Learners in any institution—even in a
nontraditional CBE program housed in a traditional institution, or *proper space*—need
tactics like know-how to succeed.
Building on Knowles’ definition of SDL cited previously, we further describe SDL as a tactical series of moves where learners “view acquisition [of knowledge] as a systematic and controllable process, [where] they accept greater responsibility for their achievement outcomes” (Zimmerman, 1990, p. 4). CBE programs—by nature of their self-directed, competency mastery design—require learners through *bricolage* to identify both problems and solutions without overarching teacher-directed strategies to do so. In other words, learners in CBE environments are forced to develop and apply tactics because—in a twist of irony—there are *fewer* clearly articulated strategic forces at play. Learners cannot rely on institutionalized moves.

Research has shown, however, that developing the nuanced characteristics of SDL as a tactic to break free from a strategic educational apparatus is not easy or necessarily natural. Self-directed learning requires an awareness of its own lexicon (Hiemstra, 2004); it requires the attainment of both self-esteem and self-efficacy (Hoban & Hoban, 2004); it requires motivation (Mok & Lung, 2005); and it requires desire, resourcefulness, initiative, and persistence (Ponton, Derrick, Hall, Rhea, & Carr, 2005). Each of these requirements for SDL is essentially one of a collection of educational “materials” at the disposal of the learner/bricoleur. Awareness of their existence and relationship to learning combined with knowledge of how one may apply and assemble these materials becomes the ultimate task for learners in CBE environments.

Because of the inherent challenges that exist in applying tactical moves to learning, we claim that effective development of self-direction through epistemic *bricolage* may be enhanced with the assistance of a performance coach or a designated individual who helps a learner identify and apply tactics beyond the strategic apparatus. Using critical pedagogy scholar Freire’s (1993) terms liberally within the SDL context, learners do not typically become effective self-directed learners by “chance” but through “praxis” and “recognition of the necessity to fight for it” (p. 27). If self-directed learners are to acquire the lexicon, esteem, efficacy, motivation, resourcefulness, praxis, recognition, fight, etc. that is required, performance coaches can be an effective resource that learners can look to for improved tactical guidance. Coaching is particularly effective in CBE programming where learners are more free to be self-directed learners.

Working with Coaches: Coaching Develops Know-How

Performance coaching has been a well-documented process in business to help employees learn how to problem-solve, develop talents, increase engagement, and encourage learning (e.g. Turner & McCarthy, 2015; Zainal Abiddin & Hassan, 2010).

The core principle of performance coaching has been to focus on the development of self-directed learning (Wilson, 2007). Wilson (2007) argued, “coaches do this by asking questions that are not closed or leading, but open—turning the coachee’s focus inside” (p. 8). In his seminal book *Coaching for Performance*, John Whitmore (2009) noted the following, which can be related to the concept of tactical know-how (*techne*): “Coaching is unlocking people’s potential to maximize their own performance” (p. 10). Coaching is a process, not a specific knowledge base; therefore, a
coach can adapt the process to suit a person or situation (Wilson, 2007). In this view, the key to the coaching process is that the coach asks questions that enable the coachee to acquire recognition of the resources and opportunities available and to self-discover and apply appropriate tactics so the coachee can move forward.

Performance coaching in a competency-based, self-regulated system allows learners to develop learning practices uniquely applied to them as individuals; it is a personalized and continuous process that facilitates student learning and helps foster development in content mastery and problem-solving. In some CBE programs where performance coaches work with the learners, faculty coaches have been noted to meet frequently—every 2 to 3 weeks—with learners to help build awareness of how to approach complicated problems given the current context of the educational system, the current learning goals, and the individual’s life situation and knowledge base. The coaches assist learners in increasing learner confidence by helping them figure out an individualized approach to problem-solving, and they work with the learners on motivation and improved performance by acting as a constant source of support (Seifert & Chapman, 2015). Self-regulated learning coupled with frequent, quality coaching provides necessary input when learners get stuck or meet obstacles to learning. Coaching, then, is not about forcing people into action but rather in raising insight and awareness out of which action will arise at the time most suited for the coachee (Wilson, 2007).

The common pitfall that faculty fall into as coaches is asking questions of students that will lead them towards the coach’s preferred solution to an issue or problem, which removes the opportunity for the learner to be tactical, pushing the learner back into a strategic environment. The coaching process requires that the coachee acquire new personal insight into solving the problem. If there is no new insight by the coachee, then no coaching has taken place (Wilson, 2007). The goal in self-directed learning and coaching is the development and fulfillment of the learner/coachee’s potential.

The case study below identifies the role of a performance coach in assisting learners’ application of self-directed learning tactics. Using Westminster College’s CBE program structure—which employs performance coaches to assist learners in tactical development—as a case study, we argue that CBE programming aimed at enhancing self-directed learning can be augmented with coaches who assist learners in tactical development. While we specifically look at our CBE programs, the coaching process can be a key complementary aspect of any program designed to emphasize SDL.

A Case Study: Competency-Based Education at Westminster College

Westminster College has four CBE programs. Two of these programs are for undergraduates: a Bachelor of Business Administration (BBA) and a Registered Nurse (RN) to Bachelor of Science in Nursing (BSN) program. We also have two CBE graduate degree programs: a Master’s degree in Strategic Communication (MSC) and a Master’s degree in Business Administration (MBA). For our purposes here, we will only address the graduate programs as those are the programs in which we have used performance coaching as a means of enhancing SDL.
In our CBE graduate programs, specific performance objectives are defined and designed to promote student achievement through work- or service-related projects. When a learner has successfully finished a project and demonstrated the performance objective (many of which are necessarily highly subjective in nature), he or she is considered to have mastered the “competency” associated with the project. Learners who do not master the competency receive feedback from a faculty member and resubmit work. Work can be resubmitted until the learner does master the competency.

Competencies are sufficiently broad to encourage learners to think about multiple ways to demonstrate that particular competency. For example, in the MSC program, learners must demonstrate their ability to use a method of rhetorical analysis, make a persuasive and well-supported argument about how an active artifact functions in particular contexts, yet the form of the deliverable is largely based on their interests and goals. Learners identify a topic, select and analyze an audience, create and execute a research plan, plan and complete deliverables, and use an appropriate channel to deliver the project. In the role of performance coach, faculty do not offer suggestions; rather, they ask opened-ended questions designed to help learners self-direct.

Learners can move quickly through competencies that they can easily demonstrate and can focus more time on those that require additional attention and learning. Again, learners determine which projects require more or less attention based on their goals and past experience and knowledge. Self-directed learners find it much easier to scope and manage projects without significant stress.

In our programs, we have discovered that it is much easier for a learner to fail in a CBE program. Without clear requirements for deliverables—outside of competencies—learners who are not self-directed struggle mightily. In fact, many of our learners will immediately seek the comfort of the strategic system. They will ask for specific requirements: How many pages? How many sources? Double- or single-spaced? What does the deliverable look like? Even mature learners with significant professional experience will tend toward strategic learning. It is as if the presence of the institution—even a virtual presence—signifies that learners must learn from us (when in reality they often must learn in spite of us).

In these programs, faculty roles have slowly begun to shift. If our job is to encourage self-directed learners to develop tactics, then our success must be measured by how little learners need from us as they progress through our programs. While we have discovered that performance coaching may be the most important work we do to encourage SDL at a tactical level, performance coaching—at least on the surface—calls into question the need for faculty at all. As one skeptic said to us, “If our job is to simply guide students, why are we there? We could be replaced with lower-paid part-time faculty with fewer qualifications.” Such questions are often veiled concerns about the erosion of strategy as learners become increasingly adept at tactical maneuvers. The answer to our skeptic’s question, though, is that faculty are still necessary; our job is simply shifting in interesting and sometimes unexpected ways.

The content knowledge faculty have remains important; our model of CBE requires us to use that knowledge as we build curriculum, construct learning objects available if and when students need them, and clarify key concepts and ideas as students request those clarifications. We also bring content knowledge to bear in our frequent
responses to student submissions. But we see that work as separate and distinct from performance coaching, our primary vehicle for promoting and helping students develop SDL skills. In practice, performance coaching and content coaching can be done by two separate individuals, and one of our programs uses that model. In cases where one person performs both roles, we are clear with learners that performance coaching has the sole goal of helping students develop as tactical, self-directed learners. When faculty are wearing a performance coach hat, so to speak, we do not engage in content instruction. To do so would undermine the learners’ development of tactics while implicitly moving strategy to the default position.

