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Preface
This	book	will	 teach	you	how	to	program	in	R.	You'll	go	from	loading	data	 to
writing	 your	 own	 functions	 (which	 will	 outperform	 the	 functions	 of	 other	 R
users).	But	 this	 is	not	a	 typical	 introduction	to	R.	I	want	 to	help	you	become	a
data	 scientist,	 as	 well	 as	 a	 computer	 scientist,	 so	 this	 book	 will	 focus	 on	 the
programming	skills	that	are	most	related	to	data	science.

The	 chapters	 in	 the	 book	 are	 arranged	 according	 to	 three	 practical	 projects--
given	that	they're	fairly	substantial	projects,	they	span	multiple	chapters.	I	chose
these	projects	for	 two	reasons.	First,	 they	cover	 the	breadth	of	 the	R	language.
You	will	learn	how	to	load	data,	assemble	and	disassemble	data	objects,	navigate
R's	 environment	 system,	 write	 your	 own	 functions,	 and	 use	 all	 of	 R's
programming	 tools,	 such	 as	 if	 else	 statements,	 for	 loops,	 S3	 classes,	 R's
package	system,	and	R's	debugging	tools.	The	projects	will	also	teach	you	how
to	write	vectorized	R	code,	a	style	of	lightning-fast	code	that	takes	advantage	of
all	of	the	things	R	does	best.

But,	more	 importantly,	 the	 projects	will	 teach	 you	 how	 to	 solve	 the	 logistical
problems	 of	 data	 science—and	 there	 are	many	 logistical	 problems.	When	 you
work	with	 data,	 you	will	 need	 to	 store,	 retrieve,	 and	manipulate	 large	 sets	 of
values	without	 introducing	 errors.	As	you	work	 through	 the	book,	 I	will	 teach
you	not	just	how	to	program	with	R,	but	how	to	use	the	programming	skills	to
support	your	work	as	a	data	scientist.

Not	every	programmer	needs	to	be	a	data	scientist,	so	not	every	programmer	will
find	 this	 book	 useful.	 You	 will	 find	 this	 book	 helpful	 if	 you're	 in	 one	 of	 the
following	categories:

You	already	use	R	as	a	statistical	tool,	but	you	would	like	to	learn	how	to
write	your	own	functions	and	simulations	with	R.

You	would	like	to	teach	yourself	how	to	program,	and	you	see	the	sense	of
learning	a	language	related	to	data	science.

One	 of	 the	 biggest	 surprises	 in	 this	 book	 is	 that	 I	 do	 not	 cover	 traditional
applications	 of	 R,	 such	 as	 models	 and	 graphs;	 instead,	 I	 treat	 R	 purely	 as	 a



programming	language.	Why	this	narrow	focus?	R	is	designed	to	be	a	tool	that
helps	scientists	analyze	data.	It	has	many	excellent	functions	that	make	plots	and
fit	models	 to	data.	As	a	 result,	many	statisticians	 learn	 to	use	R	as	 if	 it	were	a
piece	 of	 software—they	 learn	 which	 functions	 do	 what	 they	 want,	 and	 they
ignore	the	rest.

This	is	an	understandable	approach	to	learning	R.	Visualizing	and	modeling	data
are	complicated	 skills	 that	 require	a	 scientist's	 full	 attention.	 It	 takes	expertise,
judgement,	 and	 focus	 to	 extract	 reliable	 insights	 from	 a	 data	 set.	 I	 would	 not
recommend	 that	any	data	scientist	distract	herself	with	computer	programming
until	she	feels	comfortable	with	the	basic	theory	and	practice	of	her	craft.	If	you
would	like	to	learn	the	craft	of	data	science,	I	recommend	the	book	R	for	Data
Science,	my	companion	volume	to	this	book,	co-written	with	Hadley	Wickham.

However,	 learning	 to	 program	 should	 be	 on	 every	 data	 scientist's	 to-do	 list.
Knowing	how	 to	program	will	make	you	a	more	 flexible	 analyst	 and	augment
your	mastery	of	data	science	in	every	way.	My	favorite	metaphor	for	describing
this	was	introduced	by	Greg	Snow	on	the	R	help	mailing	list	in	May	2006.	Using
functions	in	R	is	like	riding	a	bus.	Writing	functions	in	R	is	like	driving	a	car.

Busses	 are	 very	 easy	 to	 use,	 you	 just	 need	 to	 know	which	bus	 to	 get	 on,
where	to	get	on,	and	where	to	get	off	(and	you	need	to	pay	your	fare).	Cars,
on	the	other	hand,	require	much	more	work:	you	need	to	have	some	type	of
map	or	directions	(even	if	the	map	is	in	your	head),	you	need	to	put	gas	in
every	 now	 and	 then,	 you	 need	 to	 know	 the	 rules	 of	 the	 road	 (have	 some
type	of	drivers	license).	The	big	advantage	of	the	car	is	that	it	can	take	you
a	bunch	of	places	that	the	bus	does	not	go	and	it	is	quicker	for	some	trips
that	would	require	transferring	between	busses.

Using	 this	 analogy,	 programs	 like	 SPSS	 are	 busses,	 easy	 to	 use	 for	 the
standard	things,	but	very	frustrating	if	you	want	to	do	something	that	is	not
already	preprogrammed.

R	is	a	4-wheel	drive	SUV	(though	environmentally	friendly)	with	a	bike	on
the	back,	a	kayak	on	top,	good	walking	and	running	shoes	in	the	passenger
seat,	and	mountain	climbing	and	spelunking	gear	in	the	back.

R	can	take	you	anywhere	you	want	to	go	if	you	take	time	to	learn	how	to
use	the	equipment,	but	that	is	going	to	take	longer	than	learning	where	the
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bus	stops	are	in	SPSS.	-	Greg	Snow

Greg	compares	R	to	SPSS,	but	he	assumes	that	you	use	the	full	powers	of	R;	in
other	words,	that	you	learn	how	to	program	in	R.	If	you	only	use	functions	that
preexist	 in	R,	you	are	using	R	 like	SPSS:	 it	 is	a	bus	 that	can	only	 take	you	 to
certain	places.

This	 flexibility	 matters	 to	 data	 scientists.	 The	 exact	 details	 of	 a	 method	 or
simulation	will	change	from	problem	to	problem.	If	you	cannot	build	a	method
tailored	 to	 your	 situation,	 you	 may	 find	 yourself	 tempted	 to	 make	 unrealistic
assumptions	just	so	you	can	use	an	ill-suited	method	that	already	exists.

This	 book	will	 help	 you	make	 the	 leap	 from	 bus	 to	 car.	 I	 have	 written	 it	 for
beginning	 programmers.	 I	 do	 not	 talk	 about	 the	 theory	 of	 computer	 science—
there	are	no	discussions	of	big	O()	and	little	o()	in	these	pages.	Nor	do	I	get	into
advanced	 details	 such	 as	 the	 workings	 of	 lazy	 evaluation.	 These	 things	 are
interesting	if	you	think	of	computer	science	at	the	theoretical	level,	but	they	are	a
distraction	when	you	first	learn	to	program.

Instead,	 I	 teach	you	how	to	program	in	R	with	 three	concrete	examples.	These
examples	are	short,	easy	to	understand,	and	cover	everything	you	need	to	know.

I	have	taught	this	material	many	times	in	my	job	as	Master	Instructor	at	RStudio.
As	a	teacher,	I	have	found	that	students	learn	abstract	concepts	much	faster	when
they	 are	 illustrated	 by	 concrete	 examples.	 The	 examples	 have	 a	 second
advantage,	as	well:	they	provide	immediate	practice.	Learning	to	program	is	like
learning	 to	speak	another	 language—you	progress	 faster	when	you	practice.	 In
fact,	learning	to	program	is	learning	to	speak	another	language.	You	will	get	the
best	 results	 if	you	follow	along	with	 the	examples	 in	 the	book	and	experiment
whenever	an	idea	strikes	you.

The	book	is	a	companion	to	R	for	Data	Science.	In	that	book,	Hadley	Wickham
and	I	explain	how	 to	use	R	 to	make	plots,	model	data,	and	write	 reports.	That
book	 teaches	 these	 tasks	 as	 data-science	 skills,	 which	 require	 judgement	 and
expertise—not	 as	 programming	 exercises,	which	 they	 also	 are.	 This	 book	will
teach	you	how	to	program	in	R.	It	does	not	assume	that	you	have	mastered	the
data-science	 skills	 taught	 in	R	 for	Data	 Science	 (nor	 that	 you	 ever	 intend	 to).
However,	this	skill	set	amplifies	that	one.	And	if	you	master	both,	you	will	be	a
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powerful,	computer-augmented	data	scientist,	fit	to	command	a	high	salary	and
influence	scientific	dialogue.

0.1	Conventions	Used	in	This	Book

The	following	typographical	conventions	are	used	in	this	book:

Italic::	 Indicates	 new	 terms,	 URLs,	 email	 addresses,	 filenames,	 and	 file
extensions.

Constant	 width::	 Used	 for	 program	 listings,	 as	 well	 as	 within	 paragraphs	 to
refer	 to	 program	 elements	 such	 as	 variable	 or	 function	 names,	 databases,	 data
types,	environment	variables,	statements,	and	keywords.

Constant	 width	 bold::	 Shows	 commands	 or	 other	 text	 that	 should	 be	 typed
literally	by	the	user.

Constant	width	italic::	Shows	text	that	should	be	replaced	with	user-supplied
values	or	by	values	determined	by	context.

To	comment	or	 ask	 technical	questions	about	 this	book,	please	 file	 an	 issue	at
github.com/rstudio-education/hopr.
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1	Project	1:	Weighted	Dice
Computers	 let	 you	 assemble,	manipulate,	 and	 visualize	 data	 sets,	 all	 at	 speeds
that	 would	 have	 wowed	 yesterday's	 scientists.	 In	 short,	 computers	 give	 you
scientific	superpowers!	But	if	you	wish	to	use	them,	you'll	need	to	pick	up	some
programming	skills.

As	a	data	scientist	who	knows	how	to	program,	you	will	improve	your	ability	to:

Memorize	(store)	entire	data	sets
Recall	data	values	on	demand
Perform	complex	calculations	with	large	amounts	of	data
Do	repetitive	tasks	without	becoming	careless	or	bored

Computers	 can	 do	 all	 of	 these	 things	 quickly	 and	 error	 free,	 which	 lets	 your
mind	do	the	things	it	does	well:	make	decisions	and	assign	meaning.

Sound	exciting?	Great!	Let's	begin.

When	I	was	a	college	student,	I	sometimes	daydreamed	of	going	to	Las	Vegas.	I
thought	that	knowing	statistics	might	help	me	win	big.	If	that's	what	led	you	to
data	science,	you	better	sit	down;	I	have	some	bad	news.	Even	a	statistician	will
lose	money	in	a	casino	over	the	long	run.	This	is	because	the	odds	for	each	game
are	always	stacked	in	the	casino's	favor.	However,	there	is	a	loophole	to	this	rule.
You	can	make	money--and	reliably	too.	All	you	have	to	do	is	be	the	casino.

Believe	it	or	not,	R	can	help	you	do	that.	Over	the	course	of	the	book,	you	will
use	R	to	build	 three	virtual	objects:	a	pair	of	dice	 that	you	can	roll	 to	generate
random	numbers,	a	deck	of	cards	that	you	can	shuffle	and	deal	from,	and	a	slot
machine	modeled	after	 some	 real-life	video	 lottery	 terminals.	After	 that,	you'll
just	need	to	add	some	video	graphics	and	a	bank	account	(and	maybe	get	a	few
government	licenses),	and	you'll	be	in	business.	I'll	leave	those	details	to	you.

These	projects	are	 lighthearted,	but	 they	are	also	deep.	As	you	complete	 them,
you	will	 become	 an	 expert	 at	 the	 skills	 you	 need	 to	work	with	 data	 as	 a	 data
scientist.	You	will	 learn	how	 to	 store	data	 in	your	computer's	memory,	how	 to
access	data	 that	 is	 already	 there,	 and	how	 to	 transform	data	values	 in	memory



when	necessary.	You	will	also	learn	how	to	write	your	own	programs	in	R	that
you	can	use	to	analyze	data	and	run	simulations.

If	 simulating	a	 slot	machine	 (or	dice,	or	cards)	 seems	 frivilous,	 think	of	 it	 this
way:	playing	a	slot	machine	is	a	process.	Once	you	can	simulate	it,	you'll	be	able
to	 simulate	 other	 processes,	 such	 as	 bootstrap	 sampling,	Markov	 chain	Monte
Carlo,	and	other	data-analysis	procedures.	Plus,	these	projects	provide	concrete
examples	 for	 learning	 all	 of	 the	 components	 of	 R	 programming:	 objects,	 data
types,	 classes,	 notation,	 functions,	 environments,	 if	 trees,	 loops,	 and
vectorization.	 This	 first	 project	 will	 make	 it	 easier	 to	 study	 these	 things	 by
teaching	you	the	basics	of	R.

Your	first	mission	is	simple:	assemble	R	code	that	will	simulate	rolling	a	pair	of
dice,	like	at	a	craps	table.	Once	you	have	done	that,	we'll	weight	the	dice	a	bit	in
your	favor,	just	to	keep	things	interesting.

In	this	project,	you	will	learn	how	to:

Use	the	R	and	RStudio	interfaces
Run	R	commands
Create	R	objects
Write	your	own	R	functions	and	scripts
Load	and	use	R	packages
Generate	random	samples
Create	quick	plots
Get	help	when	you	need	it

Don't	 worry	 if	 it	 seems	 like	 we	 cover	 a	 lot	 of	 ground	 fast.	 This	 project	 is
designed	to	give	you	a	concise	overview	of	 the	R	language.	You	will	 return	 to
many	of	the	concepts	we	meet	here	in	projects	2	and	3,	where	you	will	examine
the	concepts	in	depth.

You'll	need	to	have	both	R	and	RStudio	installed	on	your	computer	before	you
can	use	them.	Both	are	free	and	easy	to	download.	See	Appendix	A	for	complete
instructions.	If	you	are	ready	to	begin,	open	RStudio	on	your	computer	and	read
on.



2	The	Very	Basics
This	 chapter	 provides	 a	 broad	 overview	 of	 the	 R	 language	 that	 will	 get	 you
programming	right	away.	In	it,	you	will	build	a	pair	of	virtual	dice	that	you	can
use	 to	 generate	 random	 numbers.	 Don't	 worry	 if	 you've	 never	 programmed
before;	the	chapter	will	teach	you	everything	you	need	to	know.

To	 simulate	 a	 pair	 of	 dice,	 you	 will	 have	 to	 distill	 each	 die	 into	 its	 essential
features.	You	cannot	place	a	physical	object,	 like	a	die,	 into	a	computer	 (well,
not	without	unscrewing	 some	 screws),	but	you	can	 save	 information	about	 the
object	in	your	computer's	memory.

Which	information	should	you	save?	In	general,	a	die	has	six	important	pieces	of
information:	when	you	roll	a	die,	it	can	only	result	in	one	of	six	numbers:	1,	2,	3,
4,	5,	and	6.	You	can	capture	the	essential	characteristics	of	a	die	by	saving	the
numbers	1,	2,	3,	4,	5,	and	6	as	a	group	of	values	in	your	computer's	memory.

Let's	 work	 on	 saving	 these	 numbers	 first,	 and	 then	 consider	 a	 method	 for
"rolling"	our	die.

2.1	The	R	User	Interface

Before	you	can	ask	your	computer	 to	save	some	numbers,	you'll	need	to	know
how	to	talk	to	it.	That's	where	R	and	RStudio	come	in.	RStudio	gives	you	a	way
to	talk	to	your	computer.	R	gives	you	a	language	to	speak	in.	To	get	started,	open
RStudio	just	as	you	would	open	any	other	application	on	your	computer.	When
you	do,	a	window	should	appear	in	your	screen	like	the	one	shown	in	Figure	2.1.



Figure	2.1:	Your	computer	does	your	bidding	when	you	type	R	commands	at	the
prompt	in	the	bottom	line	of	the	console	pane.	Don't	forget	to	hit	the	Enter	key.
When	you	first	open	RStudio,	the	console	appears	in	the	pane	on	your	left,	but
you	can	change	this	with	File	>	Preferences	in	the	menu	bar.

If	you	do	not	yet	have	R	and	RStudio	intalled	on	your	computer--or	do	not	know
what	 I	 am	 talking	 about--visit	 Appendix	 A.	 The	 appendix	 will	 give	 you	 an
overview	of	the	two	free	tools	and	tell	you	how	to	download	them.

The	RStudio	 interface	 is	 simple.	You	 type	R	 code	 into	 the	 bottom	 line	 of	 the
RStudio	console	pane	and	then	click	Enter	to	run	it.	The	code	you	type	is	called
a	command,	because	 it	will	command	your	computer	 to	do	something	for	you.
The	line	you	type	it	into	is	called	the	command	line.

When	you	type	a	command	at	the	prompt	and	hit	Enter,	your	computer	executes
the	command	and	shows	you	the	results.	Then	RStudio	displays	a	fresh	prompt
for	your	next	command.	For	example,	if	you	type	1	+	1	and	hit	Enter,	RStudio
will	display:

>	1	+	1

[1]	2

>



You'll	notice	 that	a	[1]	 appears	next	 to	your	 result.	R	 is	 just	 letting	you	know
that	 this	 line	begins	with	 the	 first	value	 in	your	 result.	Some	commands	 return
more	 than	one	value,	and	 their	 results	may	fill	up	multiple	 lines.	For	example,
the	command	100:130	returns	31	values;	it	creates	a	sequence	of	integers	from
100	to	130.	Notice	that	new	bracketed	numbers	appear	at	the	start	of	the	second
and	 third	 lines	of	output.	These	numbers	 just	mean	 that	 the	second	 line	begins
with	 the	14th	value	 in	 the	result,	and	 the	 third	 line	begins	with	 the	25th	value.
You	can	mostly	ignore	the	numbers	that	appear	in	brackets:

>	100:130

	[1]	100	101	102	103	104	105	106	107	108	109	110	111	112

[14]	113	114	115	116	117	118	119	120	121	122	123	124	125

[25]	126	127	128	129	130

The	colon	operator	(:)	returns	every	integer	between	two	integers.	It	is	an	easy
way	to	create	a	sequence	of	numbers.

Isn't	R	a	language?

You	may	hear	me	speak	of	R	in	the	third	person.	For	example,	I	might	say,	"Tell
R	to	do	this"	or	"Tell	R	to	do	that",	but	of	course	R	can't	do	anything;	it	is	just	a
language.	This	way	of	speaking	is	shorthand	for	saying,	"Tell	your	computer	to
do	 this	by	writing	a	command	 in	 the	R	 language	at	 the	command	 line	of	your
RStudio	console."	Your	computer,	and	not	R,	does	the	actual	work.

Is	this	shorthand	confusing	and	slightly	lazy	to	use?	Yes.	Do	a	lot	of	people	use
it?	Everyone	I	know--probably	because	it	is	so	convenient.

When	do	we	compile?

In	 some	 languages,	 like	 C,	 Java,	 and	 FORTRAN,	 you	 have	 to	 compile	 your
human-readable	code	 into	machine-readable	code	 (often	1s	and	0s)	before	you
can	 run	 it.	 If	 you've	programmed	 in	 such	 a	 language	before,	 you	may	wonder
whether	you	have	to	compile	your	R	code	before	you	can	use	it.	The	answer	is
no.	 R	 is	 a	 dynamic	 programming	 language,	 which	 means	 R	 automatically
interprets	your	code	as	you	run	it.

If	you	type	an	incomplete	command	and	press	Enter,	R	will	display	a	+	prompt,
which	means	R	is	waiting	for	you	to	type	the	rest	of	your	command.	Either	finish
the	command	or	hit	Escape	to	start	over:



>	5	-

+

+	1

[1]	4

If	you	type	a	command	that	R	doesn't	recognize,	R	will	return	an	error	message.
If	 you	 ever	 see	 an	 error	 message,	 don't	 panic.	 R	 is	 just	 telling	 you	 that	 your
computer	couldn't	understand	or	do	what	you	asked	it	to	do.	You	can	then	try	a
different	command	at	the	next	prompt:

>	3	%	5

Error:	unexpected	input	in	"3	%	5"

>

Once	you	get	the	hang	of	the	command	line,	you	can	easily	do	anything	in	R	that
you	 would	 do	 with	 a	 calculator.	 For	 example,	 you	 could	 do	 some	 basic
arithmetic:

2	*	3			

##	6

4	-	1			

##	3

6	/	(4	-	1)			

##	2

Did	 you	 notice	 something	 different	 about	 this	 code?	 I've	 left	 out	 the	 >'s	 and
[1]'s.	This	will	make	the	code	easier	to	copy	and	paste	if	you	want	to	put	it	in
your	own	console.

R	treats	the	hashtag	character,	#,	 in	a	special	way;	R	will	not	run	anything	that
follows	 a	 hashtag	 on	 a	 line.	 This	 makes	 hashtags	 very	 useful	 for	 adding
comments	 and	 annotations	 to	 your	 code.	 Humans	 will	 be	 able	 to	 read	 the
comments,	but	your	computer	will	pass	over	them.	The	hashtag	is	known	as	the
commenting	symbol	in	R.

For	the	remainder	of	the	book,	I'll	use	hashtags	to	display	the	output	of	R	code.
I'll	use	a	single	hashtag	to	add	my	own	comments	and	a	double	hashtag,	##,	to
display	the	results	of	code.	I'll	avoid	showing	>s	and	[1]s	unless	I	want	you	to
look	at	them.



Cancelling	commands

Some	R	 commands	may	 take	 a	 long	 time	 to	 run.	You	 can	 cancel	 a	 command
once	it	has	begun	by	pressing	ctrl	+	c.	Note	that	it	may	also	take	R	a	long	time	to
cancel	the	command.

Exercise	2.1:	(Magic	with	Numbers)	That's	the	basic	interface	for	executing	R
code	 in	RStudio.	Think	you	have	 it?	 If	so,	 try	doing	 these	simple	 tasks.	 If	you
execute	everything	correctly,	you	should	end	up	with	the	same	number	that	you
started	with:

1.	 Choose	any	number	and	add	2	to	it.
2.	 Multiply	the	result	by	3.
3.	 Subtract	6	from	the	answer.
4.	 Divide	what	you	get	by	3.

Throughout	the	book,	I'll	put	exercises	in	chunks,	like	the	one	above.	I'll	follow
each	exercise	with	a	model	answer,	like	the	one	below.

Solution.	You	could	start	with	the	number	10,	and	then	do	the	following	steps:

10	+	2

##	12

12	*	3

##	36

36	-	6

##	30

30	/	3

##	10

2.2	Objects

Now	 that	 you	 know	 how	 to	 use	 R,	 let's	 use	 it	 to	 make	 a	 virtual	 die.	 The	 :
operator	from	a	couple	of	pages	ago	gives	you	a	nice	way	to	create	a	group	of
numbers	 from	one	 to	six.	The	:	operator	 returns	 its	 results	as	a	vector,	 a	 one-
dimensional	set	of	numbers:



1:6

##	1	2	3	4	5	6

That's	all	there	is	to	how	a	virtual	die	looks!	But	you	are	not	done	yet.	Running
1:6	generated	a	vector	of	numbers	for	you	to	see,	but	 it	didn't	save	that	vector
anywhere	in	your	computer's	memory.	What	you	are	looking	at	is	basically	the
footprints	 of	 six	 numbers	 that	 existed	 briefly	 and	 then	melted	 back	 into	 your
computer's	 RAM.	 If	 you	want	 to	 use	 those	 numbers	 again,	 you'll	 have	 to	 ask
your	computer	to	save	them	somewhere.	You	can	do	that	by	creating	an	R	object.