Not surprisingly, learners often push back when faculty take on performance coaching roles. For example, common questions students ask of faculty when they have just started one of the CBE graduate programs would be something like “How should I start the project?” “How should I manage my time to finish these assignments?” “Where can I find research relevant to the issues I am working with?” or “What structure is in place to make sure I keep pace to finish my tasks in a semester?” Before performance coaching was implemented at Westminster, faculty would tend to answer these types of questions for students in direct and precise ways, often invoking the institutional strategy. In essence, we were telling students that we have the answers, the method, and the outcome already in place. The learners’ job then is not to practice SDL but to figure out what we already know. In this model, faculty and learners are playing a complicated game together.

Since implementing coaching, faculty interactions are very different when students have these types of strategic and tactical questions. In response to “How should I start the project?” a faculty coach might ask something like this: “After considering the project guidelines’ limited parameters, what jumped out to you as an important outcome?” When a learner asks “How should I manage my time to finish these assignments?” the faculty coach might ask “I’m curious to know how you want to hold yourself accountable to finishing the projects according to your goals?” The faculty coach is now “pushing” the problem-solving, tactical thinking, and process creation back to the learner. Seasoned self-directed learners will immediately take the baton and run. Learners who are lacking tactical, SDL skills will usually discover (though not necessarily quickly) that content acquisition is only one part of the equation.

Acting as coaches ourselves, we have discovered some of the most common problems learners face in a CBE environment. First, even our most prepared learners often look to coaches to provide external rewards or punishment for completing or not completing work. In the role of performance coach, we ask questions that encourage learners to develop internal rewards and consequences. Without due dates—and accompanying late penalties—learners are forced to develop a customized system of their own, one that allows them to apply individualized tactics.

Some learners struggle to understand how stated competencies should function to guide their work. For example, one of us recently worked with a learner who selected a project far different from those being completed by other learners in the cohort. The learner repeatedly asked the author, who was acting as the performance coach, to approve or not approve the project topic. The coach responded with questions designed to get the learner to evaluate how the project could effectively demonstrate
competencies. Ultimately, the learner determined that the unusual project could most certainly demonstrate competencies but only if the learner designed the project with competencies in mind. It certainly would have been faster for the coach to simply answer yes or no to the learner’s original question. But coaching this learner until she found her own answer ensured that the student’s learning remained within her tactical control at all times.

Occasionally learners will ask coaches to identify the quickest and easiest way of passing a project. What learners are really asking for are tactics. As coaches, we respond with questions designed to prompt a longer conversation about tactical learning. In some cases, learners might decide they are best served by minimizing effort in one area in order to maximize another. As coaches, our job is not to chastise students or even change their minds. We want to prompt learners to be self-actualized, self-motivated problem solvers. Another recent example of the role of performance coaching in SDL occurred when one of us was having a coaching session with a student who kept asking questions about where the student ranked in different skill sets and overall with the rest of their cohort. Instead of answering the question the coach redirected the question back to the learner and asked, “How will you measure your successes in a lifetime of learning if you have no one to compare yourself with?” The purpose of the redirection was to help the student achieve greater insight into motivation, measures of success and goal achievements over a lifetime. Giving learners the tactical information they want sometimes prevents learners from exploring the issues that will lead to the greatest long-run dividends.

By wedding coaching with SDL, we would argue that we are better equipping students to solve problems, find information, and, most importantly, enhance directed lifelong, self-learning skills. If structure and process are always provided to learners in a self-directed study program, one has to wonder if they will have sufficient tactical skills to carry over the newfound knowledge into lifelong pursuits.

Future Directions

Our results are tentative for now, but we are seeing significant evidence that performance coaching aids in retention and graduation rates. Our graduate programs see consistent retention rates at 90% every semester. Learner self-reports indicate that they recognize their own SDL development particularly as they make career shifts and receive promotions at work, often due to characteristics that are directly related to SDL.

We are at the very beginning of our research into the role and development of SDL in CBE programs particularly as we define and refine the role of performance coaching as an SDL development process. Our next step involves having incoming learners self-evaluate their SDL readiness using Guglielmino’s (1977) readiness scale. Exit evaluations—completed by both faculty and learners—will help us determine SDL development. We are also developing a complementary assessment that will allow us to determine the role of performance coaching in relationship to SDL development.

While CBE may still be a strategic system, it opens the door to encouraging tactical learning. In some ways, it turns the institution on its head. CBE suggests that the
most important job for a faculty member is to remove the strategic barriers and provide support in learner acquisition of tactics particularly SDL.

CBE and its emphasis on learners’ acquisition of competencies is still a systematic (and therefore strategic) process, but it is also a controllable process. As a result, learners must accept greater responsibility for their achievement outcomes (Zimmerman, 1990, p. 4). Being a self-directed learner is not simply an adjective for a learner; it is a necessary tactic, and one that will likely ensure lifelong learning. Performance coaching—based on our initial experiences—may be the necessary ingredient for SDL development.

References

Christine Seifert (cseifert@westminstercollege.edu) is a communication professor who specializes in professional communication, rhetoric and persuasion, and gender/cultural studies. She teaches in Westminster’s competency-based Master of Strategic Communication program.

Curtis Newbold (cnewbold@westminstercollege.edu) is a communication professor who specializes in professional communication, new media, information design, and visual rhetoric. He teaches in Westminster’s competency-based Master of Strategic Communication program.

Richard Chapman (dchapman@westminstercollege.edu) is an economics professor who works on competency-based and project-based learning programs for Westminster’s MBA program. As a mentor and performance coach for this program, he meets with students to help them refine their executive skills and assists them in applying their skills in the workplace.
THE POSSIBLE ROLE OF HIGHER EDUCATION IN DEVELOPING LEARNER AUTONOMY: A QUANTITATIVE EXPLORATION

Michael K. Ponton and Paul B. Carr

A causal-comparative study was conducted in an effort to uncover any evidence that higher education plays a developmental role in learner autonomy. Data were obtained from five instruments (Inventory of Learner Desire, Inventory of Learner Resourcefulness, Inventory of Learner Initiative, Inventory of Learner Persistence, and Appraisal of Learner Autonomy) administered to a nonprobability sample of adults (N = 2,147) at the following highest education levels: high school diploma (n = 1,205), bachelor’s degree (n = 358), and graduate degree (n = 584). These data provided measurements of desire, self-efficacy in autonomous learning, and conative learner autonomy that formed the foci of analyses. With one exception (no difference between high school and bachelor education levels for conative learner autonomy), inferential analysis revealed statistically greater levels of all measured variables with increasing education level (p < .05); however, effect size analysis did not support the developmental role under study.

Keywords: higher education, learner autonomy, effect size analysis

Agency theory and associated constructs (e.g., control and choice) have been used to support a theoretical foundation upon which understandings of self-directed and autonomous learning have historically been built (e.g., Bouchard, 1994; Brockett, 1985; Candy, 1990; Chene, 1983; Confessore & Confessore, 1994; Garrison, 1989; Guglielmino, 1977; Hiemstra, 1994; Jarvis, 1992; Knowles, 1975; Long, 1989; Mezirow, 1985; Redding & Aagaard, 1992). Scholars continue to argue (cf. Derrick & Ponton, 2009; Ponton & Carr, 2016) the importance of learner self-directedness and autonomy as mechanisms of individual empowerment that enable lives to be lived self-fulfillingly along personally chosen trajectories. As of 2014, approximately 90% of U.S. adults (i.e., 18 years of age and older) held at least a high school diploma (or equivalent), 30% at least a bachelor’s degree, and 10% a graduate degree (cf. United States Census Bureau, 2015); due to the less than 100% graduation rates at all levels, participation rates are obviously even higher. Thus, formal systems of education represent major opportunities to develop learner autonomy.

From a legal perspective, “adult” characterizes the person who is able to engage in obligatory contractual relationships, which is typically 18 years of age (cf. “age of
majority,” Kaplin & Lee, 1995, p. 372). This legal perspective, however, also facilitates a certain psychological perspective; that is, the legal ability for personal agency affords opportunities to exercise personal agency. One avenue that adults exert their agency is by participating in higher education.

The myriad goals of higher education include disseminating knowledge and skills in order to develop informed citizens, competent workers, and societal leaders. From a knowledge dissemination perspective, the dominant history of higher education suggests that it was conceivable a student could learn essentially all that was needed while in college to be considered an educated person (typically an educated man) for the remainder of his (or, much later, her) life.