R	lets	you	save	data	by	storing	it	 inside	an	R	object.	What	 is	an	object?	Just	a
name	that	you	can	use	to	call	up	stored	data.	For	example,	you	can	save	data	into
an	object	like	a	or	b.	Wherever	R	encounters	the	object,	it	will	replace	it	with	the
data	saved	inside,	like	so:

a	<-	1

a

##	1

a	+	2

##	3

What	just	happened?

1.	 To	create	an	R	object,	choose	a	name	and	then	use	the	less-than	symbol,	<,
followed	by	a	minus	 sign,	-,	 to	 save	data	 into	 it.	This	 combination	 looks
like	an	arrow,	<-.	R	will	make	an	object,	give	it	your	name,	and	store	in	it
whatever	follows	the	arrow.	So	a	<-	1	stores	1	in	an	object	named	a.

2.	 When	you	ask	R	what's	in	a,	R	tells	you	on	the	next	line.
3.	 You	can	use	your	object	in	new	R	commands,	too.	Since	a	previously	stored

the	value	of	1,	you're	now	adding	1	to	2.

So,	for	another	example,	the	following	code	would	create	an	object	named	die
that	contains	the	numbers	one	through	six.	To	see	what	is	stored	in	an	object,	just
type	the	object's	name	by	itself:

die	<-	1:6



die

##	1	2	3	4	5	6

When	you	 create	 an	object,	 the	 object	will	 appear	 in	 the	 environment	 pane	of
RStudio,	 as	 shown	 in	 Figure	 2.2.	 This	 pane	 will	 show	 you	 all	 of	 the	 objects
you've	created	since	opening	RStudio.

Figure	 2.2:	 The	 RStudio	 environment	 pane	 keeps	 track	 of	 the	 R	 objects	 you
create.

You	can	name	an	object	in	R	almost	anything	you	want,	but	there	are	a	few	rules.
First,	 a	 name	 cannot	 start	 with	 a	 number.	 Second,	 a	 name	 cannot	 use	 some
special	symbols,	like	^,	!,	$,	@,	+,	-,	/,	or	*:

Good	names Names	that	cause	errors
a 1trial
b $
FOO ^mean
my_var 2nd
.day !bad

Capitalization



R	is	case-sensitive,	so	name	and	Name	will	refer	to	different	objects:

Name	<-	1

name	<-	0

Name	+	1

##	2

Finally,	R	will	 overwrite	 any	previous	 information	 stored	 in	 an	 object	without
asking	you	for	permission.	So,	it	is	a	good	idea	to	not	use	names	that	are	already
taken:

my_number	<-	1

my_number	

##	1

my_number	<-	999

my_number

##	999

You	can	see	which	object	names	you	have	already	used	with	the	function	ls:

ls()

##	"a"									"die"							"my_number"	"name"					"Name"					

You	 can	 also	 see	 which	 names	 you	 have	 used	 by	 examining	 RStudio's
environment	pane.

You	now	have	a	virtual	die	 that	 is	stored	 in	your	computer's	memory.	You	can
access	 it	whenever	you	 like	by	 typing	 the	word	die.	So	what	can	you	do	with
this	 die?	 Quite	 a	 lot.	 R	will	 replace	 an	 object	 with	 its	 contents	 whenever	 the
object's	name	appears	 in	a	command.	So,	 for	 example,	you	can	do	all	 sorts	of
math	with	the	die.	Math	isn't	so	helpful	for	rolling	dice,	but	manipulating	sets	of
numbers	will	be	your	stock	and	trade	as	a	data	scientist.	So	let's	 take	a	 look	at
how	to	do	that:

die	-	1

##	0	1	2	3	4	5



die	/	2

##	0.5	1.0	1.5	2.0	2.5	3.0

die	*	die

##	1		4		9	16	25	36

If	you	are	a	big	fan	of	linear	algebra	(and	who	isn't?),	you	may	notice	that	R	does
not	 always	 follow	 the	 rules	 of	matrix	multiplication.	 Instead,	 R	 uses	 element-
wise	execution.	When	you	manipulate	a	set	of	numbers,	R	will	apply	 the	same
operation	to	each	element	in	the	set.	So	for	example,	when	you	run	die	-	1,	R
subtracts	one	from	each	element	of	die.

When	you	use	 two	or	more	vectors	 in	an	operation,	R	will	 line	up	 the	vectors
and	 perform	 a	 sequence	 of	 individual	 operations.	 For	 example,	when	 you	 run
die	*	die,	R	lines	up	the	two	die	vectors	and	then	multiplies	the	first	element
of	vector	1	by	the	first	element	of	vector	2.	R	then	multiplies	the	second	element
of	vector	1	by	the	second	element	of	vector	2,	and	so	on,	until	every	element	has
been	multiplied.	The	result	will	be	a	new	vector	the	same	length	as	the	first	two,
as	shown	in	Figure	2.3.

Figure	2.3:	When	R	performs	element-wise	execution,	it	matches	up	vectors	and
then	manipulates	each	pair	of	elements	independently.

If	 you	give	R	 two	vectors	 of	 unequal	 lengths,	R	will	 repeat	 the	 shorter	 vector



until	it	is	as	long	as	the	longer	vector,	and	then	do	the	math,	as	shown	in	Figure
2.4.	 This	 isn't	 a	 permanent	 change--the	 shorter	 vector	will	 be	 its	 original	 size
after	R	does	 the	math.	 If	 the	 length	of	 the	 short	vector	does	not	divide	evenly
into	 the	 length	 of	 the	 long	 vector,	 R	 will	 return	 a	 warning	 message.	 This
behavior	 is	 known	 as	 vector	 recycling,	 and	 it	 helps	 R	 do	 element-wise
operations:

1:2

##	1	2

1:4

##	1	2	3	4

die

##	1	2	3	4	5	6

die	+	1:2

##	2	4	4	6	6	8

die	+	1:4

##	2	4	6	8	6	8

Warning	message:

In	die	+	1:4	:

		longer	object	length	is	not	a	multiple	of	shorter	object	length

Figure	2.4:	R	will	repeat	a	short	vector	to	do	element-wise	operations	with	two



vectors	of	uneven	lengths.

Element-wise	operations	are	a	very	useful	feature	in	R	because	they	manipulate
groups	 of	 values	 in	 an	 orderly	 way.	 When	 you	 start	 working	 with	 data	 sets,
element-wise	operations	will	ensure	that	values	from	one	observation	or	case	are
only	 paired	 with	 values	 from	 the	 same	 observation	 or	 case.	 Element-wise
operations	also	make	it	easier	to	write	your	own	programs	and	functions	in	R.

But	don't	think	that	R	has	given	up	on	traditional	matrix	multiplication.	You	just
have	to	ask	for	it	when	you	want	it.	You	can	do	inner	multiplication	with	the	%*%
operator	and	outer	multiplication	with	the	%o%	operator:

die	%*%	die

##	91

die	%o%	die

##						[,1]	[,2]	[,3]	[,4]	[,5]	[,6]

##	[1,]				1				2				3				4				5				6

##	[2,]				2				4				6				8			10			12

##	[3,]				3				6				9			12			15			18

##	[4,]				4				8			12			16			20			24

##	[5,]				5			10			15			20			25			30

##	[6,]				6			12			18			24			30			36

You	can	also	do	 things	 like	 transpose	a	matrix	with	t	 and	 take	 its	determinant
with	det.

Don't	worry	 if	you're	not	 familiar	with	 these	operations.	They	are	easy	 to	 look
up,	and	you	won't	need	them	for	this	book.

Now	 that	 you	 can	 do	math	with	 your	die	 object,	 let's	 look	 at	 how	 you	 could
"roll"	 it.	Rolling	your	die	will	 require	something	more	sophisticated	 than	basic
arithmetic;	you'll	need	to	randomly	select	one	of	the	die's	values.	And	for	that,
you	will	need	a	function.

2.3	Functions

R	 comes	with	many	 functions	 that	 you	 can	 use	 to	 do	 sophisticated	 tasks	 like
random	 sampling.	 For	 example,	 you	 can	 round	 a	 number	 with	 the	 round



function,	or	calculate	its	factorial	with	the	factorial	function.	Using	a	function
is	pretty	simple.	Just	write	the	name	of	the	function	and	then	the	data	you	want
the	function	to	operate	on	in	parentheses:

round(3.1415)

##	3

factorial(3)

##	6

The	data	 that	you	pass	 into	 the	 function	 is	called	 the	 function's	argument.	The
argument	can	be	raw	data,	an	R	object,	or	even	the	results	of	another	R	function.
In	this	last	case,	R	will	work	from	the	innermost	function	to	the	outermost,	as	in
Figure	2.5.

mean(1:6)

##	3.5

mean(die)

##	3.5

round(mean(die))

##	4

Figure	 2.5:	 When	 you	 link	 functions	 together,	 R	 will	 resolve	 them	 from	 the
innermost	operation	to	the	outermost.	Here	R	first	looks	up	die,	then	calculates
the	mean	of	one	through	six,	then	rounds	the	mean.

Lucky	for	us,	there	is	an	R	function	that	can	help	"roll"	the	die.	You	can	simulate
a	roll	of	the	die	with	R's	sample	function.	sample	takes	two	arguments:	a	vector
named	x	and	a	number	named	size.	sample	will	return	size	elements	from	the



vector:

sample(x	=	1:4,	size	=	2)

##	3	2

To	 roll	 your	 die	 and	get	 a	 number	back,	 set	x	 to	die	 and	 sample	one	 element
from	it.	You'll	get	a	new	(maybe	different)	number	each	time	you	roll	it:

sample(x	=	die,	size	=	1)

##	2

sample(x	=	die,	size	=	1)

##	1

sample(x	=	die,	size	=	1)

##	6

Many	R	functions	take	multiple	arguments	that	help	them	do	their	job.	You	can
give	 a	 function	 as	 many	 arguments	 as	 you	 like	 as	 long	 as	 you	 separate	 each
argument	with	a	comma.

You	may	have	noticed	that	I	set	die	and	1	equal	to	the	names	of	the	arguments	in
sample,	x	and	size.	Every	argument	 in	every	R	function	has	a	name.	You	can
specify	 which	 data	 should	 be	 assigned	 to	 which	 argument	 by	 setting	 a	 name
equal	to	data,	as	in	the	preceding	code.	This	becomes	important	as	you	begin	to
pass	multiple	arguments	to	the	same	function;	names	help	you	avoid	passing	the
wrong	data	to	the	wrong	argument.	However,	using	names	is	optional.	You	will
notice	that	R	users	do	not	often	use	the	name	of	the	first	argument	in	a	function.
So	you	might	see	the	previous	code	written	as:

sample(die,	size	=	1)

##	2

Often,	 the	name	of	 the	 first	 argument	 is	 not	 very	descriptive,	 and	 it	 is	 usually
obvious	what	the	first	piece	of	data	refers	to	anyways.

But	how	do	you	know	which	argument	names	to	use?	If	you	try	to	use	a	name
that	a	function	does	not	expect,	you	will	likely	get	an	error:



round(3.1415,	corners	=	2)

##	Error	in	round(3.1415,	corners	=	2)	:	unused	argument(s)	(corners	=	2)

If	 you're	 not	 sure	 which	 names	 to	 use	 with	 a	 function,	 you	 can	 look	 up	 the
function's	arguments	with	args.	To	do	this,	place	the	name	of	the	function	in	the
parentheses	behind	args.	For	example,	you	can	see	that	the	round	function	takes
two	arguments,	one	named	x	and	one	named	digits:

args(round)

##	function	(x,	digits	=	0)	

##	NULL

Did	you	notice	that	args	shows	that	the	digits	argument	of	round	is	already	set
to	0?	Frequently,	an	R	function	will	take	optional	arguments	like	digits.	These
arguments	are	considered	optional	because	they	come	with	a	default	value.	You
can	pass	a	new	value	 to	an	optional	argument	 if	you	want,	 and	R	will	use	 the
default	 value	 if	 you	 do	 not.	 For	 example,	round	will	 round	 your	 number	 to	 0
digits	past	the	decimal	point	by	default.	To	override	the	default,	supply	your	own
value	for	digits:

round(3.1415)

##	3

round(3.1415,	digits	=	2)

##	3.14

You	should	write	out	the	names	of	each	argument	after	the	first	one	or	two	when
you	call	a	function	with	multiple	arguments.	Why?	First,	this	will	help	you	and
others	 understand	 your	 code.	 It	 is	 usually	 obvious	 which	 argument	 your	 first
input	refers	to	(and	sometimes	the	second	input	as	well).	However,	you'd	need	a
large	memory	to	remember	the	third	and	fourth	arguments	of	every	R	function.
Second,	and	more	importantly,	writing	out	argument	names	prevents	errors.

If	you	do	not	write	out	the	names	of	your	arguments,	R	will	match	your	values	to
the	arguments	in	your	function	by	order.	For	example,	in	the	following	code,	the
first	value,	die,	will	be	matched	to	the	first	argument	of	sample,	which	is	named



x.	The	next	value,	1,	will	be	matched	to	the	next	argument,	size:

sample(die,	1)

##	2

As	you	provide	more	arguments,	it	becomes	more	likely	that	your	order	and	R's
order	may	not	align.	As	a	result,	values	may	get	passed	to	the	wrong	argument.
Argument	names	prevent	this.	R	will	always	match	a	value	to	its	argument	name,
no	matter	where	it	appears	in	the	order	of	arguments:

sample(size	=	1,	x	=	die)

##	2

2.3.1	Sample	with	Replacement

If	you	set	size	=	2,	you	can	almost	simulate	a	pair	of	dice.	Before	we	run	that
code,	 think	 for	 a	 minute	 why	 that	 might	 be	 the	 case.	 sample	 will	 return	 two
numbers,	one	for	each	die:

sample(die,	size	=	2)

##	3	4

I	said	this	"almost"	works	because	this	method	does	something	funny.	If	you	use
it	many	times,	you'll	notice	that	the	second	die	never	has	the	same	value	as	the
first	die,	which	means	you'll	never	roll	something	like	a	pair	of	threes	or	snake
eyes.	What	is	going	on?

By	default,	sample	builds	a	sample	without	replacement.	To	see	what	this	means,
imagine	that	sample	places	all	of	the	values	of	die	in	a	jar	or	urn.	Then	imagine
that	 sample	 reaches	 into	 the	 jar	 and	 pulls	 out	 values	 one	 by	 one	 to	 build	 its
sample.	 Once	 a	 value	 has	 been	 drawn	 from	 the	 jar,	 sample	 sets	 it	 aside.	 The
value	 doesn't	 go	 back	 into	 the	 jar,	 so	 it	 cannot	 be	 drawn	 again.	 So	 if	 sample
selects	 a	 six	 on	 its	 first	 draw,	 it	will	 not	 be	 able	 to	 select	 a	 six	 on	 the	 second
draw;	 six	 is	 no	 longer	 in	 the	 jar	 to	 be	 selected.	 Although	 sample	 creates	 its
sample	electronically,	it	follows	this	seemingly	physical	behavior.



One	 side	 effect	 of	 this	 behavior	 is	 that	 each	 draw	 depends	 on	 the	 draws	 that
come	before	it.	In	the	real	world,	however,	when	you	roll	a	pair	of	dice,	each	die
is	independent	of	the	other.	If	the	first	die	comes	up	six,	it	does	not	prevent	the
second	die	from	coming	up	six.	In	fact,	it	doesn't	influence	the	second	die	in	any
way	 whatsoever.	 You	 can	 recreate	 this	 behavior	 in	 sample	 by	 adding	 the
argument	replace	=	TRUE:

sample(die,	size	=	2,	replace	=	TRUE)

##	5	5

The	argument	replace	=	TRUE	causes	sample	to	sample	with	replacement.	Our
jar	example	provides	a	good	way	to	understand	the	difference	between	sampling
with	replacement	and	without.	When	sample	uses	replacement,	it	draws	a	value
from	 the	 jar	 and	 records	 the	value.	Then	 it	puts	 the	value	back	 into	 the	 jar.	 In
other	words,	sample	 replaces	 each	 value	 after	 each	 draw.	As	 a	 result,	 sample
may	select	the	same	value	on	the	second	draw.	Each	value	has	a	chance	of	being
selected	each	time.	It	is	as	if	every	draw	were	the	first	draw.

Sampling	 with	 replacement	 is	 an	 easy	 way	 to	 create	 independent	 random
samples.	 Each	 value	 in	 your	 sample	 will	 be	 a	 sample	 of	 size	 one	 that	 is
independent	 of	 the	 other	 values.	 This	 is	 the	 correct	way	 to	 simulate	 a	 pair	 of
dice:

sample(die,	size	=	2,	replace	=	TRUE)

##	2	4

Congratulate	yourself;	you've	just	run	your	first	simulation	in	R!	You	now	have	a
method	for	simulating	the	result	of	rolling	a	pair	of	dice.	If	you	want	to	add	up
the	dice,	you	can	feed	your	result	straight	into	the	sum	function:

dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

dice

##	2	4

sum(dice)

##	6



What	would	happen	 if	you	call	dice	multiple	 times?	Would	R	generate	a	new
pair	of	dice	values	each	time?	Let's	give	it	a	try:

dice

##	2	4

dice

##	2	4

dice

##	2	4

Nope.	Each	time	you	call	dice,	R	will	show	you	the	result	of	that	one	time	you
called	 sample	 and	 saved	 the	 output	 to	 dice.	 R	 won't	 rerun	 sample(die,	 2,
replace	=	TRUE)	to	create	a	new	roll	of	the	dice.	This	is	a	relief	in	a	way.	Once
you	 save	 a	 set	 of	 results	 to	 an	 R	 object,	 those	 results	 do	 not	 change.
Programming	would	 be	 quite	 hard	 if	 the	 values	 of	 your	 objects	 changed	 each
time	you	called	them.

However,	 it	would	 be	 convenient	 to	 have	 an	 object	 that	 can	 re-roll	 the	 dice
whenever	 you	 call	 it.	 You	 can	 make	 such	 an	 object	 by	 writing	 your	 own	 R
function.

2.4	Writing	Your	Own	Functions

To	recap,	you	already	have	working	R	code	that	simulates	rolling	a	pair	of	dice:

die	<-	1:6

dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

sum(dice)

You	can	retype	this	code	into	the	console	anytime	you	want	to	re-roll	your	dice.
However,	 this	 is	an	awkward	way	to	work	with	the	code.	It	would	be	easier	 to
use	 your	 code	 if	 you	wrapped	 it	 into	 its	 own	 function,	which	 is	 exactly	what
we'll	do	now.	We're	going	to	write	a	function	named	roll	that	you	can	use	to	roll
your	 virtual	 dice.	When	 you're	 finished,	 the	 function	will	work	 like	 this:	 each
time	you	call	roll(),	R	will	return	the	sum	of	rolling	two	dice:



roll()

##	8	

roll()

##	3

roll()

##	7

Functions	may	 seem	mysterious	 or	 fancy,	 but	 they	 are	 just	 another	 type	 of	 R
object.	 Instead	 of	 containing	 data,	 they	 contain	 code.	 This	 code	 is	 stored	 in	 a
special	 format	 that	makes	 it	 easy	 to	 reuse	 the	code	 in	new	situations.	You	can
write	your	own	functions	by	recreating	this	format.

2.4.1	The	Function	Constructor

Every	function	in	R	has	three	basic	parts:	a	name,	a	body	of	code,	and	a	set	of
arguments.	 To	make	 your	 own	 function,	 you	 need	 to	 replicate	 these	 parts	 and
store	them	in	an	R	object,	which	you	can	do	with	the	function	function.	To	do
this,	call	function()	and	follow	it	with	a	pair	of	braces,	{}:

my_function	<-	function()	{}

function	will	build	a	 function	out	of	whatever	R	code	you	place	between	 the
braces.	For	example,	you	can	turn	your	dice	code	into	a	function	by	calling:

roll	<-	function()	{

		die	<-	1:6

		dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

Notice	that	I	indented	each	line	of	code	between	the	braces.	This	makes	the	code
easier	for	you	and	me	to	read	but	has	no	impact	on	how	the	code	runs.	R	ignores
spaces	and	line	breaks	and	executes	one	complete	expression	at	a	time.

Just	hit	 the	Enter	key	between	each	line	after	 the	first	brace,	{.	R	will	wait	for
you	to	type	the	last	brace,	},	before	it	responds.



Don't	 forget	 to	 save	 the	 output	 of	 function	 to	 an	 R	 object.	 This	 object	 will
become	 your	 new	 function.	 To	 use	 it,	write	 the	 object's	 name	 followed	 by	 an
open	and	closed	parenthesis:

roll()

##	9

You	 can	 think	 of	 the	 parentheses	 as	 the	 "trigger"	 that	 causes	 R	 to	 run	 the
function.	If	you	type	in	a	function's	name	without	 the	parentheses,	R	will	show
you	the	code	that	is	stored	inside	the	function.	If	you	type	in	the	name	with	 the
parentheses,	R	will	run	that	code:

roll

##	function()	{

##			die	<-	1:6

##			dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

##			sum(dice)

##	}

roll()

##	6

The	 code	 that	 you	 place	 inside	 your	 function	 is	 known	 as	 the	 body	 of	 the
function.	When	you	 run	 a	 function	 in	R,	R	will	 execute	 all	 of	 the	 code	 in	 the
body	and	 then	 return	 the	 result	of	 the	 last	 line	of	code.	 If	 the	 last	 line	of	code
doesn't	return	a	value,	neither	will	your	function,	so	you	want	to	ensure	that	your
final	line	of	code	returns	a	value.	One	way	to	check	this	is	to	think	about	what
would	 happen	 if	 you	 ran	 the	 body	 of	 code	 line	 by	 line	 in	 the	 command	 line.
Would	R	display	a	result	after	the	last	line,	or	would	it	not?

Here's	some	code	that	would	display	a	result:

dice

1	+	1

sqrt(2)

And	here's	some	code	that	would	not:



dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

two	<-	1	+	1

a	<-	sqrt(2)

Do	 you	 notice	 the	 pattern?	 These	 lines	 of	 code	 do	 not	 return	 a	 value	 to	 the
command	line;	they	save	a	value	to	an	object.

2.5	Arguments

What	if	we	removed	one	line	of	code	from	our	function	and	changed	the	name
die	to	bones,	like	this?

roll2	<-	function()	{

		dice	<-	sample(bones,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

Now	 I'll	 get	 an	 error	 when	 I	 run	 the	 function.	 The	 function	 needs	 the	 object
bones	to	do	its	job,	but	there	is	no	object	named	bones	to	be	found:

roll2()

##	Error	in	sample(bones,	size	=	2,	replace	=	TRUE)	:	

##			object	'bones'	not	found

You	can	supply	bones	when	you	call	roll2	 if	you	make	bones	an	argument	of
the	 function.	 To	 do	 this,	 put	 the	 name	 bones	 in	 the	 parentheses	 that	 follow
function	when	you	define	roll2:

roll2	<-	function(bones)	{

		dice	<-	sample(bones,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

Now	roll2	will	work	as	long	as	you	supply	bones	when	you	call	the	function.
You	can	take	advantage	of	this	to	roll	different	types	of	dice	each	time	you	call
roll2.	Dungeons	and	Dragons,	here	we	come!