This bounded perspective of knowledge is not true today. New information is being created at arguably nonlinear rates with increasing availability. In order to stay informed, remain competent, and lead effectively in optimal ways, today’s person must have a strong sense of personal agency to select and learn relevant information—that is, exhibit learner autonomy—long after leaving formal education. As learner autonomy is so critical in supporting a productive, fulfilling adult life, higher education likely should play a major role in its development due to high participation rates and, thus, great opportunities for influence. The purpose of this study was to determine if any evidence exists that supports a developmental role of higher education on the learner autonomy related constructs of desire (conceived as a measure of personal agency), self-efficacy in autonomous learning, and conative learner autonomy (i.e., resourcefulness, initiative, and persistence).

Method

The Learner Autonomy Profile (LAP; licensed to Human Resource Development Enterprises, HRDE) was initially created as a battery of four separate instruments: the Inventory of Learner Desire (ILD; cf. Meyer, 2001), the Inventory of Learner Resourcefulness (ILR; Carr, 1999), the Inventory of Learner Initiative (ILI; Ponton, 1999), and the Inventory of Learner Persistence (ILP; Derrick, 2001). The purpose of the LAP is to use measure the preconative factor of desire and conative factors of resourcefulness, initiative, and persistence (Confessore, 1992) in order to better understand the agentic intentions of adult learners; human agency in learning has been argued as a defining characteristic of autonomous learning (Ponton, 1999, 2009). Subsequent to the work of Meyer (2001), Carr (1999), Ponton (1999), and Derrick (2001) HRDE continued instrument validation and refinement (Park & Confessore, 2002). There were no perceived conflicts of interest associated with the use of HRDE licensed instruments for HRDE sanctioned research.

Ponton, Derrick, Carr, and Hall (2004) presented the Appraisal of Learner Autonomy (ALA) as a measure of self-efficacy in autonomous learning. Self-efficacy has been supported empirically as an important factor in human agency (Bandura, 1997); therefore, Ponton et al. (2004) argued that measuring this construct is essential in furthering an understanding of learner autonomy. The 9-item final version of the ALA (Ponton, Derrick, Hall, Rhea, & Carr, 2005) was argued as valid and has been used as part of the LAP since its publication in 2005 (note that the ALA is unlicensed and is
available for research in Ponton et al., 2005, and Ponton, Derrick, Hall, Rhea, & Carr, 2016) in support of HRDE-sanctioned research and worldwide efforts to coach adults interested in increasing their learner autonomy.

For the present study, the data from a nonprobability sample of 2,344 cases were analyzed. These data were gathered via numerous research studies (predominately the U.S. and East Asia) using both the LAP and the ALA and provided to us by HRDE. The exact percentage of participants from the U.S. is indeterminate based upon the demographic data provided; however, the included names of participants and studies suggests that a dominant percentage of the participants are from the U.S. Reliability statistics for all inventories (i.e., ILD, ILR, ILI, ILP, and ALA) are presented in Table 1; internal consistency is deemed tenable.

Table 1. Reliability Statistics: Cronbach’s Alpha Coefficient

<table>
<thead>
<tr>
<th>Measure</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD</td>
<td>.93</td>
</tr>
<tr>
<td>ILR</td>
<td>.96</td>
</tr>
<tr>
<td>ILI</td>
<td>.97</td>
</tr>
<tr>
<td>ILP</td>
<td>.97</td>
</tr>
<tr>
<td>ALA</td>
<td>.92</td>
</tr>
</tbody>
</table>

Note. N = 2,344.

The final dataset of 2,147 usable cases was developed via the following data screening procedures:

1. All cases representing participants less than 18 years of age were deleted.
2. All cases missing the education level were deleted.
3. Total scores for the ILD, ILR, ILI, ILP, and ALA were normalized by their maximum possible scores (i.e., 330, 530, 440, 340, and 900, respectively) consistent with the recommendation of Ponton and Schuette (2008). (Note: only normalized values will be processed and discussed henceforth.)
4. Extreme univariate outliers (i.e., 3 times the interquartile range below the first quartile or above the third quartile; all outliers identified were below) were removed for all five normed variables.
5. The normative scores for the ILR, ILI, and ILP were summed to create a new variable RIP (Resourcefulness, Initiative, Persistence) that represents conative learner autonomy (cf. Ponton, Carr, Schuette, & Confessore, 2010). No univariate outliers were found for RIP.
6. Using RIP as the dependent variable and age, education level (1 = high school diploma, 2 = bachelor’s degree, and 3 = graduate degree; assumed as an interval measure only for analysis), ILD, and ALA as independent variables in a regression analysis, the Mahalanobis distance was calculated to identify
multivariate outliers. Using $\chi^2(5) = 20.515$ ($p = .001$) as the critical value, all multivariate outliers exceeding this critical value were deleted.

Findings

The resultant dataset was 73% female (74% female for education level 1, 73% for level 2, and 69% for level 3) and 56% had a high school diploma as the highest education level achieved. Table 2 presents the descriptive statistics for age and the three measured variables of the ILD, ALA, and RIP by highest education level. The average age increases by approximately one decade for each increase in education level category. Descriptively, ILD, ALA, and RIP all increase with increasing levels of education.

Histograms (not presented) were evaluated for all three measured variables (i.e., ILD, ALA, and RIP) in order to determine if normality was tenable. In general, each distribution aligned with a normal distribution; however, an increase in negative skew was noticeable with increasing education level. This is likely the result of a ceiling effect associated with the measurements.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Minimum</th>
<th>Maximum</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>182</td>
<td>183</td>
<td>23.081</td>
<td>8.241</td>
</tr>
<tr>
<td>ILD</td>
<td>.471</td>
<td>.472</td>
<td>.483</td>
<td>.731</td>
</tr>
<tr>
<td>ALA</td>
<td>.181</td>
<td>.192</td>
<td>.193</td>
<td>.591</td>
</tr>
<tr>
<td>RIP</td>
<td>1.361</td>
<td>1.312</td>
<td>1.393</td>
<td>2.191</td>
</tr>
</tbody>
</table>

Table 2. Descriptive Statistics by Highest Education Level

Note. 1high school diploma ($n = 1,205$), 2bachelor’s degree ($n = 358$), and 3graduate degree ($n = 584$).

Table 3 presents the intercorrelations between age and the three measured variables by education level. All correlations between the three measured variables are statistically significant at the .01 level (two-tailed); effect sizes range from a low correlation between ILD and ALA, low to moderate between ILD and RIP, and moderate between ALA and RIP (see Hinkle, Wiersma, & Jurs, 1998, for effect size descriptions). Although statistically significant for some relationships, the correlation between age and the measured variables represents little if any correlation (Hinkle et al., 1998).
A one-way ANOVA was conducted to determine if there were any differences in the means for each of the three measured variables between the three education levels (see Table 4). Age was initially entered into each of the three models as a covariate; however, because homogeneity of regression was not tenable, age was removed from the model. (Note that the weak correlations for age presented in Table 3 suggests little if any correction to a measured variable if age were used as a covariate.) All three ANOVAs were significant at the .001 level; therefore, there is a statistical difference in the means by education level. Partial η^2 indicates a small (RIP) to medium (IDL and ALA) effect (cf. Rovai, Baker, & Ponton, 2014).

Table 3. Intercorrelations by Highest Education Level

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age</td>
<td>.02</td>
<td>.08</td>
<td>.13</td>
<td>.16</td>
</tr>
<tr>
<td>2. ILD</td>
<td>.36</td>
<td>.57</td>
<td>.31</td>
<td>.32</td>
</tr>
<tr>
<td>3. ALA</td>
<td>.55</td>
<td>.56</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>4. RIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. 1 high school diploma ($n = 1,205$), 2 bachelor’s degree ($n = 358$), and 3 graduate degree ($n = 584$). *$p < .01$ (two-tailed).

Table 4. One-Way ANOVA Results: Between Groups (Highest Education Level) Effects

<table>
<thead>
<tr>
<th>Measure</th>
<th>F</th>
<th>p</th>
<th>Partial η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD</td>
<td>62.09</td>
<td>< .001</td>
<td>.06</td>
</tr>
<tr>
<td>ALA</td>
<td>88.54</td>
<td>< .001</td>
<td>.08</td>
</tr>
<tr>
<td>RIP</td>
<td>52.68</td>
<td>< .001</td>
<td>.05</td>
</tr>
</tbody>
</table>

Note. Homogeneity of regression using age as a covariate was not tenable.