Remember,	we're	rolling	pairs	of	dice:

roll2(bones	=	1:4)

##		3

roll2(bones	=	1:6)

##	10

roll2(1:20)

##	31

Notice	 that	roll2	will	 still	 give	 an	 error	 if	 you	 do	 not	 supply	 a	 value	 for	 the
bones	argument	when	you	call	roll2:

roll2()

##	Error	in	sample(bones,	size	=	2,	replace	=	TRUE)	:	

##			argument	"bones"	is	missing,	with	no	default

You	can	prevent	this	error	by	giving	the	bones	argument	a	default	value.	To	do
this,	set	bones	equal	to	a	value	when	you	define	roll2:

roll2	<-	function(bones	=	1:6)	{

		dice	<-	sample(bones,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

Now	you	can	supply	a	new	value	for	bones	 if	you	like,	and	roll2	will	use	 the
default	if	you	do	not:

roll2()

##	9

You	can	give	your	functions	as	many	arguments	as	you	like.	Just	list	their	names,
separated	 by	 commas,	 in	 the	 parentheses	 that	 follow	 function.	 When	 the
function	is	run,	R	will	replace	each	argument	name	in	the	function	body	with	the
value	that	the	user	supplies	for	the	argument.	If	the	user	does	not	supply	a	value,
R	 will	 replace	 the	 argument	 name	 with	 the	 argument's	 default	 value	 (if	 you



defined	one).

To	summarize,	function	helps	you	construct	your	own	R	functions.	You	create	a
body	of	code	 for	your	 function	 to	 run	by	writing	code	between	 the	braces	 that
follow	function.	You	 create	 arguments	 for	 your	 function	 to	 use	 by	 supplying
their	 names	 in	 the	 parentheses	 that	 follow	 function.	 Finally,	 you	 give	 your
function	a	name	by	saving	its	output	to	an	R	object,	as	shown	in	Figure	2.6.

Once	you've	created	your	function,	R	will	treat	it	like	every	other	function	in	R.
Think	about	how	useful	this	is.	Have	you	ever	tried	to	create	a	new	Excel	option
and	 add	 it	 to	 Microsoft's	 menu	 bar?	 Or	 a	 new	 slide	 animation	 and	 add	 it	 to
Powerpoint's	options?	When	you	work	with	a	programming	 language,	you	can
do	these	types	of	things.	As	you	learn	to	program	in	R,	you	will	be	able	to	create
new,	customized,	 reproducible	 tools	 for	yourself	whenever	you	 like.	Project	3:
Slot	Machine	will	teach	you	much	more	about	writing	functions	in	R.

Figure	2.6:	Every	function	in	R	has	the	same	parts,	and	you	can	use	function	to
create	these	parts.	Assign	the	result	to	a	name,	so	you	can	call	the	function	later.

2.6	Scripts

What	if	you	want	to	edit	roll2	again?	You	could	go	back	and	retype	each	line	of
code	in	roll2,	but	it	would	be	so	much	easier	if	you	had	a	draft	of	the	code	to
start	from.	You	can	create	a	draft	of	your	code	as	you	go	by	using	an	R	script.
An	R	script	is	just	a	plain	text	file	that	you	save	R	code	in.	You	can	open	an	R
script	 in	RStudio	by	going	to	File	>	New	File	>	R	script	 in	 the	menu	bar.
RStudio	 will	 then	 open	 a	 fresh	 script	 above	 your	 console	 pane,	 as	 shown	 in



Figure	2.7.

I	strongly	encourage	you	to	write	and	edit	all	of	your	R	code	in	a	script	before
you	run	it	in	the	console.	Why?	This	habit	creates	a	reproducible	record	of	your
work.	When	you're	finished	for	the	day,	you	can	save	your	script	and	then	use	it
to	rerun	your	entire	analysis	the	next	day.	Scripts	are	also	very	handy	for	editing
and	proofreading	your	code,	and	 they	make	a	nice	copy	of	your	work	 to	share
with	others.	To	save	a	script,	click	the	scripts	pane,	and	then	go	to	File	>	Save
As	in	the	menu	bar.

Figure	2.7:	When	you	open	an	R	Script	(File	>	New	File	>	R	Script	in	the	menu
bar),	RStudio	creates	a	fourth	pane	above	the	console	where	you	can	write	and
edit	your	code.

RStudio	 comes	 with	 many	 built-in	 features	 that	 make	 it	 easy	 to	 work	 with
scripts.	First,	you	can	automatically	execute	a	line	of	code	in	a	script	by	clicking
the	Run	button,	as	shown	in	Figure	2.8.

R	will	run	whichever	line	of	code	your	cursor	is	on.	If	you	have	a	whole	section
highlighted,	R	will	run	the	highlighted	code.	Alternatively,	you	can	run	the	entire
script	 by	 clicking	 the	Source	 button.	Don't	 like	 clicking	 buttons?	You	 can	 use
Control	 +	 Return	 as	 a	 shortcut	 for	 the	 Run	 button.	 On	 Macs,	 that	 would	 be
Command	+	Return.



Figure	2.8:	You	can	run	a	highlighted	portion	of	code	in	your	script	if	you	click
the	Run	button	 at	 the	 top	of	 the	 scripts	 pane.	You	can	 run	 the	 entire	 script	 by
clicking	the	Source	button.

If	 you're	 not	 convinced	 about	 scripts,	 you	 soon	will	 be.	 It	 becomes	 a	 pain	 to
write	multi-line	code	in	the	console's	single-line	command	line.	Let's	avoid	that
headache	and	open	your	first	script	now	before	we	move	to	the	next	chapter.

Extract	function

RStudio	comes	with	a	tool	that	can	help	you	build	functions.	To	use	it,	highlight
the	lines	of	code	in	your	R	script	that	you	want	to	turn	into	a	function.	Then	click
Code	>	Extract	Function	in	the	menu	bar.	RStudio	will	ask	you	for	a	function
name	to	use	and	then	wrap	your	code	in	a	function	call.	It	will	scan	the	code	for
undefined	variables	and	use	these	as	arguments.

You	may	 want	 to	 double-check	 RStudio's	 work.	 It	 assumes	 that	 your	 code	 is
correct,	so	if	it	does	something	surprising,	you	may	have	a	problem	in	your	code.

2.7	Summary

You've	 covered	 a	 lot	 of	 ground	 already.	You	 now	 have	 a	 virtual	 die	 stored	 in
your	computer's	memory,	as	well	as	your	own	R	function	that	rolls	a	pair	of	dice.
You've	also	begun	speaking	the	R	language.

As	you've	seen,	R	is	a	language	that	you	can	use	to	talk	to	your	computer.	You
write	commands	 in	R	and	run	 them	at	 the	command	 line	 for	your	computer	 to



read.	Your	computer	will	sometimes	talk	back--for	example,	when	you	commit
an	error--but	it	usually	just	does	what	you	ask	and	then	displays	the	result.

The	two	most	important	components	of	the	R	language	are	objects,	which	store
data,	and	functions,	which	manipulate	data.	R	also	uses	a	host	of	operators	like
+,	-,	*,	/,	and	<-	to	do	basic	tasks.	As	a	data	scientist,	you	will	use	R	objects	to
store	data	 in	your	 computer's	memory,	 and	you	will	 use	 functions	 to	 automate
tasks	and	do	complicated	calculations.	We	will	 examine	objects	 in	more	depth
later	in	Project	2:	Playing	Cards	and	dig	further	into	functions	in	Project	3:	Slot
Machine.	 The	 vocabulary	 you	 have	 developed	 here	 will	 make	 each	 of	 those
projects	easier	to	understand.	However,	we're	not	done	with	your	dice	yet.

In	Packages	and	Help	Pages,	you'll	run	some	simulations	on	your	dice	and	build
your	first	graphs	in	R.	You'll	also	look	at	two	of	the	most	useful	components	of
the	R	 language:	R	packages,	which	 are	 collections	of	 functions	writted	by	R's
talented	community	of	developers,	and	R	documentation,	which	 is	a	collection
of	 help	 pages	 built	 into	 R	 that	 explains	 every	 function	 and	 data	 set	 in	 the
language.



3	Packages	and	Help	Pages
You	now	have	a	function	that	simulates	rolling	a	pair	of	dice.	Let's	make	things	a
little	more	 interesting	 by	weighting	 the	 dice	 in	 your	 favor.	 The	 house	 always
wins,	 right?	Let's	make	 the	 dice	 roll	 high	 numbers	 slightly	more	 often	 than	 it
rolls	low	numbers.

Before	we	weight	the	dice,	we	should	make	sure	that	they	are	fair	to	begin	with.
Two	 tools	will	 help	 you	 do	 this:	 repetition	 and	 visualization.	 By	 coincidence,
these	 tools	 are	 also	 two	 of	 the	 most	 useful	 superpowers	 in	 the	 world	 of	 data
science.

We	 will	 repeat	 our	 dice	 rolls	 with	 a	 function	 called	 replicate,	 and	 we	 will
visualize	 our	 rolls	with	 a	 function	 called	qplot.	qplot	 does	 not	 come	with	R
when	you	download	 it;	qplot	 comes	 in	 a	 standalone	R	 package.	Many	 of	 the
most	useful	R	tools	come	in	R	packages,	so	let's	take	a	moment	to	look	at	what	R
packages	are	and	how	you	can	use	them.

3.1	Packages

You're	not	the	only	person	writing	your	own	functions	with	R.	Many	professors,
programmers,	and	statisticians	use	R	to	design	tools	that	can	help	people	analyze
data.	They	then	make	these	tools	free	for	anyone	to	use.	To	use	these	tools,	you
just	have	to	download	them.	They	come	as	preassembled	collections	of	functions
and	 objects	 called	 packages.	 Appendix	 2:	 R	 Packages	 contains	 detailed
instructions	 for	 downloading	 and	 updating	 R	 packages,	 but	 we'll	 look	 at	 the
basics	here.

We're	going	to	use	the	qplot	function	to	make	some	quick	plots.	qplot	comes	in
the	ggplot2	package,	a	popular	package	for	making	graphs.	Before	you	can	use
qplot,	or	anything	else	in	the	ggplot2	package,	you	need	to	download	and	install
it.

3.1.1	install.packages

Each	R	package	is	hosted	at	http://cran.r-project.org,	the	same	website	that	hosts

http://cran.r-project.org


R.	However,	you	don't	need	to	visit	the	website	to	download	an	R	package;	you
can	download	packages	straight	from	R's	command	line.	Here's	how:

Open	RStudio.
Make	sure	you	are	connected	to	the	Internet.
Run	install.packages("ggplot2")	at	the	command	line.

That's	 it.	R	will	 have	 your	 computer	 visit	 the	website,	 download	 ggplot2,	 and
install	 the	package	 in	your	hard	drive	right	where	R	wants	 to	 find	 it.	You	now
have	the	ggplot2	package.	If	you	would	like	to	install	another	package,	replace
ggplot2	with	your	package	name	in	the	code.

3.1.2	library

Installing	 a	 package	 doesn't	 place	 its	 functions	 at	 your	 fingertips	 just	 yet:	 it
simply	places	 them	in	your	hard	drive.	To	use	an	R	package,	you	next	have	to
load	it	in	your	R	session	with	the	command	library("ggplot2").	If	you	would
like	to	load	a	different	package,	replace	ggplot2	with	your	package	name	in	the
code.

To	 see	what	 this	 does,	 try	 an	 experiment.	 First,	 ask	R	 to	 show	you	 the	qplot
function.	 R	 won't	 be	 able	 to	 find	 qplot	 because	 qplot	 lives	 in	 the	 ggplot2
package,	which	you	haven't	loaded:

qplot

##	Error:	object	'qplot'	not	found

Now	load	the	ggplot2	package:

library("ggplot2")

If	 you	 installed	 the	 package	with	 install.packages	 as	 instructed,	 everything
should	go	fine.	Don't	worry	if	you	don't	see	any	results	or	messages.	No	news	is
fine	news	when	loading	a	package.	Don't	worry	if	you	do	see	a	message	either;
ggplot2	sometimes	displays	helpful	start	up	messages.	As	long	as	you	do	not	see
anything	that	says	"Error,"	you	are	doing	fine.



Now	if	you	ask	 to	 see	qplot,	R	will	 show	you	quite	a	bit	of	code	 (qplot	 is	 a
long	function):

qplot

##	(quite	a	bit	of	code)

Appendix	2:	R	Packages	contains	many	more	details	about	acquiring	and	using
packages.	I	recommend	that	you	read	it	 if	you	are	unfamiliar	with	R's	package
system.	The	main	thing	to	remember	is	 that	you	only	need	to	install	a	package
once,	but	you	need	to	load	it	with	library	each	time	you	wish	to	use	it	in	a	new
R	session.	R	will	unload	all	of	its	packages	each	time	you	close	RStudio.

Now	that	you've	loaded	qplot,	let's	take	it	for	a	spin.	qplot	makes	"quick	plots."
If	you	give	qplot	two	vectors	of	equal	lengths,	qplot	will	draw	a	scatterplot	for
you.	qplot	will	use	the	first	vector	as	a	set	of	x	values	and	the	second	vector	as	a
set	of	y	values.	Look	for	the	plot	 to	appear	in	the	Plots	tab	of	the	bottom-right
pane	in	your	RStudio	window.

The	 following	 code	will	make	 the	 plot	 that	 appears	 in	 Figure	 3.1.	Until	 now,
we've	been	creating	sequences	of	numbers	with	the	:	operator;	but	you	can	also
create	vectors	of	numbers	with	the	c	function.	Give	c	all	of	the	numbers	that	you
want	 to	appear	 in	 the	vector,	 separated	by	a	comma.	c	 stands	 for	concatenate,
but	you	can	think	of	it	as	"collect"	or	"combine":

x	<-	c(-1,	-0.8,	-0.6,	-0.4,	-0.2,	0,	0.2,	0.4,	0.6,	0.8,	1)

x

##	-1.0	-0.8	-0.6	-0.4	-0.2		0.0		0.2		0.4		0.6		0.8		1.0

y	<-	x^3

y

##	-1.000	-0.512	-0.216	-0.064	-0.008		0.000		0.008

##		0.064		0.216		0.512		1.000

qplot(x,	y)



Figure	3.1:	qplot	makes	a	scatterplot	when	you	give	it	two	vectors.

You	don't	need	to	name	your	vectors	x	and	y.	I	just	did	that	to	make	the	example
clear.	As	you	can	see	in	Figure	3.1,	a	scatterplot	is	a	set	of	points,	each	plotted
according	to	its	x	and	y	values.	Together,	the	vectors	x	and	y	describe	a	set	of	10
points.	How	did	R	match	up	 the	values	 in	x	and	y	 to	make	 these	points?	With
element-wise	execution,	as	we	saw	in	Figure	2.3.

Scatterplots	 are	 useful	 for	 visualizing	 the	 relationship	 between	 two	 variables.
However,	we're	going	to	use	a	different	type	of	graph,	a	histogram.	A	histogram
visualizes	the	distribution	of	a	single	variable;	it	displays	how	many	data	points
appear	at	each	value	of	x.

Let's	 take	 a	 look	at	 a	histogram	 to	 see	 if	 this	makes	 sense.	qplot	will	make	a
histogram	 whenever	 you	 give	 it	 only	 one	 vector	 to	 plot.	 The	 following	 code
makes	the	left-hand	plot	in	Figure	3.2	(we'll	worry	about	the	right-hand	plot	in
just	 second).	 To	make	 sure	 our	 graphs	 look	 the	 same,	 use	 the	 extra	 argument
binwidth	=	1:

x	<-	c(1,	2,	2,	2,	3,	3)

qplot(x,	binwidth	=	1)



Figure	3.2:	qplot	makes	a	histogram	when	you	give	it	a	single	vector.

This	 plot	 shows	 that	 our	 vector	 contains	 one	 value	 in	 the	 interval	 [1,	 2)	 by
placing	a	bar	of	height	1	above	 that	 interval.	Similarly,	 the	plot	shows	 that	 the
vector	contains	three	values	in	the	interval	[2,	3)	by	placing	a	bar	of	height	3	in
that	interval.	It	shows	that	the	vector	contains	two	values	in	the	interval	[3,	4)
by	placing	a	bar	of	height	2	in	that	interval.	In	these	intervals,	the	hard	bracket,
[,	 means	 that	 the	 first	 number	 is	 included	 in	 the	 interval.	 The	 parenthesis,	 ),
means	that	the	last	number	is	not	included.

Let's	 try	another	histogram.	This	code	makes	 the	right-hand	plot	 in	Figure	3.2.
Notice	that	there	are	five	points	with	a	value	of	1	in	x2.	The	histogram	displays
this	by	plotting	a	bar	of	height	5	above	the	interval	x2	=	[1,	2):

x2	<-	c(1,	1,	1,	1,	1,	2,	2,	2,	2,	3,	3,	4)

qplot(x2,	binwidth	=	1)

Exercise	3.1:	(Visualize	a	Histogram)	Let	x3	be	the	following	vector:

x3	<-	c(0,	1,	1,	2,	2,	2,	3,	3,	4)

Imagine	what	a	histogram	of	x3	would	look	like.	Assume	that	the	histogram	has
a	 bin	 width	 of	 1.	 How	many	 bars	 will	 the	 histogram	 have?	Where	 will	 they
appear?	How	high	will	each	be?



When	you	are	done,	plot	a	histogram	of	x3	with	binwidth	=	1,	and	see	if	you
are	right.

Solution.	You	can	make	a	histogram	of	x3	with	qplot(x3,	binwidth	=	1).	The
histogram	will	look	like	a	symmetric	pyramid.	The	middle	bar	will	have	a	height
of	3	and	will	appear	above	[2,	3),	but	be	sure	to	try	it	and	see	for	yourself.

You	can	use	a	histogram	to	display	visually	how	common	different	values	of	x
are.	Numbers	covered	by	a	tall	bar	are	more	common	than	numbers	covered	by	a
short	bar.

How	can	you	use	a	histogram	to	check	the	accuracy	of	your	dice?

Well,	if	you	roll	your	dice	many	times	and	keep	track	of	the	results,	you	would
expect	some	numbers	to	occur	more	than	others.	This	is	because	there	are	more
ways	 to	 get	 some	 numbers	 by	 adding	 two	 dice	 together	 than	 to	 get	 other
numbers,	as	shown	in	Figure	3.3.

If	you	roll	your	dice	many	times	and	plot	the	results	with	qplot,	the	histogram
will	show	you	how	often	each	sum	appeared.	The	sums	that	occurred	most	often
will	have	the	highest	bars.	The	histogram	should	look	like	the	pattern	in	Figure
3.3	if	the	dice	are	fairly	weighted.

This	is	where	replicate	comes	in.	replicate	provides	an	easy	way	to	repeat	an
R	command	many	times.	To	use	it,	first	give	replicate	the	number	of	times	you
wish	to	repeat	an	R	command,	and	then	give	it	the	command	you	wish	to	repeat.
replicate	will	run	the	command	multiple	times	and	store	the	results	as	a	vector:

replicate(3,	1	+	1)

##	2	2	2

replicate(10,	roll())

##	3		7		5		3		6		2		3		8	11		7



Figure	 3.3:	 Each	 individual	 dice	 combination	 should	 occur	 with	 the	 same
frequency.	As	a	result,	some	sums	will	occur	more	often	than	others.	With	fair
dice,	each	sum	should	appear	in	proportion	to	the	number	of	combinations	that
make	it.

A	histogram	of	your	first	10	rolls	probably	won't	look	like	the	pattern	shown	in
Figure	3.3.	Why	not?	There	 is	 too	much	randomness	 involved.	Remember	 that
we	 use	 dice	 in	 real	 life	 because	 they	 are	 effective	 random	number	 generators.
Patterns	 of	 long	 run	 frequencies	 will	 only	 appear	 over	 the	 long	 run.	 So	 let's
simulate	 10,000	 dice	 rolls	 and	 plot	 the	 results.	 Don't	 worry;	 qplot	 and
replicate	can	handle	it.	The	results	appear	in	Figure	3.4:

rolls	<-	replicate(10000,	roll())

qplot(rolls,	binwidth	=	1)

The	results	suggest	that	the	dice	are	fair.	Over	the	long	run,	each	number	occurs
in	proportion	to	the	number	of	combinations	that	generate	it.

Now	how	can	you	bias	these	results?	The	previous	pattern	occurs	because	each
underlying	combination	of	dice	(e.g.,	 (3,4))	occurs	with	 the	same	frequency.	 If
you	 could	 increase	 the	 probability	 that	 a	 6	 is	 rolled	 on	 either	 die,	 then	 any
combination	with	a	six	in	it	will	occur	more	often	than	any	combination	without
a	six	in	it.	The	combination	(6,	6)	would	occur	most	of	all.	This	won't	make	the
dice	 add	 up	 to	 12	more	 often	 than	 they	 add	 up	 to	 seven,	 but	 it	will	 skew	 the
results	toward	the	higher	numbers.



Figure	 3.4:	The	 behavior	 of	 our	 dice	 suggests	 that	 they	 are	 fair.	 Seven	 occurs
more	often	than	any	other	number,	and	frequencies	diminish	in	proportion	to	the
number	of	die	combinations	that	create	each	number.

To	put	it	another	way,	the	probability	of	rolling	any	single	number	on	a	fair	die	is
1/6.	I'd	like	you	to	change	the	probability	to	1/8	for	each	number	below	six,	and
then	increase	the	probability	of	rolling	a	six	to	3/8:

Number Fair	probability Weighted	probability
1 1/6 1/8
2 1/6 1/8
3 1/6 1/8
4 1/6 1/8
5 1/6 1/8
6 1/6 3/8

You	 can	 change	 the	 probabilities	 by	 adding	 a	 new	 argument	 to	 the	 sample
function.	I'm	not	going	to	tell	you	what	the	argument	is;	instead	I'll	point	you	to
the	help	page	for	the	sample	function.	What's	that?	R	functions	come	with	help
pages?	Yes	they	do,	so	let's	learn	how	to	read	one.

3.2	Getting	Help	with	Help	Pages



There	are	over	1,000	functions	at	the	core	of	R,	and	new	R	functions	are	created
all	of	the	time.	This	can	be	a	lot	of	material	to	memorize	and	learn!	Luckily,	each
R	function	comes	with	 its	own	help	page,	which	you	can	access	by	 typing	 the
function's	 name	 after	 a	 question	mark.	 For	 example,	 each	 of	 these	 commands
will	open	a	help	page.	Look	for	the	pages	to	appear	in	the	Help	tab	of	RStudio's
bottom-right	pane:

?sqrt

?log10

?sample

Help	 pages	 contain	 useful	 information	 about	 what	 each	 function	 does.	 These
help	pages	also	serve	as	code	documentation,	so	reading	them	can	be	bittersweet.
They	often	 seem	 to	be	written	 for	people	who	already	understand	 the	 function
and	do	not	need	help.

Don't	let	this	bother	you—you	can	gain	a	lot	from	a	help	page	by	scanning	it	for
information	 that	 makes	 sense	 and	 glossing	 over	 the	 rest.	 This	 technique	 will
inevitably	bring	you	to	the	most	helpful	part	of	each	help	page:	the	bottom.	Here,
almost	 every	 help	 page	 includes	 some	 example	 code	 that	 puts	 the	 function	 in
action.	Running	this	code	is	a	great	way	to	learn	by	example.

If	a	function	comes	in	an	R	package,	R	won't	be	able	to	find	its	help	page	unless
the	package	is	loaded.

3.2.1	Parts	of	a	Help	Page

Each	help	page	 is	 divided	 into	 sections.	Which	 sections	 appear	 can	vary	 from
help	page	to	help	page,	but	you	can	usually	expect	to	find	these	useful	topics:

Description	-	A	short	summary	of	what	the	function	does.

Usage	-	An	example	of	how	you	would	type	the	function.	Each	argument	of	the
function	will	 appear	 in	 the	 order	R	 expects	 you	 to	 supply	 it	 (if	 you	 don't	 use
argument	names).