Figures 1 through 3 present the means for ILD, ALA, and RIP, respectively, as a function of education level. Levene’s Test of Equality of Error Variances was used ($\alpha = .05$) to determine whether to use the Tukey HSD (equal variances assumed) or the Dunnett C (equal variances not assumed) statistics for the post hoc analysis. For ILD
(see Figure 1) and ALA scores (see Figure 2), all means are statistically different \((p < .05) \) and increase with education level. For RIP (see Figure 3), the means for education levels 1 and 2 are not statistically different; however, the means for both levels 1 and 2 are statistically less than the mean for level 3 \((p < .001) \).

![Figure 1](image)

Figure 1. ILD mean as a function of highest level of education: 1 = high school diploma \((n = 1,205) \), 2 = bachelor’s degree \((n = 358) \), and 3 = graduate degree \((n = 584) \). Levene’s Test of Equality of Error Variances was significant \((p = .04) \); therefore, equal variances not assumed. Dunnett C statistics indicate that all means are statistically different \((p < .05) \).
Figure 2. ALA mean as a function of highest level of education: 1 = high school diploma \((n = 1,205)\), 2 = bachelor’s degree \((n = 358)\), and 3 = graduate degree \((n = 584)\). Levene’s Test of Equality of Error Variances was significant \((p < .001)\); therefore, equal variances not assumed. Dunnett C statistics indicate that all means are statistically different \((p < .05)\).
Figure 3. RIP mean as a function of highest level of education: 1 = high school diploma ($n = 1,205$), 2 = bachelor’s degree ($n = 358$), and 3 = graduate degree ($n = 584$). Levene’s Test of Equality of Error Variances was not significant ($p = .35$); therefore, equal variances assumed. Tukey HSD statistics indicate that the means for education levels 1 and 2 are not statistically different; however, both 1 and 2 are statistically different from level 3 ($p < .001$).

Table 5 presents the effect size associated with mean comparisons for all three measured variables between education levels. As a measure of practical significance (cf. Rovai et al., 2014), Cohen’s d statistic suggests (a) a small effect between education levels 1 and 2 for ILD and ALA scores (no effect—statistically or practically—for RIP), (b) a small effect between education levels 2 and 3 for all three measured variables, and (c) a medium effect between education levels 1 and 3 for all three measured variables. For a second presentation of effect size, the percentile standing for the lowest education level in the comparison is presented by using Cohen’s d statistic as a z-score in a normal distribution; percentiles range from 54 to 75%.
Table 5. *Education Level Comparison: Cohen’s d*

<table>
<thead>
<tr>
<th>Measure</th>
<th>Education Levels¹ Compared</th>
<th>SD_pooled²</th>
<th>Cohen’s d³</th>
<th>Percentile Standing⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD</td>
<td>1 and 2</td>
<td>.10</td>
<td>.29</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>.10</td>
<td>.29</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>.10</td>
<td>.55</td>
<td>71</td>
</tr>
<tr>
<td>ALA</td>
<td>1 and 2</td>
<td>.15</td>
<td>.23</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>.16</td>
<td>.41</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>.15</td>
<td>.67</td>
<td>75</td>
</tr>
<tr>
<td>RIP</td>
<td>1 and 2</td>
<td>.33</td>
<td>.09</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>.32</td>
<td>.44</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>.33</td>
<td>.51</td>
<td>70</td>
</tr>
</tbody>
</table>

Note. ¹1 = high school diploma (n = 1,205), 2 = bachelor’s degree (n = 358), and 3 = graduate degree (n = 584). ²SD_pooled = \(\sqrt{\frac{SD_1^2 + SD_2^2}{2}} \). ³Higher means are associated with higher education levels. ⁴Percentile associated with the lowest education level assuming a normal distribution.

Discussion

As a causal comparative study, causal inferences are not possible with certainty as in true experimental research. Our aim was to uncover any statistical evidence that might suggest differences between education levels in the measured variables with effect sizes that might support the inference that higher education plays a role in the development of learner autonomy. Statistically significant differences were found (see Table 4; cf. Figures 1 through 3); however, we need to analyze the effect size to support an argument against the following rival hypotheses:

1. Those with greater levels of learner autonomy choose to participate in higher education.
2. Those with greater levels of learner autonomy achieve in a manner that makes them more likely to be accepted into an education program at a higher level.
3. Those with greater levels of learner autonomy are more likely to succeed in higher education.

In 2014, U.S. adults had attained the following *highest* education levels (United States Census Bureau, 2015): 70,919,000 held a high school diploma (education level 1); 45,176,000 held a bachelor’s degree (education level 2); and 24,853,000 held a master’s, professional, or doctoral degree (education level 3). The ratios between these respective sample sizes are as follows: 1.57:1 (levels 1:2), 1.82:1 (levels 2:3), and 2.85:1 (levels 1:3). We will define a practical effect if the ratio of 100-to-twice the tail region percentage as indicated by Table 5 is greater than the respective sample size ratio.
of U.S. adults. That is, if the sample ratio is greater than the U.S. adult ratio, we will conclude that the difference in the measured variable is greater than what would be expected from merely the ratio of diploma/degree holders that could occur under a rival hypothesis. As indicated by Table 6, no sample ratios are practically significant as per this standard.

Table 6. Education Level Comparison: Distribution Ratio

<table>
<thead>
<tr>
<th>Measure</th>
<th>Education Levels¹ Compared</th>
<th>U.S. Adult Ratio</th>
<th>Sample Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD</td>
<td>1 and 2</td>
<td>1.57:1</td>
<td>1.28:1</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>1.82:1</td>
<td>1.28:1</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>2.85:1</td>
<td>1.72:1</td>
</tr>
<tr>
<td>ALA</td>
<td>1 and 2</td>
<td>1.57:1</td>
<td>1.22:1</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>1.82:1</td>
<td>1.47:1</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>2.85:1</td>
<td>2.00:1</td>
</tr>
<tr>
<td>RIP</td>
<td>1 and 2</td>
<td>1.57:1</td>
<td>1.09:1</td>
</tr>
<tr>
<td></td>
<td>2 and 3</td>
<td>1.82:1</td>
<td>1.52:1</td>
</tr>
<tr>
<td></td>
<td>1 and 3</td>
<td>2.85:1</td>
<td>1.67:1</td>
</tr>
</tbody>
</table>

Note. ¹1 = high school diploma, 2 = bachelor’s degree, and 3 = graduate degree.

Note that Cohen’s d (and percentiles) for these practical effect standards are as follows: for 1.57:1, $d = .48$ (68th percentile); for 1.82:1, $d = .61$ (73rd percentile); for 2.85:1, $d = .94$ (83rd percentile). Although a Cohen’s d of .94 is a large effect,.48 and .61 are small and medium effects, respectively (Rovai et al., 2014); thus, the ratio standards for a practical effect size are not deemed excessive.

We conclude that there is no statistical evidence to support the notion that higher education plays a developmental role in desire (ILD), self-efficacy (ALA), or conative learner autonomy (RIP). While there are various increases in the mean for associated measured variables as a function of increasing level of education, such differences may be attributed to self-selection under rival hypothesis 1 or institutional-selection under rival hypotheses 2 and 3 (i.e., admission and graduation, respectively). This is not to assert that higher education does not develop in some way the constructs mentioned but rather that we did not find evidence sufficiently great as to separate this effect from the effects of rival hypotheses.

We found it interesting that there was no statistical difference in RIP between education levels 1 (high school diploma) and 2 (bachelor’s degree) in contrast to the differences found for ILD and ALA scores (cf. Figures 1 through 3). This suggests that precepts of personal agency (ILD) and of perceived capability to learn autonomously (ALA) play a role in participating or succeeding in undergraduate education; however, conative learner autonomy (RIP) plays no apparent role. Differences were found,
however, in all three measured variables between education levels 2 and 3 (graduate degree) thereby supporting the assertion that desire, self-efficacy, and conative learner autonomy play an increasingly important role in moving from undergraduate through graduate education.