Arguments	 -	 A	 list	 of	 each	 argument	 the	 function	 takes,	 what	 type	 of
information	R	expects	you	to	supply	for	the	argument,	and	what	the	function	will
do	with	the	information.



Details	 -	A	more	in-depth	description	of	 the	function	and	how	it	operates.	The
details	 section	also	gives	 the	 function	author	a	chance	 to	alert	you	 to	anything
you	might	want	to	know	when	using	the	function.

Value	-	A	description	of	what	the	function	returns	when	you	run	it.

See	Also	-	A	short	list	of	related	R	functions.

Examples	-	Example	code	that	uses	the	function	and	is	guaranteed	to	work.	The
examples	section	of	a	help	page	usually	demonstrates	a	couple	different	ways	to
use	a	function.	This	helps	give	you	an	idea	of	what	the	function	is	capable	of.

If	 you'd	 like	 to	 look	 up	 the	 help	 page	 for	 a	 function	 but	 have	 forgotten	 the
function's	 name,	 you	 can	 search	 by	 keyword.	 To	 do	 this,	 type	 two	 question
marks	followed	by	a	keyword	in	R's	command	line.	R	will	pull	up	a	list	of	links
to	help	pages	related	to	the	keyword.	You	can	think	of	this	as	the	help	page	for
the	help	page:

??log

Let's	 take	 a	 stroll	 through	sample's	 help	 page.	Remember:	we're	 searching	 for
anything	 that	could	help	you	change	 the	probabilities	 involved	 in	 the	sampling
process.	 I'm	not	going	 to	 reproduce	 the	whole	help	page	here	 (just	 the	 juiciest
parts),	so	you	should	follow	along	on	your	computer.

First,	 open	 the	 help	 page.	 It	will	 appear	 in	 the	 same	 pane	 in	RStudio	 as	 your
plots	did	(but	in	the	Help	tab,	not	the	Plots	tab):

?sample

What	do	you	see?	Starting	from	the	top:

Random	Samples	and	Permutations

Description

				sample	takes	a	sample	of	the	specified	size	from	the	elements	of	x	using	

either	with	or	without	replacement.



So	 far,	 so	good.	You	knew	all	of	 that.	The	next	 section,	Usage,	has	a	possible
clue.	It	mentions	an	argument	called	prob:

Usage

				sample(x,	size,	replace	=	FALSE,	prob	=	NULL)

If	you	 scroll	down	 to	 the	arguments	 section,	 the	description	of	+prob+	 sounds
very	promising:

A	vector	of	probability	weights	for	obtaining	the	elements	of	the	vector	being	

sampled.

The	Details	section	confirms	our	suspicions.	In	this	case,	it	also	tells	you	how	to
proceed:

The	optional	prob	argument	can	be	used	to	give	a	vector	of	weights	for	obtaining	

the	elements	of	the	vector	being	sampled.	They	need	not	sum	to	one,	but	they	

should	be	nonnegative	and	not	all	zero.

Although	the	help	page	does	not	say	it	here,	these	weights	will	be	matched	up	to
the	 elements	 being	 sampled	 in	 element-wise	 fashion.	 The	 first	 weight	 will
describe	the	first	element,	the	second	weight	the	second	element,	and	so	on.	This
is	common	practice	in	R.

Reading	on:

If	replace	is	true,	Walker's	alias	method	(Ripley,	1987)	is	used...

Okay,	that	looks	like	time	to	start	skimming.	We	should	have	enough	info	now	to
figure	out	how	to	weight	our	dice.

Exercise	3.2:	 (Roll	a	Pair	of	Dice)	Rewrite	 the	roll	 function	 below	 to	 roll	 a
pair	of	weighted	dice:

roll	<-	function()	{

		die	<-	1:6

		dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

You	will	 need	 to	 add	 a	prob	 argument	 to	 the	sample	 function	 inside	 of	roll.
This	argument	should	tell	sample	 to	sample	the	numbers	one	through	five	with



probability	1/8	and	the	number	6	with	probability	3/8.

When	you	are	finished,	read	on	for	a	model	answer.

Solution.	To	weight	your	dice,	you	need	to	add	a	prob	argument	with	a	vector	of
weights	to	sample,	like	this:

roll	<-	function()	{

		die	<-	1:6

		dice	<-	sample(die,	size	=	2,	replace	=	TRUE,	

				prob	=	c(1/8,	1/8,	1/8,	1/8,	1/8,	3/8))

		sum(dice)

}

This	 will	 cause	 roll	 to	 pick	 1	 through	 5	 with	 probability	 1/8	 and	 6	 with
probability	3/8.

Overwrite	your	previous	version	of	roll	with	the	new	function	(by	running	the
previous	code	snippet	in	your	command	line).	Then	visualize	the	new	long-term
behavior	 of	 your	 dice.	 I've	 put	 the	 results	 in	 Figure	 3.5	 next	 to	 our	 original
results:

rolls	<-	replicate(10000,	roll())

qplot(rolls,	binwidth	=	1)

This	 confirms	 that	 we've	 effectively	 weighted	 the	 dice.	 High	 numbers	 occur
much	more	often	than	low	numbers.	The	remarkable	thing	is	that	this	behavior
will	only	be	apparent	when	you	examine	 long-term	frequencies.	On	any	single
roll,	 the	 dice	 will	 appear	 to	 behave	 randomly.	 This	 is	 great	 news	 if	 you	 play
Settlers	 of	 Catan	 (just	 tell	 your	 friends	 you	 lost	 the	 dice),	 but	 it	 should	 be
disturbing	 if	 you	 analyze	 data,	 because	 it	 means	 that	 bias	 can	 easily	 occur
without	anyone	noticing	it	in	the	short	run.



Figure	3.5:	The	dice	 are	now	clearly	biased	 towards	high	numbers,	 since	high
sums	occur	much	more	often	than	low	sums.

3.2.2	Getting	More	Help

R	also	comes	with	a	 super	 active	community	of	users	 that	you	can	 turn	 to	 for
help	on	the	R-help	mailing	list.	You	can	email	the	list	with	questions,	but	there's
a	 great	 chance	 that	 your	 question	 has	 already	 been	 answered.	 Find	 out	 by
searching	the	archives.

Even	 better	 than	 the	 R-help	 list	 is	 Stack	 Overflow,	 a	 website	 that	 allows
programmers	 to	 answer	 questions	 and	 users	 to	 rank	 answers	 based	 on
helpfulness.	 Personally,	 I	 find	 the	 Stack	 Overflow	 format	 to	 be	 more	 user-
friendly	 than	 the	 R-help	 email	 list	 (and	 the	 respondents	 to	 be	 more	 human
friendly).	You	can	submit	your	own	question	or	search	through	Stack	Overflow's
previously	answered	questions	related	to	R.	There	are	over	30,000.

Best	 of	 all	 is	 community.rstudio.com,	 a	 friendly,	 inclusive	 place	 to	 share
questions	related	to	R.	community.rstudio.com	is	a	very	active	forum	focused	on
R.	Don't	be	surprised	if	you	ask	a	question	about	an	R	package,	and	the	author	of
the	package	shows	up	to	answer.

For	 all	 of	 the	R	 help	 list,	 Stack	Overflow,	 and	 community.rstudio.com,	 you're
more	 likely	 to	get	a	useful	answer	 if	you	provide	a	 reproducible	example	with

http://bit.ly/r-help
http://bit.ly/R_archives
http://stackoverflow.com
http://community.rstudio.com


your	question.	This	means	pasting	in	a	short	snippet	of	code	that	users	can	run	to
arrive	at	the	bug	or	question	you	have	in	mind.

3.3	Summary

R's	packages	and	help	pages	can	make	you	a	more	productive	programmer.	You
saw	in	The	Very	Basics	that	R	gives	you	the	power	to	write	your	own	functions
that	do	specific	things,	but	often	the	function	that	you	want	to	write	will	already
exist	 in	an	R	package.	Professors,	programmers,	and	scientists	have	developed
over	13,000	packages	for	you	to	use,	which	can	save	you	valuable	programming
time.	 To	 use	 a	 package,	 you	 need	 to	 install	 it	 to	 your	 computer	 once	 with
install.packages,	and	then	load	it	into	each	new	R	session	with	library.

R's	 help	 pages	 will	 help	 you	 master	 the	 functions	 that	 appear	 in	 R	 and	 its
packages.	Each	function	and	data	set	in	R	has	its	own	help	page.	Although	help
pages	 often	 contain	 advanced	 content,	 they	 also	 contain	 valuable	 clues	 and
examples	that	can	help	you	learn	how	to	use	a	function.

You	have	now	seen	enough	of	R	to	learn	by	doing,	which	is	the	best	way	to	learn
R.	You	can	make	your	own	R	commands,	run	them,	and	get	help	when	you	need
to	 understand	 something	 that	 I	 have	 not	 explained.	 I	 encourage	 you	 to
experiment	with	your	own	ideas	in	R	as	you	read	through	the	next	two	projects.

3.4	Project	1	Wrap-up

You've	 done	more	 in	 this	 project	 than	 enable	 fraud	 and	gambling;	 you've	 also
learned	how	to	speak	to	your	computer	in	the	language	of	R.	R	is	a	language	like
English,	Spanish,	or	German,	except	R	helps	you	talk	to	computers,	not	humans.

You've	met	the	nouns	of	the	R	language,	objects.	And	hopefully	you	guessed	that
functions	 are	 the	 verbs	 (I	 suppose	 function	 arguments	would	 be	 the	 adverbs).
When	you	combine	functions	and	objects,	you	express	a	complete	 thought.	By
stringing	 thoughts	 together	 in	a	 logical	sequence,	you	can	build	eloquent,	even
artistic	statements.	In	that	respect,	R	is	not	that	different	than	any	other	language.

R	 shares	 another	 characteristic	 of	 human	 languages:	 you	 won't	 feel	 very
comfortable	speaking	R	until	you	build	up	a	vocabulary	of	R	commands	to	use.
Fortunately,	you	don't	have	to	be	bashful.	Your	computer	will	be	the	only	one	to



"hear"	 you	 speak	 R.	 Your	 computer	 is	 not	 very	 forgiving,	 but	 it	 also	 doesn't
judge.	 Not	 that	 you	 need	 to	 worry;	 you'll	 broaden	 your	 R	 vocabulary
tremendously	between	here	and	the	end	of	the	book.

Now	 that	you	can	use	R,	 it	 is	 time	 to	become	an	expert	 at	using	R	 to	do	data
science.	The	 foundation	of	data	science	 is	 the	ability	 to	store	 large	amounts	of
data	 and	 recall	 values	 on	 demand.	 From	 this,	 all	 else	 follows—manipulating
data,	 visualizing	 data,	 modeling	 data,	 and	 more.	 However,	 you	 cannot	 easily
store	a	data	set	in	your	mind	by	memorizing	it.	Nor	can	you	easily	store	a	data
set	on	paper	by	writing	it	down.	The	only	efficient	way	to	store	large	amounts	of
data	is	with	a	computer.	In	fact,	computers	are	so	efficient	that	their	development
over	 the	 last	 three	 decades	 has	 completely	 changed	 the	 type	 of	 data	 we	 can
accumulate	 and	 the	methods	we	 can	use	 to	 analyze	 it.	 In	 short,	 computer	 data
storage	has	driven	the	revolution	in	science	that	we	call	data	science.

Project	2:	Playing	Cards	will	make	you	part	of	 this	revolution	by	 teaching	you
how	to	use	R	to	store	data	sets	in	your	computer's	memory	and	how	to	retrieve
and	manipulate	data	once	it's	there.



4	Project	2:	Playing	Cards
This	 project--which	 spans	 the	 next	 four	 chapters--will	 teach	you	how	 to	 store,
retrieve,	 and	 change	data	 values	 in	 your	 computer's	memory.	These	 skills	will
help	 you	 save	 and	 manage	 data	 without	 accumulating	 errors.	 In	 the	 project,
you'll	design	a	deck	of	playing	cards	that	you	can	shuffle	and	deal	from.	Best	of
all,	 the	deck	will	 remember	which	cards	have	been	dealt--just	 like	a	 real	deck.
You	can	use	 the	deck	 to	play	 card	games,	 tell	 fortunes,	 and	 test	 card-counting
strategies.

Along	the	way,	you	will	learn	how	to:

Save	new	types	of	data,	like	character	strings	and	logical	values
Save	a	data	set	as	a	vector,	matrix,	array,	list,	or	data	frame
Load	and	save	your	own	data	sets	with	R
Extract	individual	values	from	a	data	set
Change	individual	values	within	a	data	set
Write	logical	tests
Use	R's	missing-value	symbol,	NA

To	keep	 the	project	simple,	 I've	divided	 it	 into	 four	 tasks.	Each	 task	will	 teach
you	a	new	skill	for	managing	data	with	R:

Task	1:	build	the	deck
In	R	Objects,	you	will	design	and	build	a	virtual	deck	of	playing	cards.	This	will
be	a	complete	data	set,	just	like	the	ones	you	will	use	as	a	data	scientist.	You'll
need	to	know	how	to	use	R's	data	types	and	data	structures	to	make	this	work.

Task	2:	write	functions	that	deal	and	shuffle
Next,	 in	 R	Notation,	 you	 will	 write	 two	 functions	 to	 use	 with	 the	 deck.	 One
function	will	deal	cards	from	the	deck,	and	the	other	will	reshuffle	the	deck.	To
write	these	functions,	you'll	need	to	know	how	to	extract	values	from	a	data	set
with	R.

Task	3:	change	the	point	system	to	suit	your	game
In	Modifying	Values,	you	will	use	R's	notation	system	to	change	the	point	values
of	your	cards	to	match	the	card	games	you	may	wish	to	play,	like	war,	hearts,	or



blackjack.	This	will	help	you	change	values	in	place	in	existing	data	sets.

Task	4:	manage	the	state	of	the	deck
Finally,	 in	Environments,	you	will	make	sure	 that	your	deck	remembers	which
cards	it	has	dealt.	This	is	an	advanced	task,	and	it	will	introduce	R's	environment
system	and	scoping	rules.	To	do	it	successfully,	you	will	need	to	learn	the	minute
details	 of	 how	 R	 looks	 up	 and	 uses	 the	 data	 that	 you	 have	 stored	 in	 your
computer.



5	R	Objects
In	this	chapter,	you'll	use	R	to	assemble	a	deck	of	52	playing	cards.

You'll	 start	 by	building	 simple	R	objects	 that	 represent	playing	 cards	 and	 then
work	 your	 way	 up	 to	 a	 full-blown	 table	 of	 data.	 In	 short,	 you'll	 build	 the
equivalent	 of	 an	Excel	 spreadsheet	 from	 scratch.	When	you	 are	 finished,	 your
deck	of	cards	will	look	something	like	this:

	face			suit	value

	king	spades				13

queen	spades				12

	jack	spades				11

		ten	spades				10

	nine	spades					9

eight	spades					8

...

Do	you	need	to	build	a	data	set	from	scratch	to	use	it	in	R?	Not	at	all.	You	can
load	 most	 data	 sets	 into	 R	 with	 one	 simple	 step,	 see	 Loading	Data.	 But	 this
exercise	 will	 teach	 you	 how	 R	 stores	 data,	 and	 how	 you	 can	 assemble—or
disassemble—your	own	data	sets.	You	will	also	learn	about	the	various	types	of
objects	available	for	you	to	use	in	R	(not	all	R	objects	are	the	same!).	Consider
this	exercise	a	rite	of	passage;	by	doing	it,	you	will	become	an	expert	on	storing
data	in	R.

We'll	start	with	the	very	basics.	The	most	simple	type	of	object	in	R	is	an	atomic
vector.	Atomic	 vectors	 are	 not	 nuclear	 powered,	 but	 they	 are	 very	 simple	 and
they	do	 show	up	everywhere.	 If	 you	 look	closely	 enough,	you'll	 see	 that	most
structures	in	R	are	built	from	atomic	vectors.

5.1	Atomic	Vectors

An	atomic	vector	is	just	a	simple	vector	of	data.	In	fact,	you've	already	made	an
atomic	vector,	your	die	object	from	Project	1:	Weighted	Dice.	You	can	make	an
atomic	vector	by	grouping	some	values	of	data	together	with	c:



die	<-	c(1,	2,	3,	4,	5,	6)

die

##	1	2	3	4	5	6

is.vector(die)

##		TRUE

is.vector

is.vector	 tests	 whether	 an	 object	 is	 an	 atomic	 vector.	 It	 returns	 TRUE	 if	 the
object	is	an	atomic	vector	and	FALSE	otherwise.

You	can	also	make	an	atomic	vector	with	just	one	value.	R	saves	single	values	as
an	atomic	vector	of	length	1:

five	<-	5

five

##	5

is.vector(five)

##		TRUE

length(five)

##	1

length(die)

##	6

length

length	returns	the	length	of	an	atomic	vector.

Each	 atomic	 vector	 stores	 its	 values	 as	 a	 one-dimensional	 vector,	 and	 each
atomic	vector	 can	only	 store	one	 type	of	data.	You	can	 save	different	 types	of
data	in	R	by	using	different	types	of	atomic	vectors.	Altogether,	R	recognizes	six
basic	 types	of	atomic	vectors:	doubles,	 integers,	characters,	 logicals,	 complex,
and	raw.

To	create	your	card	deck,	you	will	need	to	use	different	types	of	atomic	vectors
to	 save	 different	 types	 of	 information	 (text	 and	 numbers).	You	 can	 do	 this	 by
using	some	simple	conventions	when	you	enter	your	data.	For	example,	you	can



create	an	integer	vector	by	including	a	capital	L	with	your	input.	You	can	create	a
character	vector	by	surrounding	your	input	in	quotation	marks:

int	<-	1L

text	<-	"ace"

Each	 type	 of	 atomic	 vector	 has	 its	 own	 convention	 (described	 below).	 R	will
recognize	the	convention	and	use	it	to	create	an	atomic	vector	of	the	appropriate
type.	 If	you'd	 like	 to	make	atomic	vectors	 that	have	more	 than	one	element	 in
them,	you	can	combine	an	element	with	the	c	function	from	Packages	and	Help
Pages.	Use	the	same	convention	with	each	element:

int	<-	c(1L,	5L)

text	<-	c("ace",	"hearts")

You	may	 wonder	 why	 R	 uses	 multiple	 types	 of	 vectors.	 Vector	 types	 help	 R
behave	as	you	would	expect.	For	example,	R	will	do	math	with	atomic	vectors
that	contain	numbers,	but	not	with	atomic	vectors	that	contain	character	strings:

sum(int)

##	6

sum(text)

##	Error	in	sum(text)	:	invalid	'type'	(character)	of	argument

But	we're	getting	ahead	of	ourselves!	Get	ready	to	say	hello	to	the	six	types	of
atomic	vectors	in	R.

5.1.1	Doubles

A	 double	 vector	 stores	 regular	 numbers.	 The	 numbers	 can	 be	 positive	 or
negative,	large	or	small,	and	have	digits	to	the	right	of	the	decimal	place	or	not.
In	 general,	 R	 will	 save	 any	 number	 that	 you	 type	 in	 R	 as	 a	 double.	 So,	 for
example,	the	die	you	made	in	Project	1:	Weighted	Dice	was	a	double	object:

die	<-	c(1,	2,	3,	4,	5,	6)



die

##	1	2	3	4	5	6

You'll	usually	know	what	 type	of	object	you	are	working	with	 in	R	 (it	will	be
obvious),	but	you	can	also	ask	R	what	type	of	object	an	object	is	with	typeof.
For	example:

typeof(die)

##		"double"

Some	R	functions	refer	to	doubles	as	"numerics,"	and	I	will	often	do	the	same.
Double	is	a	computer	science	term.	It	refers	to	the	specific	number	of	bytes	your
computer	uses	to	store	a	number,	but	I	find	"numeric"	to	be	much	more	intuitive
when	doing	data	science.

5.1.2	Integers

Integer	 vectors	 store	 integers,	 numbers	 that	 can	 be	 written	 without	 a	 decimal
component.	As	a	data	scientist,	you	won't	use	the	integer	type	very	often	because
you	can	save	integers	as	a	double	object.

You	can	specifically	create	an	integer	in	R	by	typing	a	number	followed	by	an
uppercase	L.	For	example:

int	<-	c(-1L,	2L,	4L)

int

##	-1		2		4

typeof(int)

##	"integer"

Note	that	R	won't	save	a	number	as	an	integer	unless	you	include	the	L.	Integer
numbers	without	the	L	will	be	saved	as	doubles.	The	only	difference	between	4
and	 4L	 is	 how	 R	 saves	 the	 number	 in	 your	 computer's	 memory.	 Integers	 are
defined	 more	 precisely	 in	 your	 computer's	 memory	 than	 doubles	 (unless	 the
integer	is	very	large	or	small).

Why	would	you	save	your	data	as	an	integer	instead	of	a	double?	Sometimes	a



difference	 in	precision	can	have	surprising	effects.	Your	computer	allocates	64
bits	 of	 memory	 to	 store	 each	 double	 in	 an	 R	 program.	 This	 allows	 a	 lot	 of
precision,	 but	 some	 numbers	 cannot	 be	 expressed	 exactly	 in	 64	 bits,	 the
equivalent	 of	 a	 sequence	 of	 64	 ones	 and	 zeroes.	 For	 example,	 the	 number	
contains	an	endless	 sequences	of	digits	 to	 the	 right	of	 the	decimal	place.	Your
computer	must	round	 	to	something	close	to,	but	not	exactly	equal	to	 	to	store
	in	its	memory.	Many	decimal	numbers	share	a	similar	fate.

As	a	result,	each	double	is	accurate	to	about	16	significant	digits.	This	introduces
a	 little	 bit	 of	 error.	 In	 most	 cases,	 this	 rounding	 error	 will	 go	 unnoticed.
However,	in	some	situations,	the	rounding	error	can	cause	surprising	results.	For
example,	you	may	expect	the	result	of	the	expression	below	to	be	zero,	but	it	is
not:

sqrt(2)^2	-	2

##	4.440892e-16

The	square	root	of	two	cannot	be	expressed	exactly	in	16	significant	digits.	As	a
result,	R	has	to	round	the	quantity,	and	the	expression	resolves	to	something	very
close	to—but	not	quite—zero.

These	 errors	 are	 known	 as	 floating-point	 errors,	 and	 doing	 arithmetic	 in	 these
conditions	is	known	as	floating-point	arithmetic.	Floating-point	arithmetic	is	not
a	feature	of	R;	 it	 is	a	feature	of	computer	programming.	Usually	floating-point
errors	won't	be	enough	to	ruin	your	day.	Just	keep	in	mind	that	they	may	be	the
cause	of	surprising	results.

You	 can	 avoid	 floating-point	 errors	 by	 avoiding	 decimals	 and	 only	 using
integers.	 However,	 this	 is	 not	 an	 option	 in	 most	 data-science	 situations.	 You
cannot	do	much	math	with	integers	before	you	need	a	noninteger	to	express	the
result.	 Luckily,	 the	 errors	 caused	 by	 floating-point	 arithmetic	 are	 usually
insignificant	 (and	when	 they	are	not,	 they	are	easy	 to	 spot).	As	a	 result,	you'll
generally	use	doubles	instead	of	integers	as	a	data	scientist.

5.1.3	Characters

A	character	vector	stores	small	pieces	of	text.	You	can	create	a	character	vector
in	R	by	typing	a	character	or	string	of	characters	surrounded	by	quotes:



text	<-	c("Hello",		"World")

text

##		"Hello"		"World"

typeof(text)

##	"character"

typeof("Hello")

##	"character"

The	individual	elements	of	a	character	vector	are	known	as	strings.	Note	that	a
string	 can	 contain	more	 than	 just	 letters.	 You	 can	 assemble	 a	 character	 string
from	numbers	or	symbols	as	well.

Exercise	5.1:	(Character	or	Number?)	Can	you	spot	the	difference	between	a
character	string	and	a	number?	Here's	a	test:	Which	of	these	are	character	strings
and	which	are	numbers?	1,	"1",	"one".
Solution.	"1"	and	"one"	are	both	character	strings.

Character	 strings	 can	 contain	 number	 characters,	 but	 that	 doesn't	 make	 them
numeric.	They're	just	strings	that	happen	to	have	numbers	in	them.	You	can	tell
strings	 from	real	numbers	because	 strings	come	surrounded	by	quotes.	 In	 fact,
anything	 surrounded	 by	 quotes	 in	 R	 will	 be	 treated	 as	 a	 character	 string—no
matter	what	appears	between	the	quotes.

It	is	easy	to	confuse	R	objects	with	character	strings.	Why?	Because	both	appear
as	pieces	of	text	in	R	code.	For	example,	x	is	the	name	of	an	R	object	named	"x,"
"x"	 is	 a	 character	 string	 that	 contains	 the	 character	 "x."	One	 is	 an	 object	 that
contains	raw	data,	the	other	is	a	piece	of	raw	data	itself.

Expect	an	error	whenever	you	forget	your	quotation	marks;	R	will	start	looking
for	an	object	that	probably	does	not	exist.

5.1.4	Logicals

Logical	vectors	store	TRUEs	and	FALSEs,	R's	form	of	Boolean	data.	Logicals	are
very	helpful	for	doing	things	like	comparisons:

3	>	4



##	FALSE

Any	time	you	type	TRUE	or	FALSE	in	capital	letters	(without	quotation	marks),	R
will	 treat	your	 input	as	 logical	data.	R	also	assumes	that	T	and	F	are	shorthand
for	TRUE	and	FALSE,	unless	they	are	defined	elsewhere	(e.g.	T	<-	500).	Since	the
meaning	of	T	and	F	can	change,	its	best	to	stick	with	TRUE	and	FALSE:

logic	<-	c(TRUE,	FALSE,	TRUE)

logic

##			TRUE	FALSE		TRUE

typeof(logic)

##	"logical"

typeof(F)

##	"logical"

5.1.5	Complex	and	Raw

Doubles,	integers,	characters,	and	logicals	are	the	most	common	types	of	atomic
vectors	 in	 R,	 but	 R	 also	 recognizes	 two	 more	 types:	 complex	 and	 raw.	 It	 is
doubtful	 that	you	will	ever	use	 these	 to	analyze	data,	but	here	 they	are	 for	 the
sake	of	thoroughness.

Complex	 vectors	 store	 complex	 numbers.	 To	 create	 a	 complex	 vector,	 add	 an
imaginary	term	to	a	number	with	i:

comp	<-	c(1	+	1i,	1	+	2i,	1	+	3i)

comp

##	1+1i	1+2i	1+3i

typeof(comp)

##	"complex"

Raw	vectors	store	raw	bytes	of	data.	Making	raw	vectors	gets	complicated,	but
you	can	make	an	empty	raw	vector	of	length	n	with	raw(n).	See	the	help	page	of
raw	for	more	options	when	working	with	this	type	of	data:



raw(3)

##	00	00	00

typeof(raw(3))

##	"raw"

Exercise	5.2:	(Vector	of	Cards)	Create	an	atomic	vector	that	stores	just	the	face
names	 of	 the	 cards	 in	 a	 royal	 flush,	 for	 example,	 the	 ace	 of	 spades,	 king	 of
spades,	queen	of	spades,	jack	of	spades,	and	ten	of	spades.	The	face	name	of	the
ace	of	spades	would	be	"ace,"	and	"spades"	is	the	suit.

Which	type	of	vector	will	you	use	to	save	the	names?
Solution.	A	 character	 vector	 is	 the	 most	 appropriate	 type	 of	 atomic	 vector	 in
which	 to	 save	 card	 names.	 You	 can	 create	 one	 with	 the	 c	 function	 if	 you
surround	each	name	with	quotation	marks:

hand	<-	c("ace",	"king",	"queen",	"jack",	"ten")

hand

##	"ace"			"king"		"queen"	"jack"		"ten"		

typeof(hand)

##	"character"

This	creates	a	one-dimensional	group	of	card	names—great	job!	Now	let's	make
a	more	sophisticated	data	structure,	a	two-dimensional	table	of	card	names	and
suits.	You	can	build	a	more	sophisticated	object	from	an	atomic	vector	by	giving
it	some	attributes	and	assigning	it	a	class.

5.2	Attributes

An	attribute	is	a	piece	of	information	that	you	can	attach	to	an	atomic	vector	(or
any	R	object).	The	attribute	won't	affect	any	of	 the	values	 in	 the	object,	and	 it
will	not	appear	when	you	display	your	object.	You	can	 think	of	an	attribute	as
"metadata";	 it	 is	 just	 a	 convenient	 place	 to	 put	 information	 associated	with	 an
object.	R	will	normally	ignore	this	metadata,	but	some	R	functions	will	check	for
specific	 attributes.	 These	 functions	may	 use	 the	 attributes	 to	 do	 special	 things
with	the	data.

You	 can	 see	which	 attributes	 an	 object	 has	with	attributes.	attributes	 will



return	NULL	if	an	object	has	no	attributes.	An	atomic	vector,	like	die,	won't	have
any	attributes	unless	you	give	it	some:

attributes(die)

##	NULL

NULL

R	uses	NULL	to	represent	the	null	set,	an	empty	object.	NULL	is	often	returned	by
functions	whose	values	 are	undefined.	You	can	create	 a	NULL	 object	by	 typing
NULL	in	capital	letters.

5.2.1	Names

The	most	 common	 attributes	 to	 give	 an	 atomic	 vector	 are	 names,	 dimensions
(dim),	and	classes.	Each	of	these	attributes	has	its	own	helper	function	that	you
can	use	to	give	attributes	to	an	object.	You	can	also	use	the	helper	functions	to
look	 up	 the	 value	 of	 these	 attributes	 for	 objects	 that	 already	 have	 them.	 For
example,	you	can	look	up	the	value	of	the	names	attribute	of	die	with	names:

names(die)

##	NULL

NULL	means	that	die	does	not	have	a	names	attribute.	You	can	give	one	to	die	by
assigning	a	 character	vector	 to	 the	output	of	names.	The	vector	 should	 include
one	name	for	each	element	in	die:

names(die)	<-	c("one",	"two",	"three",	"four",	"five",	"six")

Now	die	has	a	names	attribute:

names(die)

##	"one"			"two"			"three"	"four"		"five"		"six"	

attributes(die)

##	$names

##	[1]	"one"			"two"			"three"	"four"		"five"		"six"



R	will	display	 the	names	above	 the	elements	of	die	whenever	you	 look	at	 the
vector:

die

##		one			two	three		four		five			six	

##				1					2					3					4					5					6	

However,	 the	 names	 won't	 affect	 the	 actual	 values	 of	 the	 vector,	 nor	 will	 the
names	be	affected	when	you	manipulate	the	values	of	the	vector:

die	+	1

##		one			two	three		four		five			six	

##				2					3					4					5					6					7

You	can	also	use	names	to	change	the	names	attribute	or	remove	it	all	together.
To	change	the	names,	assign	a	new	set	of	labels	to	names:

names(die)	<-	c("uno",	"dos",	"tres",	"quatro",	"cinco",	"seis")

die

##			uno				dos			tres	quatro		cinco			seis	

##					1						2						3						4						5						6	

To	remove	the	names	attribute,	set	it	to	NULL:

names(die)	<-	NULL

die

##		1	2	3	4	5	6

5.2.2	Dim

You	can	 transform	an	atomic	vector	 into	an	n-dimensional	array	by	giving	 it	 a
dimensions	 attribute	 with	 dim.	 To	 do	 this,	 set	 the	 dim	 attribute	 to	 a	 numeric
vector	 of	 length	 n.	 R	 will	 reorganize	 the	 elements	 of	 the	 vector	 into	 n
dimensions.	Each	dimension	will	 have	 as	many	 rows	 (or	 columns,	 etc.)	 as	 the
nth	value	of	 the	dim	vector.	For	example,	you	can	 reorganize	die	 into	 a	2	×	3



matrix	(which	has	2	rows	and	3	columns):

dim(die)	<-	c(2,	3)

die

##						[,1]	[,2]	[,3]

##	[1,]				1				3				5

##	[2,]				2				4				6

or	a	3	×	2	matrix	(which	has	3	rows	and	2	columns):

dim(die)	<-	c(3,	2)

die

##						[,1]	[,2]

##	[1,]				1				4

##	[2,]				2				5

##	[3,]				3				6

or	a	1	×	2	×	3	hypercube	(which	has	1	row,	2	columns,	and	3	"slices").	This	is	a
three-dimensional	structure,	but	R	will	need	to	show	it	slice	by	slice	by	slice	on
your	two-dimensional	computer	screen:

dim(die)	<-	c(1,	2,	3)

die

##	,	,	1

##	

##						[,1]	[,2]

##	[1,]				1				2

##	

##	,	,	2

##	

##						[,1]	[,2]

##	[1,]				3				4

##	

##	,	,	3

##	

##						[,1]	[,2]

##	[1,]				5				6

R	will	always	use	the	first	value	in	dim	for	the	number	of	rows	and	the	second
value	 for	 the	 number	 of	 columns.	 In	 general,	 rows	 always	 come	 first	 in	 R



operations	that	deal	with	both	rows	and	columns.

You	may	notice	 that	you	don't	 have	much	control	over	how	R	 reorganizes	 the
values	 into	 rows	 and	 columns.	For	 example,	R	 always	 fills	 up	 each	matrix	 by
columns,	 instead	of	by	 rows.	 If	 you'd	 like	more	 control	over	 this	process,	 you
can	use	one	of	R's	helper	functions,	matrix	or	array.	They	do	the	same	thing	as
changing	 the	dim	 attribute,	 but	 they	 provide	 extra	 arguments	 to	 customize	 the
process.

5.3	Matrices

Matrices	store	values	 in	a	 two-dimensional	array,	 just	 like	a	matrix	from	linear
algebra.	To	create	one,	 first	give	matrix	 an	 atomic	vector	 to	 reorganize	 into	 a
matrix.	Then,	define	how	many	rows	should	be	in	the	matrix	by	setting	the	nrow
argument	to	a	number.	matrix	will	organize	your	vector	of	values	into	a	matrix
with	the	specified	number	of	rows.	Alternatively,	you	can	set	the	ncol	argument,
which	tells	R	how	many	columns	to	include	in	the	matrix:

m	<-	matrix(die,	nrow	=	2)

m

##						[,1]	[,2]	[,3]

##	[1,]				1				3				5

##	[2,]				2				4				6

matrix	will	fill	up	the	matrix	column	by	column	by	default,	but	you	can	fill	the
matrix	row	by	row	if	you	include	the	argument	byrow	=	TRUE:

m	<-	matrix(die,	nrow	=	2,	byrow	=	TRUE)

m

##						[,1]	[,2]	[,3]

##	[1,]				1				2				3

##	[2,]				4				5				6

matrix	 also	 has	 other	 default	 arguments	 that	 you	 can	 use	 to	 customize	 your
matrix.	You	can	read	about	them	at	matrix's	help	page	(accessible	by	?matrix).

5.4	Arrays



The	array	function	creates	an	n-dimensional	array.	For	example,	you	could	use
array	to	sort	values	into	a	cube	of	three	dimensions	or	a	hypercube	in	4,	5,	or	n
dimensions.	 array	 is	 not	 as	 customizeable	 as	 matrix	 and	 basically	 does	 the
same	thing	as	setting	the	dim	attribute.	To	use	array,	provide	an	atomic	vector	as
the	 first	 argument,	 and	 a	 vector	 of	 dimensions	 as	 the	 second	 argument,	 now
called	dim:

ar	<-	array(c(11:14,	21:24,	31:34),	dim	=	c(2,	2,	3))

ar

##	,	,	1

##	

##						[,1]	[,2]

##	[1,]			11			13

##	[2,]			12			14

##	

##	,	,	2

##	

##						[,1]	[,2]

##	[1,]			21			23

##	[2,]			22			24

##	

##	,	,	3

##	

##						[,1]	[,2]

##	[1,]			31			33

##	[2,]			32			34

Exercise	5.3:	 (Make	a	Matrix)	Create	 the	 following	matrix,	which	 stores	 the
name	and	suit	of	every	card	in	a	royal	flush.

##						[,1]				[,2]				

##	[1,]	"ace"			"spades"

##	[2,]	"king"		"spades"

##	[3,]	"queen"	"spades"

##	[4,]	"jack"		"spades"

##	[5,]	"ten"			"spades"

Solution.	There	is	more	than	one	way	to	build	this	matrix,	but	in	every	case,	you
will	need	to	start	by	making	a	character	vector	with	10	values.	If	you	start	with
the	 following	 character	 vector,	 you	 can	 turn	 it	 into	 a	 matrix	 with	 any	 of	 the
following	three	commands:

hand1	<-	c("ace",	"king",	"queen",	"jack",	"ten",	"spades",	"spades"

		"spades",	"spades",	"spades")



matrix(hand1,	nrow	=	5)

matrix(hand1,	ncol	=	2)

dim(hand1)	<-	c(5,	2)

You	 can	 also	 start	 with	 a	 character	 vector	 that	 lists	 the	 cards	 in	 a	 slightly
different	order.	In	this	case,	you	will	need	to	ask	R	to	fill	the	matrix	row	by	row
instead	of	column	by	column:

hand2	<-	c("ace",	"spades",	"king",	"spades",	"queen",	"spades",	"jack"

		"spades",	"ten",	"spades")

matrix(hand2,	nrow	=	5,	byrow	=	TRUE)

matrix(hand2,	ncol	=	2,	byrow	=	TRUE)

5.5	Class

Notice	that	changing	the	dimensions	of	your	object	will	not	change	the	type	of
the	object,	but	it	will	change	the	object's	class	attribute:

dim(die)	<-	c(2,	3)

typeof(die)

##		"double"

	

class(die)

##		"matrix"

A	matrix	is	a	special	case	of	an	atomic	vector.	For	example,	the	die	matrix	is	a
special	case	of	a	double	vector.	Every	element	in	the	matrix	is	still	a	double,	but
the	elements	have	been	arranged	into	a	new	structure.	R	added	a	class	attribute
to	die	when	you	changed	its	dimensions.	This	class	describes	die's	new	format.
Many	R	functions	will	specifically	look	for	an	object's	class	attribute,	and	then
handle	the	object	in	a	predetermined	way	based	on	the	attribute.

Note	 that	 an	 object's	 class	 attribute	 will	 not	 always	 appear	 when	 you	 run
attributes;	you	may	need	to	specifically	search	for	it	with	class:



attributes(die)

##	$dim

##	[1]	2	3

You	can	apply	class	 to	 objects	 that	 do	not	 have	 a	class	 attribute.	class	will
return	 a	 value	 based	 on	 the	 object's	 atomic	 type.	 Notice	 that	 the	 "class"	 of	 a
double	is	"numeric,"	an	odd	deviation,	but	one	I	am	thankful	for.	I	think	that	the
most	 important	 property	 of	 a	 double	 vector	 is	 that	 it	 contains	 numbers,	 a
property	that	"numeric"	makes	obvious:

class("Hello")

##		"character"

class(5)

##		"numeric"

You	can	also	use	class	to	set	an	object's	class	attribute,	but	this	is	usually	a	bad
idea.	R	will	 expect	 objects	 of	 a	 class	 to	 share	 certain	 traits,	 such	 as	 attributes,
that	your	object	may	not	possess.	You'll	 learn	how	 to	make	and	use	your	own
classes	in	Project	3:	Slot	Machine.

5.5.1	Dates	and	Times

The	 attribute	 system	 lets	 R	 represent	 more	 types	 of	 data	 than	 just	 doubles,
integers,	 characters,	 logicals,	 complexes,	 and	 raws.	 The	 time	 looks	 like	 a
character	string	when	you	display	it,	but	its	data	type	is	actually	"double",	and
its	class	is	"POSIXct"	"POSIXt"	(it	has	two	classes):

now	<-	Sys.time()

now

##	"2014-03-17	12:00:00	UTC"

typeof(now)

##		"double"

class(now)

##	"POSIXct"	"POSIXt"	

POSIXct	 is	 a	widely	 used	 framework	 for	 representing	 dates	 and	 times.	 In	 the



POSIXct	 framework,	 each	 time	 is	 represented	 by	 the	 number	 of	 seconds	 that
have	passed	between	the	time	and	12:00	AM	January	1st	1970	(in	the	Universal
Time	 Coordinated	 (UTC)	 zone).	 For	 example,	 the	 time	 above	 occurs
1,395,057,600	seconds	after	then.	So	in	the	POSIXct	system,	the	time	would	be
saved	as	1395057600.

R	 creates	 the	 time	 object	 by	 building	 a	 double	 vector	 with	 one	 element,
1395057600.	You	can	see	this	vector	by	removing	the	class	attribute	of	now,	or
by	using	the	unclass	function,	which	does	the	same	thing:

unclass(now)

##	1395057600

R	 then	 gives	 the	 double	 vector	 a	 class	 attribute	 that	 contains	 two	 classes,
"POSIXct"	and	"POSIXt".	This	attribute	alerts	R	functions	that	they	are	dealing
with	 a	 POSIXct	 time,	 so	 they	 can	 treat	 it	 in	 a	 special	 way.	 For	 example,	 R
functions	will	use	the	POSIXct	standard	to	convert	the	time	into	a	user-friendly
character	string	before	displaying	it.

You	can	take	advantage	of	this	system	by	giving	the	POSIXct	class	to	random	R
objects.	For	example,	have	you	ever	wondered	what	day	it	was	a	million	seconds
after	12:00	a.m.	Jan.	1,	1970?

mil	<-	1000000

mil

##	1e+06

	

class(mil)	<-	c("POSIXct",	"POSIXt")

mil

##	"1970-01-12	13:46:40	UTC"

Jan.	 12,	 1970.	Yikes.	A	million	 seconds	 goes	 by	 faster	 than	 you	would	 think.
This	 conversion	worked	well	 because	 the	 POSIXct	 class	 does	 not	 rely	 on	 any
additional	attributes,	but	in	general,	forcing	the	class	of	an	object	is	a	bad	idea.

There	are	many	different	classes	of	data	in	R	and	its	packages,	and	new	classes
are	invented	every	day.	It	would	be	difficult	to	learn	about	every	class,	but	you
do	 not	 have	 to.	Most	 classes	 are	 only	 useful	 in	 specific	 situations.	 Since	 each



class	comes	with	its	own	help	page,	you	can	wait	to	learn	about	a	class	until	you
encounter	 it.	However,	 there	is	one	class	of	data	that	 is	so	ubiquitous	in	R	that
you	should	learn	about	it	alongside	the	atomic	data	types.	That	class	is	factors.

5.5.2	Factors

Factors	are	R's	way	of	storing	categorical	information,	like	ethnicity	or	eye	color.
Think	 of	 a	 factor	 as	 something	 like	 a	 gender;	 it	 can	 only	 have	 certain	 values
(male	 or	 female),	 and	 these	 values	 may	 have	 their	 own	 idiosyncratic	 order
(ladies	 first).	 This	 arrangement	 makes	 factors	 very	 useful	 for	 recording	 the
treatment	levels	of	a	study	and	other	categorical	variables.

To	make	a	factor,	pass	an	atomic	vector	into	the	factor	function.	R	will	recode
the	data	in	the	vector	as	integers	and	store	the	results	in	an	integer	vector.	R	will
also	 add	 a	 levels	 attribute	 to	 the	 integer,	 which	 contains	 a	 set	 of	 labels	 for
displaying	 the	 factor	 values,	 and	 a	 class	 attribute,	 which	 contains	 the	 class
factor:

gender	<-	factor(c("male",	"female",	"female",	"male"))

typeof(gender)

##	"integer"

attributes(gender)

##	$levels

##	[1]	"female"	"male"		

##	

##	$class

##	[1]	"factor"

You	can	see	exactly	how	R	is	storing	your	factor	with	unclass:

unclass(gender)

##	[1]	2	1	1	2

##	attr(,"levels")

##	[1]	"female"	"male"		

R	uses	 the	 levels	 attribute	when	 it	 displays	 the	 factor,	 as	 you	will	 see.	R	will
display	each	1	as	female,	the	first	label	in	the	levels	vector,	and	each	2	as	male,



the	second	label.	If	the	factor	included	3s,	they	would	be	displayed	as	the	third
label,	and	so	on:

gender

##	male			female	female	male		

##	Levels:	female	male

Factors	make	it	easy	to	put	categorical	variables	into	a	statistical	model	because
the	variables	are	already	coded	as	numbers.	However,	factors	can	be	confusing
since	they	look	like	character	strings	but	behave	like	integers.

R	will	often	try	to	convert	character	strings	to	factors	when	you	load	and	create
data.	In	general,	you	will	have	a	smoother	experience	if	you	do	not	let	R	make
factors	until	you	ask	for	them.	I'll	show	you	how	to	do	this	when	we	start	reading
in	data.

You	can	convert	a	factor	to	a	character	string	with	the	as.character	function.	R
will	retain	the	display	version	of	the	factor,	not	the	integers	stored	in	memory:

as.character(gender)

##	"male"			"female"	"female"	"male"

Now	that	you	understand	 the	possibilities	provided	by	R's	atomic	vectors,	 let's
make	a	more	complicated	type	of	playing	card.

Exercise	 5.4:	 (Write	 a	 Card)	Many	 card	 games	 assign	 a	 numerical	 value	 to
each	 card.	 For	 example,	 in	 blackjack,	 each	 face	 card	 is	worth	 10	 points,	 each
number	card	 is	worth	between	2	and	10	points,	 and	each	ace	 is	worth	1	or	11
points,	depending	on	the	final	score.

Make	 a	 virtual	 playing	 card	 by	 combining	 "ace,"	 "heart,"	 and	 1	 into	 a	 vector.
What	type	of	atomic	vector	will	result?	Check	if	you	are	right.
Solution.	You	 may	 have	 guessed	 that	 this	 exercise	 would	 not	 go	 well.	 Each
atomic	vector	can	only	store	one	type	of	data.	As	a	result,	R	coerces	all	of	your
values	to	character	strings:

card	<-	c("ace",	"hearts",	1)

card

##	"ace"				"hearts"	"1"	



This	 will	 cause	 trouble	 if	 you	 want	 to	 do	 math	 with	 that	 point	 value,	 for
example,	to	see	who	won	your	game	of	blackjack.

Data	types	in	vectors

If	you	try	to	put	multiple	types	of	data	into	a	vector,	R	will	convert	the	elements
to	a	single	type	of	data.

Since	matrices	and	arrays	are	special	cases	of	atomic	vectors,	 they	suffer	 from
the	same	behavior.	Each	can	only	store	one	type	of	data.

This	creates	a	couple	of	problems.	First,	many	data	sets	contain	multiple	types	of
data.	Simple	programs	like	Excel	and	Numbers	can	save	multiple	types	of	data
in	the	same	data	set,	and	you	should	hope	that	R	can	too.	Don't	worry,	it	can.

Second,	 coercion	 is	 a	 common	 behavior	 in	 R,	 so	 you'll	 want	 to	 know	 how	 it
works.

5.6	Coercion

R's	coercion	behavior	may	seem	inconvenient,	but	 it	 is	not	arbitrary.	R	always
follows	 the	 same	 rules	when	 it	 coerces	data	 types.	Once	you	are	 familiar	with
these	rules,	you	can	use	R's	coercion	behavior	to	do	surprisingly	useful	things.