The little if any correlation between age and the measured variables is also noteworthy (see Table 3). The coefficient of determination \(r^2 \) ranged from a low of .04% (age-ILD correlation for education level 1; nonsignificant \(p \) value) to a high of 4% (age-RIP correlation for education level 3; \(p < .01 \)). Linear regression was performed in order to more fully characterize shared variance (see Table 7). The coefficient of determination \(R^2 \) ranged from a low of 4% (age-RIP correlation; \(p < .001 \)) to a high of 8% (age-ALA correlation; \(p < .001 \)). Adding education level as a second independent variable (interval measure assumed only for analysis purposes) increased \(R^2 \) statistically at the .01 level but little practically (from a low of .3% for ILD scores to a high of 1.9% for RIP). Thus, age and education level account for less than 10% of the variance in either ILD, ALA, or RIP scores.

Learner autonomy in adults is seemingly not enhanced to any great degree by the varied experiences typically encountered throughout life that often includes participation in higher education. This assertion is supported by the small effect sizes presented. Due to the high participation rates in higher education and the great investment by both students and society in this institution, we should consider the following: (a) what are the experiences that do explain the differences in learner autonomy levels between people? (b) with an understanding of these experiences, how can higher education best develop learner autonomy?

Table 7. Multiple Linear Regression: Coefficient of Determination

<table>
<thead>
<tr>
<th>Measure</th>
<th>(R^2)</th>
<th>(\Delta R^2)</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILD (DV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (IV)</td>
<td>.055</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Age and Education Level (IVs)</td>
<td>.058</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>ALA (DV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (IV)</td>
<td>.075</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Age and Education Level (IVs)</td>
<td>.084</td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>RIP (DV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (IV)</td>
<td>.043</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Age and Education Level (IVs)</td>
<td>.062</td>
<td>< .001</td>
<td></td>
</tr>
</tbody>
</table>

To isolate the potential developmental effect of higher education on learner autonomy we suggest conducting a longitudinal study. In this manner, changes uncovered by pre and posttest measures using paired data would support causal inferences to a greater degree than causal-comparative studies like this one.
If learner autonomy is perceived as a relatively stable construct in adulthood, it is important to conduct studies on the preadult experiences that shape associated cognitive, affective, and conative dimensions. Currently HRDE engages in coaching efforts designed to increase an adult’s learner autonomy by using the information from self-reports of the scales used in this study with some success. Preadult developmental experiences discovered may inform more effective strategies that can be used in nonformal (e.g., coaching) or formal (e.g., higher) education.

Another interesting avenue of research will be determining if there are any generational differences in learner autonomy. Preadults and adults are immersed in readily available information due to Internet technologies. Questions that not-so-long ago remained unanswered are now immediately answered in situ. The opportunity and seemingly pervasive exercise of learner autonomy via technology should be studied in order to inform further developmental strategies. The effects of such technologies may in fact strengthen the relationship between age and learner autonomy in future generations.

References

Michael K. Ponton (michpon@regent.edu) is currently appointed as a professor of education at Regent University. His research interest is in the development of a better understanding of the role of human agency in self-directed learning.

Paul B. Carr (paulca2@regent.edu) is currently appointed as a professor of education at Regent University. His research interests are in resourcefulness in learning, adult learning, and autonomous learning.
DEVELOPING SELF-DIRECTED LEARNING IN THE LANGUAGE CLASSROOM: THE WORK OF LENI DAM

Stephen Scott Brewer

There is much talk about autonomy and self-direction in education today, in particular in the area of language learning. Ministerial guidelines in my country of residence (France) stress the importance of equipping students with the resources to become “actors of their own learning” (acteurs de leur propre apprentissage). Paradoxically, however, in an educational culture that values the acquisition and systematic measuring of students’ learning outcomes, there is a distinct lack of “autonomizing practice” in classrooms. For some teachers and other educational stakeholders, self-direction may seem a pedagogical utopia. This article aims to help reframe such perceptions. It introduces the work of an educational advisor and teacher educator whose research and classroom practice offer an example of how learning environments can be created in schools that foster students’ academic success with foreign languages through the development of their ability to self-direct their own learning.

Keywords: language learning, self-directed learning, social cognitive theory, pedagogical practice, teacher education

This article presents a theoretical and practical overview of the work of Leni Dam, a Danish educational advisor and teacher trainer who I had the pleasure of meeting recently at an annual conference of the International Association of Teachers of English as a Foreign Language (IATEFL). Although she retired from teaching in 2006, Leni Dam’s career as a middle school English teacher in Denmark spanned over three decades, a time during which she designed a unique approach to developing language learner self-direction in her students. Her approach has been put into practice in numerous classrooms across Europe and is supported by rigorously conducted empirical research (Dam, 1995; Dam & Legenhausen, 1996). Awarded an honorary doctorate in pedagogy by Karlstad University (Sweden) in 2004, Leni Dam is also the founder and coordinator of the Learner Autonomy Special Interest Group that is part of the worldwide IATEFL professional community. She is still actively involved in teacher education and regularly runs workshops in her areas of expertise around the world.

To open this article, I briefly state why, given today’s rapidly changing educational context, it appears more vital than ever that foreign language education continue to promote learner autonomy and self-direction. Second, I provide a personal
account of the theory which informs the approach that Leni Dam put into practice with her students over the years. Third, some practical examples are given that illustrate how this approach enables pupils, including beginners, not only to take responsibility for their own learning but also to use the target (foreign) language to communicate with their teacher and fellow classmates. Finally, I draw some implications from the discussion for language teacher education.

On the Need to Promote Learner Autonomy in Foreign Language Education

From a general educational point of view, there are many reasons why it is important to support learner autonomy. In the field of foreign language teaching and learning, however, there are at least two reasons which are particularly relevant. First, before becoming a “school subject,” a foreign language is a historical and sociocultural phenomenon of a most complex nature. As such, there are many aspects of what a language is that simply cannot be “taught.” Whereas classroom-based instruction constitutes a necessary and perhaps even life-changing experience for the young or adolescent learner interested in one or several foreign languages, if he or she hopes to develop genuine understanding of these languages in their sociolinguistic and cultural dimensions, it will inevitably be necessary to seek out and be equipped to learn from various types of complex social and intercultural experiences that go far beyond the classroom.

Second, from a more skills learning perspective, and as Brown (2007) stated, “courses in foreign languages are often inadequate training grounds…for the successful learning of a [non-native] language. Few if any people achieve fluency in a foreign language solely within the confines of the classroom” (p. 1). Van Lier (1996) made the same point by stressing the need for students to learn outside as well as during class time:

If the lessons—whether they are once a week, once a day, or more frequent than that—are the only occasions on which the students are engaged with the language, progress will either not occur or be exceedingly slow. The students’ minds must occupy themselves with the language between lessons as well as in lessons, if improvements are to happen. (pp. 42-43)

If language learners are to experience success in the domain, they must be empowered to accept and overcome its disciplinary and epistemological constraints (Gardner, 1991); that is, as they grow older and become faced with having to take greater responsibility for their learning, they will need to know how to self-direct such learning.

In addition to these considerations intrinsic to the nature of the subject matter, we live in a rapidly evolving world in which two observations can be made. First, although European and American perspectives may differ on this point, the status of foreign languages as an object of study has shifted dramatically over the past several decades, moving from what was generally recognized as a “cultural discipline” to what is now increasingly identified as a “professional asset.” Knowing how to speak one or
several foreign languages, particularly English, is no longer simply an intellectual luxury but has also become a socioeconomic necessity for many. Europeans have largely acknowledged, as Porcher (1990) supported over a quarter century ago, that “a lack of knowledge of foreign languages is a disability...that renders one less competitive in the professional sphere” (as cited in Albéro, 1998, p. 24; author’s translation from French). Twenty years ago, the European Commission laid out as part of its plans for the construction of a “cognitive society” the need for an expansion and improvement of foreign language education at all levels of society. Plurilingualism or the ability to speak one or several foreign languages must no longer be the privilege of a social elite or of those fortunate enough to travel abroad extensively but rather must constitute a “factor of identity and European citizenship” accessible to all (European Commission, 1995, p. 10).

Second, as we are all fully aware, the spectacular development of information technology is having a tremendous impact on education. Although young and older learners alike will undoubtedly always need human teachers who help them to acquire new skills and knowledge and who support them in their motivation and efforts to learn, opportunities are emerging in ever greater number that require students to learn how to regulate (i.e., exercise critical self-influence over) their own emotional, cognitive, and metacognitive relationships to learning. If proficiency in foreign languages as a stepping stone to better intercultural communication and understanding is among the pursuits that our education system values for its young people, then it must provide them with the intellectual and socioaffective resources and skills making it possible for them to continue educating themselves in diverse and complex social and cultural contexts outside the walls of the institution and throughout their lifetime (Bandura, 1997).

What are the Theoretical Underpinnings of Prof. Dam’s Work?

In order to situate Prof. Dam’s work and highlight some of its key specificities, it is interesting to recall the general context in which the learner autonomy movement emerged in Europe over the course of the 1970s. At that time there was a version of learner autonomy rooted in various Council of Europe adult education projects that was strongly committed to the democratization of education and the empowerment of the individual learner (Janne, 1977). In the field of language learning, a major intellectual influence in the autonomy movement was the French applied linguistics professor Henri Holec of the Université of Nancy. At the time two practical issues in language education were of particular concern: (a) how could the continuing education community support adult language learners in developing the communicative proficiency they needed in the real world? and (b) what were many universities to do with the language laboratories they had built and invested in throughout the 1960s and early 70s whereas the main learning theories on which their use was predicated—behaviorism and the so-called audio-lingual method—had been largely discredited? It was believed that both problems could be solved if adults and university students took greater charge of their own learning or became “autonomous” learners. Adults would become capable of designing and executing their own learning programs while...
university students would be encouraged to make self-directed use of the language laboratory and its resources (Little, 2014). To a large extent, this view of “autonomizing” more mature learners focused on learning that would occur outside the immediate presence or support of a teacher.

Holec’s (1981) theory of learner autonomy is based on two central principles: (a) **learner involvement**, having to do with the effective taking charge of one’s learning (accepting responsibility, investing effort, and using strategies to improve the quality of learning), and (b) **learner reflection**, having to do with engaging reflectively or metacognitively with the learning process and its management (planning, structuring, and monitoring learning as well as evaluating its outcomes). This concept of learner autonomy is

above all concerned with learners’ responsibility for their own learning and their management of the learning process; it is individual, cognitive and organizational in orientation…. [It emphasizes] helping learners to develop the skills of self-management that allow them to learn without a teacher; learner autonomy is synonymous with learner independence. (Little, 2014, p. 16)

At the same time as these ideas were being discussed in European circles of higher and adult education, Leni Dam, a middle school English teacher in the suburbs of Copenhagen, was several years into her teaching career and asking herself two important questions that few teachers can afford to neglect: (a) how can I create conditions that will improve the quality of my students’ learning? and (b) what kind of approach can I adopt that will allow me to accommodate the wide range of abilities, interests, and needs that are present among the students I work with? The processes of learning and differentiation were thus two principles that guided the research that eventually led Ms. Dam to implement learner autonomy in her foreign language classroom. In contrast to the work of Holec (1981) and the Council of Europe, however, how was the autonomy of much younger students to be developed in the presence of the classroom teacher whose job it is, traditionally speaking, to shoulder precisely those responsibilities and tasks that autonomous students are themselves supposed to take on and execute?

Perhaps more critically and from a didactic point of view, if autonomous learning was primarily centered around individual and cognitive dimensions of learning, as laid out in Holec’s (1981) model, how were students supposed to learn a subject matter such as a foreign language that is not only a new symbolic system to be acquired psycholinguistically (cognitively) but also—and as previously mentioned—a **social and cultural** phenomenon whose appropriation can only occur through linguistically-mediated interaction and collaboration? How was effective language learning to take place via communicative interaction (with the teacher being, a priori, the only person in the classroom who could speak the target language) which at the same time would support students in the development of their autonomy?
Drawing on Bandura’s (1997) model of triadic reciprocal causation, I see Ms. Dam’s approach as a radically dual or two-pronged strategy, originating in environmental factors (E) that correspond to her actions as the teacher (a kind of “orchestra conductor”) and which reach out to influence both her students’ personal factors (P) and their behavior (B; see Figure 1). If autonomy is defined as the capacity “to take charge of one’s learning” (Holec, 1981, p. 3) and self-direction as “knowing how to realize that capacity” (Holec, 1985, as cited in Pemberton & Cooker, 2012, p. 205), Leni Dam developed her students’ capacities at these dual levels by empowering their relationship to learning via both their thought and action processes. She supported the development of her students’ self-directed learning through the transformation of their capacity for reflection and understanding—including their beliefs (epistemological beliefs, self-beliefs), attitudes, and metacognitive and strategic knowledge about learning (see Figure 2)—as well as their capacity for active engagement and personal initiative which develops through their awareness and genuine involvement in learning tasks and activities, both individual and collective, that may require recourse to various learning strategies and techniques (cf. Figure 3). Dam thus expanded on Holec’s (1981) original conception of learner autonomy in its primarily individual, cognitive, and organizational orientation by adding to it a powerful social, collaborative, and interactive orientation (Little, 2014).
Furthermore, this approach not only recognizes the importance of engaging students’ identities as unique youngsters and adolescents coming into the language classroom with their own personalities, histories, and backgrounds but also seeks to contribute positively to the shaping of attitudes and values that these young people might carry into adulthood and that could incline them to want to enrich their future cultural and linguistic identities as citizens and members of a broader, more globalized world community (cf. Taylor, 2013). As has now been widely acknowledged in autonomy research, identity, autonomy, and personal motivation constitute three closely interrelated concepts in language learning (cf. Murray, Gao, & Lamb, 2011).

Dam’s work also differs significantly from Holec’s (1981) model in that it includes a theory of language acquisition. Unlike Holec (1981) whose theory assumes that, in the name of the learner’s autonomous choice of methods and techniques to learn, virtually all approaches to learning have equal chances of success (Little, 2014), Dam’s approach to language learning autonomy is underpinned by a third main principle (along with learner reflection and engagement) which is that, from the beginning, the foreign or target language (L2 or TL) is used as the primary medium of all classroom communication. This is not to say that the students’ mother tongue (L1) plays no role in their learning as it indeed provides the scaffold on which they gradually assemble and organize the elements of the L2 as an alternative means of expression. The L1 can also serve to help solve problems that arise in group work and to evaluate learning at a more metacognitive level (Little, 2014). But, as much as possible, Dam believes that the only way to develop her students’ linguistic and communicative proficiency in the L2 is to involve them in L2 use that is both spontaneous (as is prompted by and responds to the highly contingent nature of classroom communication [van Lier, 1996]) and authentic (as rooted in the experience, interests, needs, and concerns of the learners themselves [Ushioda, 2011]).
As Dam (2014) herself acknowledged, the premium she learned to place on authenticity stems from the work of Douglas Barnes (1976) whose constructivist view of learning posits that “to learn is to develop relationships between [what the learner knows already and the new system being presented to him or her], and this can only be done by the learner himself [sic]” (p. 82). Hence, as learning is essentially about accommodating new knowledge to old, it is crucial in the language classroom to find ways of getting students to invest their identities (i.e., their sense of who they are and what they know) in their learning. Like many language teachers who take their educational mission seriously, Dam has long been critical of methods that promote rote memorization of isolated sentences in the L2 that learners utter with no sense of personal involvement (i.e., inauthentically) and which, according to Barnes (1976), will at best constitute forms of “school knowledge” rather than “action knowledge.” As “knowledge on which [an individual’s] actions in the everyday world are based” (Barnes, 1976, p. 30), action knowledge necessarily makes up a part of a learner’s identity. As such, it enters into “fruitful interaction” with school knowledge (i.e., curriculum content). Action knowledge opens the door to school knowledge, which becomes part of learners’ identities as it enriches their action knowledge” (Little, 2014, p. 19).

Dam’s resolutely sociocognitive approach to developing learner self-direction is thus founded on a view of language learning that depends on language use and that, within the constraints and opportunity structures of the classroom, enables learners to develop a broad range of discourse roles including initiator, questioner, negotiator, persuader, and respondent. Language learning and learner self-direction operate in concert to sustain the language acquisition process. The classroom becomes a place where, through the meaningful social interaction and activities in which they participate, students may even come to assimilate forms of understanding and know-how in connection with TL communication that (as previously mentioned) simply cannot be taught. As van Lier (2000) has argued, helping learners to communicate effectively in an L2 requires, didactically speaking, that one recognize the importance of cognitive and learning processes that neither can be explained in terms of what goes on inside the learner’s head nor consciously acquired:

The perceptual and social activity of the learner, and particularly the verbal and nonverbal interaction in which the learner engages, are central to an understanding of learning: they do not just facilitate learning, they are learning in a fundamental way. (p. 246)

What are Some Examples of Leni Dam’s Practice?