So	how	does	R	coerce	data	 types?	 If	a	character	 string	 is	present	 in	an	atomic
vector,	 R	 will	 convert	 everything	 else	 in	 the	 vector	 to	 character	 strings.	 If	 a
vector	 only	 contains	 logicals	 and	 numbers,	 R	 will	 convert	 the	 logicals	 to
numbers;	every	TRUE	becomes	a	1,	and	every	FALSE	becomes	a	0,	as	 shown	 in
Figure	5.1.



Figure	 5.1:	 R	 always	 uses	 the	 same	 rules	 to	 coerce	 data	 to	 a	 single	 type.	 If
character	 strings	 are	 present,	 everything	will	 be	 coerced	 to	 a	 character	 string.
Otherwise,	logicals	are	coerced	to	numerics.

This	arrangement	preserves	 information.	 It	 is	easy	 to	 look	at	a	character	 string
and	tell	what	information	it	used	to	contain.	For	example,	you	can	easily	spot	the
origins	of	"TRUE"	and	"5".	You	can	also	easily	back-transform	a	vector	of	1s	and
0s	to	TRUEs	and	FALSEs.

R	uses	the	same	coercion	rules	when	you	try	to	do	math	with	logical	values.	So
the	following	code:

sum(c(TRUE,	TRUE,	FALSE,	FALSE))

will	become:

sum(c(1,	1,	0,	0))

##	2

This	means	that	sum	will	count	the	number	of	TRUEs	in	a	logical	vector	(and	mean



will	calculate	the	proportion	of	TRUEs).	Neat,	huh?

You	can	explicitly	ask	R	 to	convert	data	 from	one	 type	 to	another	with	 the	as
functions.	R	will	convert	the	data	whenever	there	is	a	sensible	way	to	do	so:

as.character(1)

##	"1"

as.logical(1)

##	TRUE

as.numeric(FALSE)

##	0

You	now	know	how	R	coerces	data	types,	but	this	won't	help	you	save	a	playing
card.	To	do	that,	you	will	need	to	avoid	coercion	altogether.	You	can	do	this	by
using	a	new	type	of	object,	a	list.

Before	we	look	at	lists,	let's	address	a	question	that	might	be	on	your	mind.

Many	data	 sets	contain	multiple	 types	of	 information.	The	 inability	of	vectors,
matrices,	and	arrays	 to	 store	multiple	data	 types	 seems	 like	a	major	 limitation.
So	why	bother	with	them?

In	 some	 cases,	 using	 only	 a	 single	 type	 of	 data	 is	 a	 huge	 advantage.	Vectors,
matrices,	 and	 arrays	 make	 it	 very	 easy	 to	 do	 math	 on	 large	 sets	 of	 numbers
because	R	 knows	 that	 it	 can	manipulate	 each	 value	 the	 same	way.	Operations
with	vectors,	matrices,	and	arrays	also	tend	to	be	fast	because	the	objects	are	so
simple	to	store	in	memory.

In	other	cases,	allowing	only	a	single	type	of	data	is	not	a	disadvantage.	Vectors
are	the	most	common	data	structure	in	R	because	they	store	variables	very	well.
Each	value	 in	a	variable	measures	 the	same	property,	so	 there's	no	need	 to	use
different	types	of	data.

5.7	Lists

Lists	are	like	atomic	vectors	because	they	group	data	into	a	one-dimensional	set.
However,	 lists	 do	 not	 group	 together	 individual	 values;	 lists	 group	 together	R



objects,	such	as	atomic	vectors	and	other	lists.	For	example,	you	can	make	a	list
that	contains	a	numeric	vector	of	length	31	in	its	first	element,	a	character	vector
of	length	1	in	its	second	element,	and	a	new	list	of	length	2	in	its	third	element.
To	do	this,	use	the	list	function.

list	creates	a	list	the	same	way	c	creates	a	vector.	Separate	each	element	in	the
list	with	a	comma:

list1	<-	list(100:130,	"R",	list(TRUE,	FALSE))

list1

##	[[1]]

##	[1]	100	101	102	103	104	105	106	107	108	109	110	111	112

##	[14]	113	114	115	116	117	118	119	120	121	122	123	124	125

##	[27]	126	127	128	129	130

##	

##	[[2]]

##	[1]	"R"

##

##	[[3]]

##	[[3]][[1]]

##	[1]	TRUE

##

##	[[3]][[2]]

##	[1]	FALSE

I	left	the	[1]	notation	in	the	output	so	you	can	see	how	it	changes	for	lists.	The
double-bracketed	 indexes	 tell	you	which	element	of	 the	 list	 is	being	displayed.
The	 single-bracket	 indexes	 tell	 you	 which	 subelement	 of	 an	 element	 is	 being
displayed.	For	example,	100	is	the	first	subelement	of	the	first	element	in	the	list.
"R"	 is	 the	 first	 sub-element	 of	 the	 second	 element.	 This	 two-system	 notation
arises	because	each	element	of	a	list	can	be	any	R	object,	including	a	new	vector
(or	list)	with	its	own	indexes.

Lists	 are	 a	 basic	 type	of	 object	 in	R,	 on	par	with	 atomic	vectors.	Like	 atomic
vectors,	they	are	used	as	building	blocks	to	create	many	more	spohisticated	types
of	R	objects.

As	you	can	imagine,	the	structure	of	lists	can	become	quite	complicated,	but	this
flexibility	 makes	 lists	 a	 useful	 all-purpose	 storage	 tool	 in	 R:	 you	 can	 group
together	anything	with	a	list.



However,	not	every	list	needs	to	be	complicated.	You	can	store	a	playing	card	in
a	very	simple	list.

Exercise	5.5:	(Use	a	List	to	Make	a	Card)	Use	a	list	to	store	a	single	playing
card,	like	the	ace	of	hearts,	which	has	a	point	value	of	one.	The	list	should	save
the	face	of	the	card,	the	suit,	and	the	point	value	in	separate	elements.
Solution.	You	can	create	your	card	like	this.	In	the	following	example,	 the	first
element	of	the	list	is	a	character	vector	(of	length	1).	The	second	element	is	also
a	character	vector,	and	the	third	element	is	a	numeric	vector:

card	<-	list("ace",	"hearts",	1)

card

##	[[1]]

##	[1]	"ace"

##

##	[[2]]

##	[1]	"hearts"

##

##	[[3]]

##	[1]	1

You	can	also	use	a	list	to	store	a	whole	deck	of	playing	cards.	Since	you	can	save
a	single	playing	card	as	a	list,	you	can	save	a	deck	of	playing	cards	as	a	list	of	52
sublists	(one	for	each	card).	But	let's	not	bother—there's	a	much	cleaner	way	to
do	the	same	thing.	You	can	use	a	special	class	of	list,	known	as	a	data	frame.

5.8	Data	Frames

Data	frames	are	the	two-dimensional	version	of	a	list.	They	are	far	and	away	the
most	useful	storage	structure	for	data	analysis,	and	they	provide	an	ideal	way	to
store	an	entire	deck	of	cards.	You	can	think	of	a	data	frame	as	R's	equivalent	to
the	Excel	spreadsheet	because	it	stores	data	in	a	similar	format.

Data	 frames	 group	 vectors	 together	 into	 a	 two-dimensional	 table.	 Each	 vector
becomes	 a	 column	 in	 the	 table.	As	 a	 result,	 each	 column	 of	 a	 data	 frame	 can
contain	a	different	type	of	data;	but	within	a	column,	every	cell	must	be	the	same
type	of	data,	as	in	Figure	5.2.



Figure	5.2:	Data	frames	store	data	as	a	sequence	of	columns.	Each	column	can
be	a	different	data	type.	Every	column	in	a	data	frame	must	be	the	same	length.

Creating	 a	data	 frame	by	hand	 takes	 a	 lot	 of	 typing,	but	 you	can	do	 it	 (if	 you
like)	with	 the	 data.frame	 function.	Give	 data.frame	 any	 number	 of	 vectors,
each	 separated	with	 a	 comma.	Each	vector	 should	be	 set	 equal	 to	 a	name	 that
describes	the	vector.	data.frame	will	turn	each	vector	into	a	column	of	the	new
data	frame:

df	<-	data.frame(face	=	c("ace",	"two",	"six"),		

		suit	=	c("clubs",	"clubs",	"clubs"),	value	=	c(1,	2,	3))

df

##	face		suit	value

##		ace	clubs					1

##		two	clubs					2

##		six	clubs					3

You'll	need	to	make	sure	that	each	vector	is	the	same	length	(or	can	be	made	so
with	R's	recycling	rules;	see	Figure	2.4,	as	data	frames	cannot	combine	columns
of	different	lengths.

In	 the	 previous	 code,	 I	 named	 the	 arguments	 in	 data.frame	 face,	 suit,	 and
value,	but	you	can	name	the	arguments	whatever	you	like.	data.frame	will	use
your	argument	names	to	label	the	columns	of	the	data	frame.



Names

You	can	also	give	names	to	a	list	or	vector	when	you	create	one	of	these	objects.
Use	the	same	syntax	as	with	data.frame:

list(face	=	"ace",	suit	=	"hearts",	value	=	1)

c(face	=	"ace",	suit	=	"hearts",	value	=	"one")

The	names	will	be	stored	in	the	object's	names	attribute.

If	you	look	at	the	type	of	a	data	frame,	you	will	see	that	it	is	a	list.	In	fact,	each
data	frame	is	a	list	with	class	data.frame.	You	can	see	what	types	of	objects	are
grouped	together	by	a	list	(or	data	frame)	with	the	str	function:

typeof(df)

##	"list"

class(df)

##	"data.frame"

str(df)

##	'data.frame':				3	obs.	of		3	variables:

##		$	face	:	Factor	w/	3	levels	"ace","six","two":	1	3	2

##		$	suit	:	Factor	w/	1	level	"clubs":	1	1	1

##		$	value:	num		1	2	3

Notice	 that	 R	 saved	 your	 character	 strings	 as	 factors.	 I	 told	 you	 that	 R	 likes
factors!	 It	 is	 not	 a	 very	 big	 deal	 here,	 but	 you	 can	 prevent	 this	 behavior	 by
adding	the	argument	stringsAsFactors	=	FALSE	to	data.frame:

df	<-	data.frame(face	=	c("ace",	"two",	"six"),		

		suit	=	c("clubs",	"clubs",	"clubs"),	value	=	c(1,	2,	3),

		stringsAsFactors	=	FALSE)

A	data	frame	is	a	great	way	to	build	an	entire	deck	of	cards.	You	can	make	each
row	 in	 the	data	 frame	 a	 playing	 card,	 and	 each	 column	a	 type	of	 value—each
with	 its	own	appropriate	data	 type.	The	data	 frame	would	 look	something	 like
this:



##			face					suit	value

##			king			spades				13

##		queen			spades				12

##			jack			spades				11

##				ten			spades				10

##			nine			spades					9

##		eight			spades					8

##		seven			spades					7

##				six			spades					6

##			five			spades					5

##			four			spades					4

##		three			spades					3

##				two			spades					2

##				ace			spades					1

##			king				clubs				13

##		queen				clubs				12

##			jack				clubs				11

##				ten				clubs				10

##			...	and	so	on.

You	 could	 create	 this	 data	 frame	 with	 data.frame,	 but	 look	 at	 the	 typing
involved!	You	need	to	write	three	vectors,	each	with	52	elements:

deck	<-	data.frame(

		face	=	c("king",	"queen",	"jack",	"ten",	"nine",	"eight",	"seven",	

				"five",	"four",	"three",	"two",	"ace",	"king",	"queen",	"jack",	

				"nine",	"eight",	"seven",	"six",	"five",	"four",	"three",	"two",	

				"king",	"queen",	"jack",	"ten",	"nine",	"eight",	"seven",	"six",	

				"four",	"three",	"two",	"ace",	"king",	"queen",	"jack",	"ten",	"nine"

				"eight",	"seven",	"six",	"five",	"four",	"three",	"two",	"ace"),		

		suit	=	c("spades",	"spades",	"spades",	"spades",	"spades",	"spades"

				"spades",	"spades",	"spades",	"spades",	"spades",	"spades",	"spades"

				"clubs",	"clubs",	"clubs",	"clubs",	"clubs",	"clubs",	"clubs",	"clubs"

				"clubs",	"clubs",	"clubs",	"clubs",	"clubs",	"diamonds",	"diamonds"

				"diamonds",	"diamonds",	"diamonds",	"diamonds",	"diamonds",	"diamonds"

				"diamonds",	"diamonds",	"diamonds",	"diamonds",	"diamonds",	"hearts"

				"hearts",	"hearts",	"hearts",	"hearts",	"hearts",	"hearts",	"hearts"

				"hearts",	"hearts",	"hearts",	"hearts",	"hearts"),	

		value	=	c(13,	12,	11,	10,	9,	8,	7,	6,	5,	4,	3,	2,	1,	13,	12,	11,	10

				7,	6,	5,	4,	3,	2,	1,	13,	12,	11,	10,	9,	8,	7,	6,	5,	4,	3,	2,	1,	

				10,	9,	8,	7,	6,	5,	4,	3,	2,	1)

)



You	should	avoid	 typing	 large	data	 sets	 in	by	hand	whenever	possible.	Typing
invites	typos	and	errors,	not	to	mention	RSI.	It	is	always	better	to	acquire	large
data	 sets	 as	 a	 computer	 file.	You	can	 then	 ask	R	 to	 read	 the	 file	 and	 store	 the
contents	as	an	object.

I've	 created	 a	 file	 for	 you	 to	 load	 that	 contains	 a	 data	 frame	 of	 playing-card
information,	so	don't	worry	about	typing	in	the	code.	Instead,	turn	your	attention
toward	loading	data	into	R.

5.9	Loading	Data

You	can	load	the	deck	data	frame	from	the	file	deck.csv.	Please	take	a	moment	to
download	 the	 file	 before	 reading	 on.	Visit	 the	website,	 click	 "Download	Zip,"
and	then	unzip	and	open	the	folder	that	your	web	browser	downloads.	deck.csv
will	be	inside.

deck.csv	is	a	comma-separated	values	file,	or	CSV	for	short.	CSVs	are	plain-text
files,	which	means	you	 can	open	 them	 in	 a	 text	 editor	 (as	well	 as	many	other
programs).	If	you	open	desk.csv,	you'll	notice	that	it	contains	a	table	of	data	that
looks	like	the	following	table.	Each	row	of	the	table	is	saved	on	its	own	line,	and
a	comma	is	used	to	separate	the	cells	within	each	row.	Every	CSV	file	shares	this
basic	format:

"face","suit,"value"

"king","spades",13

"queen","spades,12

"jack","spades,11

"ten","spades,10

"nine","spades,9

...	and	so	on.

Most	data-science	applications	can	open	plain-text	files	and	export	data	as	plain-
text	files.	This	makes	plain-text	files	a	sort	of	lingua	franca	for	data	science.

To	load	a	plain-text	file	into	R,	click	the	Import	Dataset	icon	in	RStudio,	shown
in	Figure	5.3.	Then	select	"From	text	file."

http://bit.ly/deck_CSV


Figure	 5.3:	 You	 can	 import	 data	 from	 plain-text	 files	 with	 RStudio's	 Import
Dataset.

RStudio	will	 ask	you	 to	 select	 the	 file	you	want	 to	 import,	 then	 it	will	open	a
wizard	 to	 help	 you	 import	 the	 data,	 as	 in	 Figure	 5.4.	 Use	 the	 wizard	 to	 tell
RStudio	 what	 name	 to	 give	 the	 data	 set.	 You	 can	 also	 use	 the	 wizard	 to	 tell
RStudio	which	character	the	data	set	uses	as	a	separator,	which	character	it	uses
to	 represent	 decimals	 (usually	 a	 period	 in	 the	 United	 States	 and	 a	 comma	 in
Europe),	 and	whether	 or	 not	 the	 data	 set	 comes	with	 a	 row	 of	 column	 names
(known	as	a	header).	To	help	you	out,	 the	wizard	shows	you	what	the	raw	file
looks	 like,	 as	well	 as	what	 your	 loaded	 data	will	 look	 like	 based	 on	 the	 input
settings.

You	 can	 also	 unclick	 the	 box	 "Strings	 as	 factors"	 in	 the	wizard.	 I	 recommend
doing	this.	If	you	do,	R	will	load	all	of	your	character	strings	as	character	strings.
If	you	do	not,	R	will	convert	them	to	factors.



Figure	5.4:	RStudio's	import	wizard.

Once	everything	looks	right,	click	Import.	RStudio	will	read	in	the	data	and	save
it	to	a	data	frame.	RStudio	will	also	open	a	data	viewer,	so	you	can	see	your	new
data	in	a	spreadsheet	format.	This	is	a	good	way	to	check	that	everything	came
through	as	expected.	If	all	worked	well,	your	file	should	appear	in	a	View	tab	of
RStudio,	like	in	Figure	5.5.	You	can	examine	the	data	frame	in	the	console	with
head(deck).

Online	data

You	can	 load	 a	plain-text	 file	 straight	 from	 the	 Internet	 by	 clicking	 the	 "From
Web	URL..."	 option	 under	 Import	Dataset.	 The	 file	will	 need	 to	 have	 its	 own
URL,	and	you	will	need	to	be	connected.



Figure	 5.5:	When	 you	 import	 a	 data	 set,	 RStudio	will	 save	 the	 data	 to	 a	 data
frame	 and	 then	 display	 the	 data	 frame	 in	 a	View	 tab.	You	 can	 open	 any	 data
frame	in	a	View	tab	at	any	time	with	the	View	function.

Now	it	 is	your	 turn.	Download	deck.csv	and	import	 it	 into	RStudio.	Be	sure	 to
save	the	output	to	an	R	object	called	deck:	you'll	use	it	in	the	next	few	chapters.
If	everything	goes	correctly,	 the	 first	 few	 lines	of	your	data	 frame	should	 look
like	this:

head(deck)

##		face			suit	value

##		king	spades				13

##	queen	spades				12

##		jack	spades				11

##			ten	spades				10

##		nine	spades					9

##	eight	spades					8

head	and	tail	are	two	functions	that	provide	an	easy	way	to	peek	at	large	data
sets.	head	will	return	just	the	first	six	rows	of	the	data	set,	and	tail	will	return
just	 the	 last	six	rows.	To	see	a	different	number	of	rows,	give	head	or	tails	a
second	 argument,	 the	 number	 of	 rows	 you	 would	 like	 to	 view,	 for	 example,
head(deck,	10).



R	can	open	many	types	of	files—not	just	CSVs.	Visit	Loading	and	Saving	Data
in	R	to	learn	how	to	open	other	common	types	of	files	in	R.

5.10	Saving	Data

Before	we	go	any	further,	let's	save	a	copy	of	deck	as	a	new	.csv	file.	That	way
you	can	email	it	to	a	colleague,	store	it	on	a	thumb	drive,	or	open	it	in	a	different
program.	You	 can	 save	 any	 data	 frame	 in	 R	 to	 a	 .csv	 file	 with	 the	 command
write.csv.	To	save	deck,	run:

write.csv(deck,	file	=	"cards.csv",	row.names	=	FALSE)

R	 will	 turn	 your	 data	 frame	 into	 a	 plain-text	 file	 with	 the	 comma-separated
values	 format	 and	 save	 the	 file	 to	 your	working	 directory.	 To	 see	where	 your
working	 directory	 is,	 run	 getwd().	 To	 change	 the	 location	 of	 your	 working
directory,	 visit	 Session	 >	 Set	 Working	 Directory	 >	 Choose	 Directory	 in	 the
RStudio	menu	bar.

You	 can	 customize	 the	 save	 process	 with	 write.csv's	 large	 set	 of	 optional
arguments	(see	?write.csv	for	details).	However,	there	are	three	arguments	that
you	should	use	every	time	you	run	write.csv.

First,	you	 should	give	write.csv	 the	name	of	 the	data	 frame	 that	you	wish	 to
save.	Next,	 you	 should	 provide	 a	 file	 name	 to	 give	 your	 file.	R	will	 take	 this
name	quite	literally,	so	be	sure	to	provide	an	extension.

Finally,	you	should	add	the	argument	row.names	=	FALSE.	This	will	prevent	R
from	adding	a	column	of	numbers	at	the	start	of	your	data	frame.	These	numbers
will	identify	your	rows	from	1	to	52,	but	it	is	unlikely	that	whatever	program	you
open	cards.csv	 in	will	 understand	 the	 row	name	 system.	More	 than	 likely,	 the
program	will	assume	that	the	row	names	are	the	first	column	of	data	in	your	data
frame.	In	fact,	this	is	exactly	what	R	will	assume	if	you	reopen	cards.csv.	If	you
save	and	open	cards.csv	 several	 times	 in	R,	you'll	 notice	duplicate	 columns	of
row	numbers	forming	at	the	start	of	your	data	frame.	I	can't	explain	why	R	does
this,	but	 I	can	explain	how	to	avoid	 it:	use	row.names	=	FALSE	whenever	you
save	data	with	write.csv.

For	more	details	about	saving	files,	 including	how	to	compress	saved	files	and



how	to	save	files	in	other	formats,	see	Loading	and	Saving	Data	in	R.

Good	work.	You	now	have	a	virtual	deck	of	cards	to	work	with.	Take	a	breather,
and	when	you	come	back,	we'll	start	writing	some	functions	to	use	on	your	deck.

5.11	Summary

You	can	save	data	in	R	with	five	different	objects,	which	let	you	store	different
types	 of	 values	 in	 different	 types	 of	 relationships,	 as	 in	 Figure	 5.6.	 Of	 these
objects,	data	frames	are	by	far	the	most	useful	for	data	science.	Data	frames	store
one	of	the	most	common	forms	of	data	used	in	data	science,	tabular	data.

Figure	5.6:	R's	most	common	data	structures	are	vectors,	matrices,	arrays,	lists,
and	data	frames.

You	can	load	tabular	data	into	a	data	frame	with	RStudio's	Import	Dataset	button



—so	 long	 as	 the	 data	 is	 saved	 as	 a	 plain-text	 file.	 This	 requirement	 is	 not	 as
limiting	as	it	sounds.	Most	software	programs	can	export	data	as	a	plain-text	file.
So	 if	you	have	an	Excel	 file	 (for	example)	you	can	open	 the	 file	 in	Excel	and
export	 the	 data	 as	 a	CSV	 to	 use	with	R.	 In	 fact,	 opening	 a	 file	 in	 its	 original
program	is	good	practice.	Excel	files	use	metadata,	like	sheets	and	formulas,	that
help	Excel	work	with	the	file.	R	can	try	to	extract	raw	data	from	the	file,	but	it
won't	 be	 as	 good	 at	 doing	 this	 as	Microsoft	 Excel	 is.	No	 program	 is	 better	 at
converting	Excel	files	 than	Excel.	Similarly,	no	program	is	better	at	converting
SAS	Xport	files	than	SAS,	and	so	on.

However,	 you	 may	 find	 yourself	 with	 a	 program-specific	 file,	 but	 not	 the
program	that	created	it.	You	wouldn't	want	to	buy	a	multi-thousand-dollar	SAS
license	 just	 to	 open	 a	 SAS	 file.	 Thankfully	 R	 can	 open	 many	 types	 of	 files,
including	files	from	other	programs	and	databases.	R	even	has	its	own	program-
specific	formats	that	can	help	you	save	memory	and	time	if	you	know	that	you
will	 be	 working	 entirely	 in	 R.	 If	 you'd	 like	 to	 know	 more	 about	 all	 of	 your
options	for	loading	and	saving	data	in	R,	see	Loading	and	Saving	Data	in	R.