In what follows, I will focus on the third principle of Dam’s approach to developing a classroom environment that fosters learner self-direction; that is, the way in which she engaged even beginning foreign language learners in authentic L2 use. As Little (2014) suggested, “this…principle has a transformative impact on the first two principles [learner engagement and reflection] because it ensures that the development of learners’ capacity to manage their own learning is fully integrated with the development of their
proficiency in the target language (TL)” (p. 17). In practical terms, Dam (2014) identified the following four features as all playing a key role in her approach:

1. The teacher speaks the TL from the very beginning.
2. Both teacher and learners make use of the knowledge and interests that the learners bring to the classroom.
3. The teacher makes the learners shareholders of their own learning.
4. The teacher creates a learning environment in which her learners feel secure, accepted, and respected. (p. 83)

Speaking the TL From the Beginning

The teacher “speaks the TL from the very beginning because if you do not start then, when do you start?… She [sic] must also stay with the TL when communication with her learners breaks down” (Dam, 2014, p. 83). This approach based on an almost exclusive use of the TL—that nonetheless recognizes the role of the L1 (cf. previous discussion)—turns traditional ideas about teaching upside down: How can students be asked to communicate in the L2 without previously having been taught at least a basic supply of vocabulary? Dam’s conviction, albeit controversial, is that communication comes first, often without words. Rather than assuming that students must learn first (with their heads) in order to communicate afterward, Dam believed it is crucial to have students first experience the social reality of communication (with their hearts and whole bodies and to use mime, gesture, and other visual supports to make oneself understood and to listen empathetically [Aden, 2014]) in order to come to know subsequently in this deeper, more experiential way what learning a foreign language is all about. Through carrying out tasks and participating in experiences that help them become communicative, interested, and confident, students learn to listen attentively, use their intellectual resources fully, and become more responsible for their own learning, which includes correcting themselves.

Making Use of the Knowledge and Interests of the Students

In order to make use of the knowledge and interests that learners bring to the classroom, activities are designed from the first day to engage the students in creating meaning that is directly relevant to their lives and expresses parts of their identity. For example, as part of their first TL (e.g., English) lesson and using their brand new logbooks (which play an indispensable role in mediating the TL to students), students are invited to introduce themselves. The teacher begins by introducing himself or herself to the class in the TL (“My name is … / I live in … / I have … brothers and … sisters. / My hobbies are …”) and writing key phrases on a poster. The teacher then has the learners call out in their L1 (e.g., Danish) the words and phrases they need to describe themselves. This vocabulary is translated into the TL and written up on posters (which, along with the logbooks, constitute an important pedagogical tool by supporting the learning of the class as a whole). The students copy the TL words and
phrases they need into their logbooks and write a short text for homework entitled “About myself”.

Vocabulary development proceeds “organically,” rooted in the TL words students already know and in the words they identify in their picture dictionary and would like to learn. In order to develop students’ receptivity to the language they are learning, they may also be asked to bring little “entry tickets” to class on which they write down (without worrying about the spelling) a TL word, phrase, or expression that they have heard or seen in the “outside world.” This “noticed language” that students bring to class is recorded in the students’ logbooks as well as on posters for everybody to see. In addition to these more organic approaches, students’ efforts and interests are also recruited to produce various learning resources such as word cards and dominoes. While word cards have the TL word on one side, students decide, among several possibilities, what the best way is to represent its definition on the other side (e.g., a drawing, a picture cut out of a magazine or catalogue, a short phrase exemplifying use, a synonym, or L1 translation). Students are also encouraged to notice words that “go together” (form collocations) and to learn words “in families” (according to topic or words that rhyme or share common roots). The dominoes (one half picture, the other half a phrase or sentence that describes the picture on another card) also serve to enhance students’ receptivity to exposure-language through manipulation and play as notions that are closely tied to learning (Allwright & Bailey, 1991).

Students are regularly involved in asking and answering genuine questions with their peers (genuine in the sense that they elicit new information, not correct answers found in the back of the book or questions one can answer oneself!). With beginning students, questions that the students wish to ask their partners may initially be formulated in the L1, collected and translated by the teacher and displayed in a list on a class poster. Once again, organically, as the need for new questions arises, these are added to the list and integrated into classroom conversation. With dictionaries and online resources at hand, students learn to look up words at their point of need and record them in their logbooks strategically.

In order to master more sophisticated forms of written discourse, students select from various sources (such as magazines or the internet) pictures of people or scenes that interest them and then compose a short text describing the picture. While working individually or in groups, the students begin to write stories and poems and may also choose to write short plays or carry out projects that are shared with classmates or are sometimes conducted by the class as a whole.

Making the Students Shareholders of Their Own Learning

As shown in the above examples, from day one in the foreign language classroom learners are expected and given the chance to be shareholders of their own learning, i.e., to share responsibility for the learning process…. [E]verything they do in class, everything they learn, everything they decide to do at home, and their
evaluation of the activities they have chosen is kept in their logbook and can be shared with other learners, the teacher, and their parents. (Dam, 2014, p. 91)

Learner reflection plays an important role in evaluation that serves two key regulatory functions: “on the one hand to ensure that work undertaken is discussed and revised, and on the other to establish a basis of experience and awareness that can be used in planning further learning” (Dam, 1995, p. 49). In order to stimulate evaluation, Dam used a series of process questions that obliged students to step back from their own activity and reflect: What are we doing? Why are we doing it? How are we doing it? Are the experiences good, bad? What should we change? How can we use what we have learned? What should we do next?

By adopting a critical perspective on their own learning processes, both individual and collective, students become aware that they may need to pay more attention to some formal feature of the TL, that they may need to find more effective ways of conducting group work (such as the skill of supportive listening), or that when evaluating a project that has derailed, they may need to plan more carefully in the early stages. Little’s (2014) description of Dam’s approach is particularly insightful:

As the scope of [the students’] agency grows, [they] gradually master three interacting roles. They are simultaneously communicators, using and gradually developing communicative skills in the TL; experimenters with language, gradually developing an explicit knowledge of the TL system; and intentional learners, gradually developing explicit awareness of the what and the how of language learning. (p. 22)

An Environment in Which Students Feel Secure, Accepted, and Respected

In addition to Barnes (1976), Dam was also inspired by the work of Carl Rogers (1969): “When [the learner] is in an environment in which he [sic] is assured of personal security and when he becomes convinced that there is no threat to his ego, he is once more free to…move forward in the process of learning” (p. 161). As Guiora (1984) aptly stated, “the task of learning a new language [can be] a profoundly unsettling psychological proposition” (p. 8). If we want students to engage in a learning enterprise that can entail face-threatening risks (with their emotional consequences) and inevitable detriments to motivation, it is critical that they feel secure, accepted, and respected in their efforts to learn from the start with a view to progressively building their self-efficacy (Bandura, 1997) and willpower to learn (McGonigal, 2012). This objective is largely achieved through the types of procedures described above such as starting from what students bring to the classroom and by designing a kind of “emergent curriculum” that, through shared responsibility and negotiation, blends together students’ needs and interests on the one hand and government-prescribed aims and learning targets on the other. As Little (1995) pointed out, it is important to emphasize that learners’ personal learning goals and those set down for them by the institution are not parts of rival programs of study; quite the contrary. Moreover, when
the materials and resources students have produced themselves are used by their peers and teacher, they feel that who they are and what they do are respected (Dam, 2014).

Implications for Teacher Education

As a language teacher and teacher educator with a particular interest in learner autonomy and self-direction, I find myself after years in the field wondering what it will take to get more teachers and education stakeholders involved in the promotion of these concepts and the practices they inspire. Perhaps one major obstacle in the area of language pedagogy has to do with teachers’ perceptions of learner autonomy and self-direction as aligned with earlier individual and cognitive models such as Holec’s (1981). As stated above, learner autonomy in this view is synonymous with learner independence, a notion which may appeal little to language teachers who, in terms of their professional identities, devote their lives to the teaching of a valued object of study thoroughly social and cultural in nature. The notion of learners’ being independent of their teachers is not only unappealing but also (didactically speaking) seemingly contradictory to what constitutes good language pedagogy as a relational, quintessentially human experience.