R	 Notation	 will	 build	 upon	 the	 skills	 you	 learned	 in	 this	 chapter.	 Here,	 you
learned	 how	 to	 store	 data	 in	 R.	 In	 R	Notation,	 you	 will	 learn	 how	 to	 access
values	once	they've	been	stored.	You'll	also	write	two	functions	that	will	let	you
start	using	your	deck,	a	shuffle	function	and	a	deal	function.



6	R	Notation
Now	that	you	have	a	deck	of	cards,	you	need	a	way	to	do	card-like	things	with	it.
First,	you'll	want	to	reshuffle	the	deck	from	time	to	time.	And	next,	you'll	want
to	deal	cards	from	the	deck	(one	card	at	a	time,	whatever	card	is	on	top—we're
not	cheaters).

To	do	 these	 things,	 you'll	 need	 to	work	with	 the	 individual	 values	 inside	 your
data	frame,	a	task	essential	to	data	science.	For	example,	to	deal	a	card	from	the
top	 of	 your	 deck,	 you'll	 need	 to	 write	 a	 function	 that	 selects	 the	 first	 row	 of
values	in	your	data	frame,	like	this

deal(deck)

##		face			suit	value

##		king	spades				13

You	can	select	values	within	an	R	object	with	R's	notation	system.

6.1	Selecting	Values

R	has	a	notation	system	that	lets	you	extract	values	from	R	objects.	To	extract	a
value	or	set	of	values	from	a	data	frame,	write	the	data	frame's	name	followed	by
a	pair	of	hard	brackets:

deck[	,	]

Between	 the	brackets	will	go	 two	 indexes	separated	by	a	comma.	The	 indexes
tell	R	which	values	to	return.	R	will	use	the	first	index	to	subset	the	rows	of	the
data	frame	and	the	second	index	to	subset	the	columns.

You	have	a	choice	when	it	comes	to	writing	indexes.	There	are	six	different	ways
to	write	an	index	for	R,	and	each	does	something	slightly	different.	They	are	all
very	simple	and	quite	handy,	so	let's	take	a	look	at	each	of	them.	You	can	create
indexes	with:



Positive	integers
Negative	integers
Zero
Blank	spaces
Logical	values
Names

The	simplest	of	these	to	use	is	positive	integers.

6.1.1	Positive	Integers

R	 treats	positive	 integers	 just	 like	 ij	 notation	 in	 linear	 algebra:	deck[i,j]	will
return	 the	value	of	deck	 that	 is	 in	 the	 ith	 row	 and	 the	 jth	 column,	 Figure	 6.1.
Notice	that	i	and	j	only	need	to	be	integers	in	the	mathematical	sense.	They	can
be	saved	as	numerics	in	R

head(deck)

##		face			suit	value

##		king	spades				13

##	queen	spades				12

##		jack	spades				11

##			ten	spades				10

##		nine	spades					9

##	eight	spades					8

deck[1,	1]

##	"king"

To	extract	more	than	one	value,	use	a	vector	of	positive	integers.	For	example,
you	 can	 return	 the	 first	 row	 of	 deck	 with	 deck[1,	 c(1,	 2,	 3)]	 or	 deck[1,
1:3]:

deck[1,	c(1,	2,	3)]

##	face			suit	value

##	king	spades				13

R	 will	 return	 the	 values	 of	 deck	 that	 are	 in	 both	 the	 first	 row	 and	 the	 first,
second,	and	third	columns.	Note	that	R	won't	actually	remove	these	values	from
deck.	R	will	give	you	a	new	set	of	values	which	are	copies	of	the	original	values.



You	can	then	save	this	new	set	to	an	R	object	with	R's	assignment	operator:

new	<-	deck[1,	c(1,	2,	3)]

new

##	face			suit	value

##	king	spades				13

Repetition

If	you	repeat	a	number	 in	your	 index,	R	will	 return	 the	corresponding	value(s)
more	 than	 once	 in	 your	 "subset."	 This	 code	 will	 return	 the	 first	 row	 of	 deck
twice:

deck[c(1,	1),	c(1,	2,	3)]

##	face			suit	value

##	king	spades				13

##	king	spades				13

Figure	6.1:	R	uses	the	ij	notation	system	of	linear	algebra.	The	commands	in	this
figure	will	return	the	shaded	values.

R's	notation	system	is	not	limited	to	data	frames.	You	can	use	the	same	syntax	to
select	 values	 in	 any	 R	 object,	 as	 long	 as	 you	 supply	 one	 index	 for	 each
dimension	of	the	object.	So,	for	example,	you	can	subset	a	vector	(which	has	one
dimension)	with	a	single	index:



vec	<-	c(6,	1,	3,	6,	10,	5)

vec[1:3]

##	6	1	3

Indexing	begins	at	1

In	 some	 programming	 languages,	 indexing	 begins	 with	 0.	 This	 means	 that	 0
returns	the	first	element	of	a	vector,	1	returns	the	second	element,	and	so	on.

This	 isn't	 the	 case	 with	 R.	 Indexing	 in	 R	 behaves	 just	 like	 indexing	 in	 linear
algebra.	The	 first	 element	 is	always	 indexed	by	1.	Why	 is	R	different?	Maybe
because	 it	was	written	 for	mathematicians.	 Those	 of	 us	who	 learned	 indexing
from	a	linear	algebra	course	wonder	why	computers	programmers	start	with	0.

drop	=	FALSE

If	you	select	two	or	more	columns	from	a	data	frame,	R	will	return	a	new	data
frame:

deck[1:2,	1:2]

##		face			suit

##		king	spades

##	queen	spades

However,	if	you	select	a	single	column,	R	will	return	a	vector:

deck[1:2,	1]

##		"king"		"queen"

If	 you	would	 prefer	 a	 data	 frame	 instead,	 you	 can	 add	 the	 optional	 argument
drop	=	FALSE	between	the	brackets:

deck[1:2,	1,	drop	=	FALSE]

##		face

##		king

##	queen

This	method	also	works	for	selecting	a	single	column	from	a	matrix	or	an	array.

6.1.2	Negative	Integers



Negative	 integers	 do	 the	 exact	 opposite	 of	 positive	 integers	when	 indexing.	R
will	return	every	element	except	the	elements	in	a	negative	index.	For	example,
deck[-1,	1:3]	will	return	everything	but	the	first	row	of	deck.	deck[-(2:52),
1:3]	will	return	the	first	row	(and	exclude	everything	else):

deck[-(2:52),	1:3]

##	face			suit	value

##	king	spades				13

Negative	integers	are	a	more	efficient	way	to	subset	than	positive	integers	if	you
want	to	include	the	majority	of	a	data	frame's	rows	or	columns.

R	will	return	an	error	if	you	try	to	pair	a	negative	integer	with	a	positive	integer
in	the	same	index:

deck[c(-1,	1),	1]

##	Error	in	xj[i]	:	only	0's	may	be	mixed	with	negative	subscripts

However,	you	can	use	both	negative	and	positive	integers	to	subset	an	object	if
you	use	them	in	different	indexes	(e.g.,	if	you	use	one	in	the	rows	index	and	one
in	the	columns	index,	like	deck[-1,	1]).

6.1.3	Zero

What	 would	 happen	 if	 you	 used	 zero	 as	 an	 index?	 Zero	 is	 neither	 a	 positive
integer	nor	a	negative	integer,	but	R	will	still	use	it	to	do	a	type	of	subsetting.	R
will	 return	 nothing	 from	 a	 dimension	 when	 you	 use	 zero	 as	 an	 index.	 This
creates	an	empty	object:

deck[0,	0]

##	data	frame	with	0	columns	and	0	rows

To	be	honest,	indexing	with	zero	is	not	very	helpful.

6.1.4	Blank	Spaces



You	can	use	a	blank	space	to	tell	R	to	extract	every	value	in	a	dimension.	This
lets	you	subset	an	object	on	one	dimension	but	not	the	others,	which	is	useful	for
extracting	entire	rows	or	columns	from	a	data	frame:

deck[1,	]

##	face			suit	value

##	king	spades				13

6.1.5	Logical	Values

If	 you	 supply	 a	 vector	 of	TRUEs	 and	FALSEs	 as	 your	 index,	R	will	match	 each
TRUE	and	FALSE	 to	a	row	in	your	data	frame	(or	a	column	depending	on	where
you	 place	 the	 index).	R	will	 then	 return	 each	 row	 that	 corresponds	 to	 a	TRUE,
Figure	6.2.

It	may	help	to	imagine	R	reading	through	the	data	frame	and	asking,	"Should	I
return	the	_i_th	row	of	the	data	structure?"	and	then	consulting	the	_i_th	value	of
the	index	for	its	answer.	For	this	system	to	work,	your	vector	must	be	as	long	as
the	dimension	you	are	trying	to	subset:

deck[1,	c(TRUE,	TRUE,	FALSE)]

##	face			suit	

##	king	spades

rows	<-	c(TRUE,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	

		F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	

		F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F,	F)

deck[rows,	]

##	face			suit	value

##	king	spades				13



Figure	6.2:	You	can	use	vectors	of	TRUEs	and	FALSEs	to	tell	R	exactly	which
values	you	want	 to	extract	and	which	you	do	not.	The	command	would	 return
just	the	numbers	1,	6,	and	5.

This	system	may	seem	odd—who	wants	to	type	so	many	TRUEs	and	FALSEs?—
but	it	will	become	very	powerful	in	Modifying	Values.

6.1.6	Names

Finally,	 you	 can	 ask	 for	 the	 elements	 you	 want	 by	 name—if	 your	 object	 has
names	 (see	Names).	 This	 is	 a	 common	 way	 to	 extract	 the	 columns	 of	 a	 data
frame,	since	columns	almost	always	have	names:

deck[1,	c("face",	"suit",	"value")]

##	face			suit	value

##	king	spades				13

#	the	entire	value	column

deck[	,	"value"]

##		13	12	11	10		9		8		7		6		5		4		3		2		1	13	12	11	10		9		8

##		7		6		5		4		3		2		1	13	12	11	10		9		8		7		6		5		4		3		2

##		1	13	12	11	10		9		8		7		6		5		4		3		2		1

6.2	Deal	a	Card

Now	that	you	know	the	basics	of	R's	notation	system,	let's	put	it	to	use.

Exercise	6.1:	 (Deal	a	Card)	Complete	 the	 following	code	 to	make	a	 function



that	returns	the	first	row	of	a	data	frame:

deal	<-	function(cards)	{

			#	?

}

Solution.	You	can	use	any	of	 the	systems	 that	 return	 the	 first	 row	of	your	data
frame	 to	write	 a	deal	 function.	 I'll	 use	 positive	 integers	 and	 blanks	 because	 I
think	they	are	easy	to	understand:

deal	<-	function(cards)	{

		cards[1,	]

}

The	function	does	exactly	what	you	want:	 it	deals	 the	 top	card	 from	your	data
set.	 However,	 the	 function	 becomes	 less	 impressive	 if	 you	 run	 deal	 over	 and
over	again:

deal(deck)

##	face			suit	value

##	king	spades				13

deal(deck)

##	face			suit	value

##	king	spades				13

deal(deck)

##	face			suit	value

##	king	spades				13

deal	 always	 returns	 the	 king	 of	 spades	 because	deck	 doesn't	 know	 that	we've
dealt	the	card	away.	Hence,	the	king	of	spades	stays	where	it	is,	at	the	top	of	the
deck	 ready	 to	be	dealt	 again.	This	 is	 a	difficult	 problem	 to	 solve,	 and	we	will
deal	 with	 it	 in	 Environments.	 In	 the	 meantime,	 you	 can	 fix	 the	 problem	 by
shuffling	your	deck	after	every	deal.	Then	a	new	card	will	always	be	at	the	top.

Shuffling	is	a	temporary	compromise:	the	probabilities	at	play	in	your	deck	will
not	match	the	probabilities	that	occur	when	you	play	a	game	with	a	single	deck
of	 cards.	 For	 example,	 there	will	 still	 be	 a	 probability	 that	 the	 king	 of	 spades
appears	twice	in	a	row.	However,	things	are	not	as	bad	as	they	may	seem.	Most
casinos	use	five	or	six	decks	at	a	 time	in	card	games	to	prevent	card	counting.



The	probabilities	that	you	would	encounter	in	those	situations	are	very	close	to
the	ones	we	will	create	here.

6.3	Shuffle	the	Deck

When	you	shuffle	a	real	deck	of	cards,	you	randomly	rearrange	the	order	of	the
cards.	 In	 your	 virtual	 deck,	 each	 card	 is	 a	 row	 in	 a	 data	 frame.	To	 shuffle	 the
deck,	 you	 need	 to	 randomly	 reorder	 the	 rows	 in	 the	 data	 frame.	 Can	 this	 be
done?	You	bet!	And	you	already	know	everything	you	need	to	do	it.

This	may	sound	silly,	but	start	by	extracting	every	row	in	your	data	frame:

deck2	<-	deck[1:52,	]

head(deck2)

##			face			suit	value

##			king	spades				13

##		queen	spades				12

##			jack	spades				11

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

What	do	you	get?	A	new	data	frame	whose	order	hasn't	changed	at	all.	What	if
you	asked	R	to	extract	the	rows	in	a	different	order?	For	example,	you	could	ask
for	row	2,	then	row	1,	and	then	the	rest	of	the	cards:

deck3	<-	deck[c(2,	1,	3:52),	]

head(deck3)

##			face			suit	value

##		queen	spades				12

##			king	spades				13

##			jack	spades				11

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

R	complies.	You'll	get	all	 the	rows	back,	and	they'll	come	in	the	order	you	ask



for	them.	If	you	want	the	rows	to	come	in	a	random	order,	then	you	need	to	sort
the	integers	from	1	to	52	into	a	random	order	and	use	the	results	as	a	row	index.
How	could	you	generate	such	a	random	collection	of	integers?	With	our	friendly
neighborhood	sample	function:

random	<-	sample(1:52,	size	=	52)

random

##		35	28	39		9	18	29	26	45	47	48	23	22	21	16	32	38		1	15	20

##		11		2		4	14	49	34	25		8		6	10	41	46	17	33		5		7	44		3	27

##		50	12	51	40	52	24	19	13	42	37	43	36	31	30

deck4	<-	deck[random,	]

head(deck4)

##			face					suit	value

##			five	diamonds					5

##		queen	diamonds				12

##				ace	diamonds					1

##			five			spades					5

##			nine				clubs					9

##			jack	diamonds				11

Now	the	new	set	is	truly	shuffled.	You'll	be	finished	once	you	wrap	these	steps
into	a	function.

Exercise	 6.2:	 (Shuffle	 a	 Deck)	Use	 the	 preceding	 ideas	 to	 write	 a	 shuffle
function.	shuffle	should	take	a	data	frame	and	return	a	shuffled	copy	of	the	data
frame.
Solution.	Your	shuffle	function	will	look	like	the	one	that	follows:

shuffle	<-	function(cards)	{	

		random	<-	sample(1:52,	size	=	52)

		cards[random,	]

}

Nice	work!	Now	you	can	shuffle	your	cards	between	each	deal:

deal(deck)

##	face			suit	value

##	king	spades				13

deck2	<-	shuffle(deck)	



deal(deck2)

##	face		suit	value

##	jack	clubs				11

6.4	Dollar	Signs	and	Double	Brackets

Two	types	of	object	 in	R	obey	an	optional	second	system	of	notation.	You	can
extract	values	from	data	frames	and	lists	with	the	$	syntax.	You	will	encounter
the	$	syntax	again	and	again	as	an	R	programmer,	so	let's	examine	how	it	works.

To	 select	 a	 column	 from	 a	 data	 frame,	 write	 the	 data	 frame's	 name	 and	 the
column	 name	 separated	 by	 a	 $.	 Notice	 that	 no	 quotes	 should	 go	 around	 the
column	name:

deck$value

##	13	12	11	10		9		8		7		6		5		4		3		2		1	13	12	11	10		9		8		7

##		6		5		4		3		2		1	13	12	11	10		9		8		7		6		5		4		3		2		1	13

##	12	11	10		9		8		7		6		5		4		3		2		1

R	 will	 return	 all	 of	 the	 values	 in	 the	 column	 as	 a	 vector.	 This	 $	 notation	 is
incredibly	useful	because	you	will	often	store	the	variables	of	your	data	sets	as
columns	 in	a	data	 frame.	From	time	 to	 time,	you'll	want	 to	 run	a	 function	 like
mean	or	median	on	the	values	in	a	variable.	In	R,	these	functions	expect	a	vector
of	values	as	input,	and	deck$value	delivers	your	data	in	just	the	right	format:

mean(deck$value)

##	7

median(deck$value)

##	7

You	can	use	the	same	$	notation	with	the	elements	of	a	list,	if	they	have	names.
This	notation	has	 an	advantage	with	 lists,	 too.	 If	you	 subset	 a	 list	 in	 the	usual
way,	R	will	 return	 a	new	 list	 that	has	 the	 elements	you	 requested.	This	 is	 true
even	if	you	only	request	a	single	element.

To	see	this,	make	a	list:



lst	<-	list(numbers	=	c(1,	2),	logical	=	TRUE,	strings	=	c("a",	"b",	

lst

##	$numbers

##	[1]	1	2

##	$logical

##	[1]	TRUE

##	$strings

##	[1]	"a"	"b"	"c"

And	then	subset	it:

lst[1]

##	$numbers

##	[1]	1	2

The	result	is	a	smaller	list	with	one	element.	That	element	is	the	vector	c(1,	2).
This	 can	 be	 annoying	 because	 many	 R	 functions	 do	 not	 work	 with	 lists.	 For
example,	 sum(lst[1])	 will	 return	 an	 error.	 It	 would	 be	 horrible	 if	 once	 you
stored	a	vector	in	a	list,	you	could	only	ever	get	it	back	as	a	list:

sum(lst[1])

##	Error	in	sum(lst[1])	:	invalid	'type'	(list)	of	argument

When	you	use	the	$	notation,	R	will	return	the	selected	values	as	they	are,	with
no	list	structure	around	them:

lst$numbers

##	1	2

You	can	then	immediately	feed	the	results	to	a	function:

sum(lst$numbers)

##	3



If	 the	 elements	 in	your	 list	 do	not	have	names	 (or	you	do	not	wish	 to	use	 the
names),	you	can	use	two	brackets,	instead	of	one,	to	subset	the	list.	This	notation
will	do	the	same	thing	as	the	$	notation:

lst[[1]]

##	1	2

In	other	words,	if	you	subset	a	list	with	single-bracket	notation,	R	will	return	a
smaller	 list.	If	you	subset	a	list	with	double-bracket	notation,	R	will	return	just
the	values	that	were	inside	an	element	of	the	list.	You	can	combine	this	feature
with	any	of	R's	indexing	methods:

lst["numbers"]

##	$numbers

##	[1]	1	2

lst[["numbers"]]

##	1	2

This	difference	is	subtle	but	important.	In	the	R	community,	there	is	a	popular,
and	helpful,	way	to	think	about	it,	Figure	6.3.	Imagine	that	each	list	is	a	train	and
each	element	 is	a	 train	car.	When	you	use	single	brackets,	R	selects	 individual
train	cars	and	returns	them	as	a	new	train.	Each	car	keeps	its	contents,	but	those
contents	are	still	inside	a	train	car	(i.e.,	a	list).	When	you	use	double	brackets,	R
actually	unloads	the	car	and	gives	you	back	the	contents.



Figure	6.3:	It	can	be	helpful	to	think	of	your	list	as	a	train.	Use	single	brackets	to
select	train	cars,	double	brackets	to	select	the	contents	inside	of	a	car.

Never	attach

In	R's	early	days,	it	became	popular	to	use	attach()	on	a	data	set	once	you	had
it	 loaded.	Don't	 do	 this!	attach	 recreates	 a	 computing	 environment	 similar	 to
those	used	in	other	statistics	applications	like	Stata	and	SPSS,	which	crossover
users	 liked.	 However,	 R	 is	 not	 Stata	 or	 SPSS.	 R	 is	 optimized	 to	 use	 the	 R
computing	environment,	and	running	attach()	can	cause	confusion	with	some
R	functions.

What	does	attach()	do?	On	the	surface,	attach	saves	you	typing.	If	you	attach
the	 deck	 data	 set,	 you	 can	 refer	 to	 each	 of	 its	 variables	 by	 name;	 instead	 of
typing	deck$face,	 you	can	 just	 type	face.	But	 typing	 isn't	 bad.	 It	 gives	you	a
chance	to	be	explicit,	and	in	computer	programming,	explicit	is	good.	Attaching
a	data	set	creates	the	possibility	that	R	will	confuse	two	variable	names.	If	this
occurs	within	a	function,	you're	 likely	 to	get	unusable	results	and	an	unhelpful
error	message	to	explain	what	happened.

Now	that	you	are	an	expert	at	retrieving	values	stored	in	R,	let's	summarize	what
you've	accomplished.



6.5	Summary

You	 have	 learned	 how	 to	 access	 values	 that	 have	 been	 stored	 in	 R.	 You	 can
retrieve	a	copy	of	values	that	live	inside	a	data	frame	and	use	the	copies	for	new
computations.

In	fact,	you	can	use	R's	notation	system	to	access	values	in	any	R	object.	To	use
it,	write	the	name	of	an	object	followed	by	brackets	and	indexes.	If	your	object	is
one-dimensional,	like	a	vector,	you	only	need	to	supply	one	index.	If	it	 is	two-
dimensional,	 like	a	data	 frame,	you	need	 to	supply	 two	 indexes	separated	by	a
comma.	And,	if	it	is	n-dimensional,	you	need	to	supply	n	indexes,	each	separated
by	a	comma.

In	Modifying	Values,	 you'll	 take	 this	 system	 a	 step	 further	 and	 learn	 how	 to
change	the	actual	values	that	are	stored	inside	your	data	frame.	This	is	all	adding
up	to	something	special:	complete	control	of	your	data.	You	can	now	store	your
data	in	your	computer,	retrieve	individual	values	at	will,	and	use	your	computer
to	perform	correct	calculations	with	those	values.

Does	 this	 sound	 basic?	 It	 may	 be,	 but	 it	 is	 also	 powerful	 and	 essential	 for
efficient	data	science.	You	no	longer	need	to	memorize	everything	in	your	head,
nor	 worry	 about	 doing	 mental	 arithmetic	 wrong.	 This	 low-level	 control	 over
your	 data	 is	 also	 a	 prerequisite	 for	 more	 efficient	 R	 programs,	 the	 subject	 of
Project	3:	Slot	Machine.



7	Modifying	Values
Are	you	ready	to	play	some	games	with	your	virtual	deck?	Not	so	fast!	The	point
system	 in	 your	 deck	 of	 cards	 doesn't	 align	 well	 with	 many	 card	 games.	 For
example,	 in	war	 and	 poker,	 aces	 are	 usually	 scored	 higher	 than	 kings.	 They'd
have	a	point	value	of	14,	not	1.