Although, as Holec (1981) claimed, preparing learners for autonomy requires transforming their representations of their own role and function in the learning-teaching process (at an undeniably cognitive, “in-the-head” level), what is brought to the fore in Dam’s model is the need to embed this work in its genuinely sociocognitive context, by which I mean that any classroom-based approach to developing language learner self-direction must start with the premise “that language learning/use depends on the fundamental intertwining of cognition with the social and material world” (Churchill, Nishino, Okada, & Atkinson, 2010, p. 235). Language learners cannot self-direct their learning independently of the “ecological” relationship (van Lier, 2000) they share with the meaning-imbued world around them any more than young swimmers can self-direct their efforts to get better at swimming outside of the water they swim in! For their part, teachers play an extremely important role in determining whether their students learn to navigate the waters skillfully or go under!

What appears challenging to conceptualize is how, within such a radically contextual view of learning, teachers and education theorists can “stake out” a distinct *locus* of functioning that operates at a “personological” level. To my mind, such a level of analysis suggests conceptualizing a profoundly counterintuitive kind of functioning that operates—as impossible as it may seem—at once *totally from within* and *totally from without* the person/organism. From within, life scientists speak of organisms’ “operational closure” as a form of biological autonomy (Maturana & Varela, 1980, p. 89) whereas from without they speak of “structural coupling” (p. 75) as representing the life-sustaining symbiotic relationship that organisms share with their ecological niche and that we humans share with the particular cultural and historical contexts that we inhabit and are inherently part of. Working at forging a scientific understanding of this subtle but critical level of analysis would seem particularly important to do when theorizing the determining role of personal study or deliberate practice in the learning of complex skills and competencies as well as for a theory of expertise-as-process (cf.
Masciotra, Roth, & Morel, 2007). These kinds of learning imply a vast array of cognitive and conative (motivational) functions ranging from aspiration and anticipating the likely outcomes of prospective courses of action (forethought) to goal-setting and striving, decision-making, and surpassing oneself.

Bandura’s (1997) theory of emergent interactive agency suggests that there are indeed human capabilities and functional agentic resources that at the beginning of life do not exist but which, over the course of ontogeny (as individuals mature biologically, socially, and intellectually), “emerge…as properties of psychological persons” (Martin, 2004, p. 137). Like the waters in which young swimmers learn how to swim (ideally well), school is the place where young students learn to learn, developing rich, complex, and often ambivalent relationships to the domains and disciplines they encounter there as well as to the psychological and social realities of learning as part of growing up. School life decisively contributes—for better or worse—to the emergence of the agentic capabilities and resources that can help students maintain and protect their motivation through the inevitable ups and downs of the learning process. In order to enable more students to overcome potential obstacles to learning and experience greater success and satisfaction in their studies, teachers need to understand why they should, and how they can, intervene positively in their students’ lives not only in terms of their learning and its effective outcomes but also even more critically in terms of their developing relationships, attitudes and dispositions to the act of learning itself; that is, at the level of what Trocmé-Fabre (1999) and Carré (2005) call their “learnance.”

Neither autonomy nor self-direction is reducible to the learner’s story alone. Developmentally speaking, self-directed learning must be theorized as a radically interdependent process (Martinez, 2001) that unites in “a continuous ecological circuit” (Churchill et al., 2010, p. 235) or single interlocking sociocognitive system (Bandura, 1997) both students’ and teachers’ functioning (which in turn are inseparable from institutional and contextual functioning at more macro levels of analysis). In this interdependent view of self-direction, there is constant codetermination of situational forces or elements at two distinct levels: first, as has been mentioned, the manner in which students appropriate the L2 (their communicative autonomy) and learn to learn the L2 (their pedagogical autonomy) mutually cospecify not only to sustain their language acquisition but to transform their relationship to this socially-embedded process through participation in an educational enterprise—ultimately, their educational

1Neither learning nor the processes that guide learning metacognitively are ever solitary (i.e., sealed off from interaction with the navigated environment that surrounds the learner). Even when specific learning activities appear to lack what could be described as “a social framework” (as when people work or study alone), it could be argued that even then their psychological processes include “a covert, internalized version of social interaction” (cf. Vygotsky, 1978, as cited in Little, 1995, p. 178). Similarly, ecological perspectives on learning recognize that as sociocognitive organisms, “people depend profoundly on ‘extracognitive’ resources [such as objects like paper, pens, books, and computer screens] to enable, organize, and enhance their cognition” (Churchill et al., 2010, p. 235). These considerations, however, are not incompatible with the thesis that “experience and knowing emerge from an interaction with the outside world caused by the subject and whose effects he/she anticipates. [Accordingly,] the structuring of the cognitive self would operate from within” (emphasis added; Jeannerod, 2009, as cited in Carré, 2016).
enterprise—that could in other circumstances be experienced as highly “unautonomizing.”

Second, and perhaps less obviously, there is a fundamental connection between the development of autonomy in learners and their teacher’s sense of autonomy in relation to how he or she does his or her job and is empowered to learn more about it over time (and about himself or herself in the process). If, as authors such as Little (1995) and Martinez (2001) have argued, learner autonomy and teacher autonomy are interdependent, then it would seem that the promotion of the former depends on the promotion of the latter. Teacher education would need to address this issue while accepting to confront the same philosophical tensions that characterize learner autonomy; that is, through enlightened reconciliation of effectively and efficiently developing the prescribed knowledge and skills in teachers (as learners) set down in curriculum guidelines while at the same time developing their capabilities to proactively appropriate these skills in a largely autonomous manner. How can teachers be expected to become the designers and skilled implementers of autonomy-supportive classroom environments without having experienced first-hand what it feels like to learn in such an environment? Professional expertise of this kind does not come automatically with experience. As any serious inquiry into the nature of expertise will reveal, people can practice doing something for a very long time and not do it well at all (Bereiter & Scardamalia, 1993). Having been educated in predominantly heteronomous (other-directed) learning environments much of their lives, many teachers, novice and experienced alike, adhere to powerful implicit beliefs and convictions about how best to accomplish their educational mission—primarily as “purveyors of knowledge” (?)—that are often counterproductive to fostering genuine autonomy in their learners.

As a result of major teacher education reform in my country of residence (France), prospective teachers are now required to “jump through a number of hoops” to become full-fledged State employees. Following a 3-year undergraduate degree in a chosen major (but typically with little or no coursework in education or learning psychology), students prepare for their careers as teachers by enrolling in an intensive 2-year course that prior to 2008 was exclusively vocational but since then has been turned into a much more academically ambitious 2-year master’s degree program. As was the case before the reform, the first year after the bachelor’s degree is devoted to preparing students for a competitive exam with a strong disciplinary focus that, in the eyes of the State (but not the university), qualifies them to teach. During the second year they must simultaneously finish numerous credits of coursework and write their research thesis for their master’s degree (qualifying them in the eyes of the university) while doing their student teaching for the State (between 9 and 12 hours a week with full classroom responsibilities and numerous inspections to contend with). In a word, their academic and preprofessional lives are very stressful! Theoretically, as part of the new curriculum, students’ initiation to research in didactics is supposed to offer them an opportunity to develop their intellectual autonomy as novice teacher-researchers. However, given the general circumstances in which their education/training takes place, this pedagogical objective is far from achieved in a majority of cases.
Idealistically hopeful but realistically less optimistic, I continue to support the cause of learner self-direction and autonomy in my institutional context. Teacher education, curriculum design, and further research are clearly the linchpins of the educational struggle to promote self-directed learning. Despite (or perhaps thanks to) the many challenges ahead, it is hoped that the reflections, ideas, and practical examples contained in this article may help point future joint efforts in this area of investigation in a fruitful direction.

References

Dam, L. (2014). How to engage learners in authentic target language use – Examples from the autonomy classroom. In A. Burkert, L. Dam, & C. Ludwig (Eds.), The answer is learner autonomy: Issues in language teaching and learning (pp. 81-98). Faversham, United Kingdom: IATEFL.

Little, D. (2014). Learner autonomy as discourse: The role of the target language. In A. Burkert, L. Dam, & C. Ludwig (Eds.), *The answer is learner autonomy: Issues in language teaching and learning* (pp. 15-27). Faversham, United Kingdom: IATEFL.

Stephen Scott Brewer (stephen-scott.brewer@u-pec.fr) is an associate professor of language and teacher education at the Université Paris-Est Créteil and member of the research group LIDIL12. His research interests focus on the study of social psychological factors that can impact foreign language learning and teaching such as motivation, competence, and learner autonomy.