In	this	task,	you	will	change	the	point	system	of	your	deck	three	times	to	match
three	different	games:	war,	hearts,	and	blackjack.	Each	of	these	games	will	teach
you	something	different	about	modifying	the	values	inside	of	a	data	set.	Start	by
making	a	copy	of	deck	that	you	can	manipulate.	This	will	ensure	that	you	always
have	a	pristine	copy	of	deck	to	fall	back	on	(should	things	go	awry):

deck2	<-	deck

7.0.1	Changing	Values	in	Place

You	 can	 use	 R's	 notation	 system	 to	 modify	 values	 within	 an	 R	 object.	 First,
describe	 the	 value	 (or	 values)	 you	 wish	 to	 modify.	 Then	 use	 the	 assignment
operator	<-	 to	overwrite	 those	values.	R	will	 update	 the	 selected	values	 in	 the
original	object.	Let's	put	this	into	action	with	a	real	example:

vec	<-	c(0,	0,	0,	0,	0,	0)

vec

##		0	0	0	0	0	0

Here's	how	you	can	select	the	first	value	of	vec:

vec[1]

##		0

And	here	is	how	you	can	modify	it:



vec[1]	<-	1000

vec

##	1000				0				0				0				0				0

You	 can	 replace	multiple	 values	 at	 once	 as	 long	 as	 the	 number	 of	 new	values
equals	the	number	of	selected	values:

vec[c(1,	3,	5)]	<-	c(1,	1,	1)

vec

##		1	0	1	0	1	0

vec[4:6]	<-	vec[4:6]	+	1

vec

##	1	0	1	1	2	1

You	can	also	create	values	that	do	not	yet	exist	in	your	object.	R	will	expand	the
object	to	accommodate	the	new	values:

vec[7]	<-	0

vec

##	1	0	1	1	2	1	0

This	provides	a	great	way	to	add	new	variables	to	your	data	set:

deck2$new	<-	1:52

head(deck2)

##			face			suit	value	new

##			king	spades				13			1

##		queen	spades				12			2

##			jack	spades				11			3

##				ten	spades				10			4

##			nine	spades					9			5

##		eight	spades					8			6

You	can	also	remove	columns	from	a	data	frame	(and	elements	from	a	list)	by
assigning	them	the	symbol	NULL:



deck2$new	<-	NULL

head(deck2)

##			face			suit	value

##			king	spades				13

##		queen	spades				12

##			jack	spades				11

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

In	 the	 game	 of	 war,	 aces	 are	 king	 (figuratively	 speaking).	 They	 receive	 the
highest	value	of	 all	 the	cards,	which	would	be	 something	 like	14.	Every	other
card	 gets	 the	 value	 that	 it	 already	 has	 in	 deck.	 To	 play	war,	 you	 just	 need	 to
change	the	values	of	your	aces	from	1	to	14.

As	 long	as	you	haven't	 shuffled	your	deck,	you	know	 just	where	 the	 aces	 are.
They	 appear	 every	 13	 cards.	 Hence,	 you	 can	 describe	 them	with	 R's	 notation
system:

deck2[c(13,	26,	39,	52),	]

##		face					suit	value

##			ace			spades					1

##			ace				clubs					1

##			ace	diamonds					1

##			ace			hearts					1

You	 can	 single	 out	 just	 the	 values	 of	 the	 aces	 by	 subsetting	 the	 columns
dimension	 of	 deck2.	 Or,	 even	 better,	 you	 can	 subset	 the	 column	 vector
deck2$value:

deck2[c(13,	26,	39,	52),	3]

##	1	1	1	1

deck2$value[c(13,	26,	39,	52)]

##	1	1	1	1

Now	all	you	have	to	do	is	assign	a	new	set	of	values	to	these	old	values.	The	set
of	 new	 values	will	 have	 to	 be	 the	 same	 size	 as	 the	 set	 of	 values	 that	 you	 are
replacing.	 So	 you	 could	 save	c(14,	14,	14,	14)	 into	 the	 ace	 values,	 or	 you



could	just	save	14	and	rely	on	R's	recycling	rules	to	expand	14	to	c(14,	14,	14,
14):

deck2$value[c(13,	26,	39,	52)]	<-	c(14,	14,	14,	14)

#	or

deck2$value[c(13,	26,	39,	52)]	<-	14

Notice	that	the	values	change	in	place.	You	don't	end	up	with	a	modified	copy	of
deck2;	the	new	values	will	appear	inside	deck2:

head(deck2,	13)

##			face			suit	value

##			king	spades				13

##		queen	spades				12

##			jack	spades				11

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

##		seven	spades					7

##				six	spades					6

##			five	spades					5

##			four	spades					4

##		three	spades					3

##				two	spades					2

##				ace	spades				14

The	same	technique	will	work	whether	you	store	your	data	 in	a	vector,	matrix,
array,	list,	or	data	frame.	Just	describe	the	values	that	you	want	to	change	with
R's	notation	system,	then	assign	over	those	values	with	R's	assignment	operator.

Things	worked	very	easily	in	this	example	because	you	knew	exactly	where	each
ace	was.	The	cards	were	sorted	in	an	orderly	manner	and	an	ace	appeared	every
13	rows.

But	what	if	the	deck	had	been	shuffled?	You	could	look	through	all	the	cards	and
note	the	locations	of	the	aces,	but	that	would	be	tedious.	If	your	data	frame	were
larger,	it	might	be	impossible:



deck3	<-	shuffle(deck)

Where	are	the	aces	now?

head(deck3)

##		face					suit	value

##	queen				clubs				12

##		king				clubs				13

##			ace			spades					1			#	an	ace

##		nine				clubs					9

##	seven			spades					7

##	queen	diamonds				12

Why	not	ask	R	to	find	the	aces	for	you?	You	can	do	this	with	logical	subsetting.
Logical	 subsetting	 provides	 a	 way	 to	 do	 targeted	 extraction	 and	 modification
with	R	objects,	a	sort	of	search-and-destroy	mission	inside	your	own	data	sets.

7.0.2	Logical	Subsetting

Do	you	 remember	R's	 logical	 index	system,	 logicals?	To	 recap,	you	can	 select
values	with	a	vector	of	TRUEs	and	FALSEs.	The	vector	must	be	the	same	length	as
the	dimension	that	you	wish	to	subset.	R	will	return	every	element	that	matches
a	TRUE:

vec

##	1	0	1	1	2	1	0

vec[c(FALSE,	FALSE,	FALSE,	FALSE,	TRUE,	FALSE,	FALSE)]

##	2

At	first	glance,	this	system	might	seem	impractical.	Who	wants	to	type	out	long
vectors	of	TRUEs	and	FALSEs?	No	one.	But	you	don't	have	 to.	You	can	 let	a
logical	test	create	a	vector	of	TRUEs	and	FALSEs	for	you.

7.0.2.1	Logical	Tests

A	logical	 test	 is	a	comparison	 like	"is	one	 less	 than	 two?",	1	<	2,	 or	 "is	 three



greater	than	four?",	3	>	4.	R	provides	seven	logical	operators	that	you	can	use	to
make	comparisons,	shown	in	Table	7.1.

Table	7.1:	R's	Logical	Operators
Operator Syntax Tests
> a	>	b Is	a	greater	than	b?
>= a	>=	b Is	a	greater	than	or	equal	to	b?
< a	<	b Is	a	less	than	b?
<= a	<=	b Is	a	less	than	or	equal	to	b?
== a	==	b Is	a	equal	to	b?
!= a	!=	b Is	a	not	equal	to	b?
%in% a	%in%	c(a,	b,	c) Is	a	in	the	group	c(a,	b,	c)?

Each	 operator	 returns	 a	 TRUE	 or	 a	 FALSE.	 If	 you	 use	 an	 operator	 to	 compare
vectors,	 R	 will	 do	 element-wise	 comparisons—just	 like	 it	 does	 with	 the
arithmetic	operators:

1	>	2

##	FALSE

1	>	c(0,	1,	2)

##	TRUE	FALSE	FALSE

c(1,	2,	3)	==	c(3,	2,	1)

##	FALSE		TRUE	FALSE

%in%	is	the	only	operator	that	does	not	do	normal	element-wise	execution.	%in%
tests	whether	 the	value(s)	on	 the	 left	side	are	 in	 the	vector	on	 the	right	side.	 If
you	provide	a	vector	on	the	left	side,	%in%	will	not	pair	up	the	values	on	the	left
with	 the	values	on	 the	 right	and	 then	do	element-wise	 tests.	 Instead,	%in%	 will
independently	test	whether	each	value	on	the	left	is	somewhere	in	the	vector	on
the	right:

1	%in%	c(3,	4,	5)

##	FALSE

c(1,	2)	%in%	c(3,	4,	5)

##	FALSE	FALSE



c(1,	2,	3)	%in%	c(3,	4,	5)

##	FALSE	FALSE		TRUE

c(1,	2,	3,	4)	%in%	c(3,	4,	5)

##	FALSE	FALSE		TRUE		TRUE

Notice	that	you	test	for	equality	with	a	double	equals	sign,	==,	and	not	a	single
equals	sign,	=,	which	is	another	way	to	write	<-.	It	is	easy	to	forget	and	use	a	=
b	 to	 test	 if	a	equals	b.	Unfortunately,	you'll	be	 in	 for	 a	nasty	 surprise.	R	won't
return	a	TRUE	or	FALSE,	because	it	won't	have	to:	a	will	equal	b,	because	you	just
ran	the	equivalent	of	a	<-	b.

=	is	an	assignment	operator

Be	careful	not	 to	 confuse	=	with	==.	=	 does	 the	 same	 thing	 as	<-:	 it	 assigns	 a
value	to	an	object.

You	 can	 compare	 any	 two	R	 objects	with	 a	 logical	 operator;	 however,	 logical
operators	make	the	most	sense	if	you	compare	two	objects	of	the	same	data	type.
If	you	compare	objects	of	different	data	 types,	R	will	use	 its	 coercion	 rules	 to
coerce	the	objects	to	the	same	type	before	it	makes	the	comparison.

Exercise	 7.1:	 (How	many	Aces?)	Extract	 the	face	 column	of	deck2	 and	 test
whether	each	value	is	equal	to	ace.	As	a	challenge,	use	R	to	quickly	count	how
many	cards	are	equal	to	ace.
Solution.	You	can	extract	the	face	column	with	R's	$	notation:

deck2$face

##		"king"		"queen"	"jack"		"ten"			"nine"	

##		"eight"	"seven"	"six"			"five"		"four"	

##		"three"	"two"			"ace"			"king"		"queen"

##		"jack"		"ten"			"nine"		"eight"	"seven"

##		"six"			"five"		"four"		"three"	"two"		

##		"ace"			"king"		"queen"	"jack"		"ten"		

##		"nine"		"eight"	"seven"	"six"			"five"	

##		"four"		"three"	"two"			"ace"			"king"	

##		"queen"	"jack"		"ten"			"nine"		"eight"

##		"seven"	"six"			"five"		"four"		"three"

##		"two"			"ace"



Next,	you	can	use	the	==	operator	to	test	whether	each	value	is	equal	to	ace.	 In
the	following	code,	R	will	use	its	recycling	rules	to	indivuidually	compare	every
value	of	deck2$face	to	"ace".	Notice	that	the	quotation	marks	are	important.	If
you	leave	them	out,	R	will	 try	to	find	an	object	named	ace	 to	compare	against
deck2$face:

deck2$face	==	"ace"

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE		TRUE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE		TRUE

You	can	use	sum	 to	quickly	count	 the	number	of	TRUEs	 in	 the	previous	vector.
Remember	that	R	will	coerce	logicals	to	numerics	when	you	do	math	with	them.
R	will	turn	TRUEs	into	ones	and	FALSEs	into	zeroes.	As	a	result,	sum	will	count
the	number	of	TRUEs:

sum(deck2$face	==	"ace")

##	4

You	can	use	this	method	to	spot	and	then	change	the	aces	in	your	deck—even	if
you've	 shuffled	your	 cards.	First,	 build	 a	 logical	 test	 that	 identifies	 the	 aces	 in
your	shuffled	deck:

deck3$face	==	"ace"

Then	 use	 the	 test	 to	 single	 out	 the	 ace	 point	 values.	 Since	 the	 test	 returns	 a
logical	vector,	you	can	use	it	as	an	index:

deck3$value[deck3$face	==	"ace"]

##		1	1	1	1

Finally,	use	assignment	to	change	the	ace	values	in	deck3:



deck3$value[deck3$face	==	"ace"]	<-	14

head(deck3)

##		face					suit	value

##	queen				clubs				12

##		king				clubs				13

##			ace			spades				14		#	an	ace

##		nine				clubs					9

##	seven			spades					7

##	queen	diamonds				12

To	summarize,	you	can	use	a	logical	test	to	select	values	within	an	object.

Logical	subsetting	 is	a	powerful	 technique	because	 it	 lets	you	quickly	 identify,
extract,	 and	 modify	 individual	 values	 in	 your	 data	 set.	 When	 you	 work	 with
logical	subsetting,	you	do	not	need	to	know	where	in	your	data	set	a	value	exists.
You	only	need	to	know	how	to	describe	the	value	with	a	logical	test.

Logical	subsetting	is	one	of	the	things	R	does	best.	In	fact,	logical	subsetting	is	a
key	 component	 of	 vectorized	 programming,	 a	 coding	 style	 that	 lets	 you	write
fast	and	efficient	R	code,	which	we	will	study	in	Speed.

Let's	put	logical	subsetting	to	use	with	a	new	game:	hearts.	In	hearts,	every	card
has	a	value	of	zero:

deck4	<-	deck

deck4$value	<-	0

head(deck4,	13)

##			face			suit	value

##			king	spades					0

##		queen	spades					0

##			jack	spades					0

##				ten	spades					0

##			nine	spades					0

##		eight	spades					0

##		seven	spades					0

##				six	spades					0

##			five	spades					0

##			four	spades					0

##		three	spades					0

##				two	spades					0



##				ace	spades					0

except	cards	in	the	suit	of	hearts	and	the	queen	of	spades.	Each	card	in	the	suit	of
hearts	has	a	value	of	1.	Can	you	find	these	cards	and	replace	their	values?	Give	it
a	try.

Exercise	7.2:	(Score	the	Deck	for	Hearts)	Assign	a	value	of	1	to	every	card	in
deck4	that	has	a	suit	of	hearts.
Solution.	To	do	this,	first	write	a	test	that	identifies	cards	in	the	hearts	suit:

deck4$suit	==	"hearts"

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE		TRUE		TRUE		TRUE

##			TRUE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE

##			TRUE		TRUE		TRUE

Then	use	your	test	to	select	the	values	of	these	cards:

deck4$value[deck4$suit	==	"hearts"]

##	0	0	0	0	0	0	0	0	0	0	0	0	0

Finally,	assign	a	new	number	to	these	values:

deck4$value[deck4$suit	==	"hearts"]	<-	1

Now	all	of	your	hearts	cards	have	been	updated:

deck4$value[deck4$suit	==	"hearts"]

##	1	1	1	1	1	1	1	1	1	1	1	1	1

In	hearts,	the	queen	of	spades	has	the	most	unusual	value	of	all:	she's	worth	13
points.	 It	 should	 be	 simple	 to	 change	 her	 value,	 but	 she's	 surprisingly	 hard	 to
find.	You	could	find	all	of	the	queens:



deck4[deck4$face	==	"queen",	]

##			face					suit	value

##		queen			spades					0

##		queen				clubs					0

##		queen	diamonds					0

##		queen			hearts					1

But	that's	three	cards	too	many.	On	the	other	hand,	you	could	find	all	of	the	cards
in	spades:

deck4[deck4$suit	==	"spades",	]

##			face			suit	value

##			king	spades					0

##		queen	spades					0

##			jack	spades					0

##				ten	spades					0

##			nine	spades					0

##		eight	spades					0

##		seven	spades					0

##				six	spades					0

##			five	spades					0

##			four	spades					0

##		three	spades					0

##				two	spades					0

##				ace	spades					0

But	that's	12	cards	too	many.	What	you	really	want	to	find	is	all	of	the	cards	that
have	both	a	face	value	equal	to	queen	and	a	suit	value	equal	to	spades.	You	can
do	 that	 with	 a	Boolean	 operator.	 Boolean	 operators	 combine	 multiple	 logical
tests	together	into	a	single	test.

7.0.2.2	Boolean	Operators

Boolean	operators	are	things	like	and	(&)	and	or	(|).	They	collapse	the	results	of
multiple	 logical	 tests	 into	a	single	TRUE	or	FALSE.	R	has	six	boolean	operators,
shown	in	Table	7.2.

Table	7.2:	Boolean	operators
Operator Syntax Tests



& cond1	&	cond2 Are	both	cond1	and	cond2	true?
| cond1	|	cond2 Is	one	or	more	of	cond1	and	cond2	true?
xor xor(cond1,	cond2) Is	exactly	one	of	cond1	and	cond2	true?

! !cond1
Is	cond1	false?	(e.g.,	!	flips	the	results	of
a	logical	test)

any
any(cond1,	cond2,

cond3,	...)
Are	any	of	the	conditions	true?

all
all(cond1,	cond2,

cond3,	...)
Are	all	of	the	conditions	true?

To	use	a	Boolean	operator,	place	 it	between	 two	complete	 logical	 tests.	R	will
execute	 each	 logical	 test	 and	 then	 use	 the	 Boolean	 operator	 to	 combine	 the
results	into	a	single	TRUE	or	FALSE,	Figure	7.1.

The	most	common	mistake	with	Boolean	operators

It	is	easy	to	forget	to	put	a	complete	test	on	either	side	of	a	Boolean	operator.	In
English,	it	is	efficient	to	say	"Is	x	greater	than	two	and	less	than	nine?"	But	in	R,
you	 need	 to	 write	 the	 equivalent	 of	 "Is	 x	 greater	 than	 two	 and	 is	 x	 less	 than
nine?"	This	is	shown	in	Figure	7.1.

Figure	7.1:	R	will	evaluate	 the	expressions	on	each	side	of	a	Boolean	operator
separately,	and	then	combine	the	results	into	a	single	TRUE	or	FALSE.	If	you	do
not	supply	a	complete	test	to	each	side	of	the	operator,	R	will	return	an	error.

When	used	with	vectors,	Boolean	operators	will	 follow	the	same	element-wise
execution	as	arithmetic	and	logical	operators:



a	<-	c(1,	2,	3)

b	<-	c(1,	2,	3)

c	<-	c(1,	2,	4)

a	==	b

##		TRUE	TRUE	TRUE

b	==	c

##		TRUE		TRUE	FALSE

a	==	b	&	b	==	c

##		TRUE		TRUE	FALSE

Could	you	use	a	Boolean	operator	to	locate	the	queen	of	spades	in	your	deck?	Of
course	 you	 can.	You	want	 to	 test	 each	 card	 to	 see	 if	 it	 is	 both	 a	 queen	and	 a
spade.	You	can	write	this	test	in	R	with:

deck4$face	==	"queen"	&	deck4$suit	==	"spades"

##		FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

##		FALSE	FALSE	FALSE

I'll	save	the	results	of	this	test	to	its	own	object.	That	will	make	the	results	easier
to	work	with:

queenOfSpades	<-	deck4$face	==	"queen"	&	deck4$suit	==	"spades"

Next,	you	can	use	the	test	as	an	index	to	select	the	value	of	the	queen	of	spades.
Make	sure	the	test	actually	selects	the	correct	value:

deck4[queenOfSpades,	]

##		face			suit	value

##	queen	spades					0



deck4$value[queenOfSpades]

##	0

Now	that	you've	found	the	queen	of	spades,	you	can	update	her	value:

deck4$value[queenOfSpades]	<-	13

deck4[queenOfSpades,	]

##		face			suit	value

##	queen	spades					13

Your	deck	is	now	ready	to	play	hearts.

Exercise	7.3:	 (Practice	with	Tests)	 If	 you	 think	you	have	 the	hang	of	 logical
tests,	try	converting	these	sentences	into	tests	written	with	R	code.	To	help	you
out,	I've	defined	some	R	objects	after	the	sentences	that	you	can	use	to	test	your
answers:

Is	w	positive?
Is	x	greater	than	10	and	less	than	20?
Is	object	y	the	word	February?
Is	every	value	in	z	a	day	of	the	week?

w	<-	c(-1,	0,	1)

x	<-	c(5,	15)

y	<-	"February"

z	<-	c("Monday",	"Tuesday",	"Friday")

Solution.	Here	are	some	model	answers.	If	you	got	stuck,	be	sure	to	re-read	how
R	evaluates	logical	tests	that	use	Boolean	values:

w	>	0

10	<	x	&	x	<	20

y	==	"February"

all(z	%in%	c("Monday",	"Tuesday",	"Wednesday",	"Thursday",	"Friday",	

		"Saturday",	"Sunday"))

Let's	 consider	 one	 last	 game,	 blackjack.	 In	 blackjack,	 each	 number	 card	 has	 a
value	equal	to	its	face	value.	Each	face	card	(king,	queen,	or	jack)	has	a	value	of



10.	Finally,	each	ace	has	a	value	of	11	or	1,	depending	on	the	final	results	of	the
game.

Let's	begin	with	a	fresh	copy	of	deck—that	way	the	number	cards	(two	through
ten)	will	start	off	with	the	correct	value:

deck5	<-	deck

head(deck5,	13)

##			king	spades				13

##		queen	spades				12

##			jack	spades				11

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

##		seven	spades					7

##				six	spades					6

##			five	spades					5

##			four	spades					4

##		three	spades					3

##				two	spades					2

##				ace	spades					1

You	can	change	the	value	of	the	face	cards	in	one	fell	swoop	with	%in%:

facecard	<-	deck5$face	%in%	c("king",	"queen",	"jack")

deck5[facecard,	]

##			face					suit	value

##			king			spades				13

##		queen			spades				12

##			jack			spades				11

##			king				clubs				13

##		queen				clubs				12

##			jack				clubs				11

##			king	diamonds				13

##		queen	diamonds				12

##			jack	diamonds				11

##			king			hearts				13

##		queen			hearts				12

##			jack			hearts				11

deck5$value[facecard]	<-	10



head(deck5,	13)

##			face			suit	value

##			king	spades				10

##		queen	spades				10

##			jack	spades				10

##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

##		seven	spades					7

##				six	spades					6

##			five	spades					5

##			four	spades					4

##		three	spades					3

##				two	spades					2

##				ace	spades					1

Now	you	just	need	 to	fix	 the	ace	values—or	do	you?	It	 is	hard	 to	decide	what
value	to	give	the	aces	because	their	exact	value	will	change	from	hand	to	hand.
At	 the	 end	of	 each	hand,	 an	ace	will	 equal	11	 if	 the	 sum	of	 the	player's	 cards
does	not	exceed	21.	Otherwise,	the	ace	will	equal	1.	The	actual	value	of	the	ace
will	 depend	 on	 the	 other	 cards	 in	 the	 player's	 hand.	 This	 is	 a	 case	 of	missing
information.	At	 the	moment,	 you	 do	 not	 have	 enough	 information	 to	 assign	 a
correct	point	value	to	the	ace	cards.

7.0.3	Missing	Information

Missing	 information	problems	happen	frequently	 in	data	science.	Usually,	 they
are	more	straightforward:	you	don't	know	a	value	because	the	measurement	was
lost,	corrupted,	or	never	 taken	 to	begin	with.	R	has	a	way	 to	help	you	manage
these	missing	values.

The	NA	character	is	a	special	symbol	in	R.	It	stands	for	"not	available"	and	can	be
used	 as	 a	 placeholder	 for	missing	 information.	R	will	 treat	NA	exactly	 as	 you
should	want	missing	 information	 treated.	 For	 example,	what	 result	would	 you
expect	if	you	add	1	to	a	piece	of	missing	information?

1	+	NA

##	NA



R	will	return	a	second	piece	of	missing	information.	It	would	not	be	correct	 to
say	that	1	+	NA	=	1	because	there	is	a	good	chance	that	the	missing	quantity	is
not	zero.	You	do	not	have	enough	information	to	determine	the	result.

What	if	you	tested	whether	a	piece	of	missing	information	is	equal	to	1?

NA	==	1

##	NA

Again,	your	answer	would	be	something	like	"I	do	not	know	if	 this	 is	equal	 to
one,"	that	is,	NA.	Generally,	NAs	will	propagate	whenever	you	use	them	in	an	R
operation	or	 function.	This	can	save	you	from	making	errors	based	on	missing
data.

7.0.3.1	na.rm

Missing	values	can	help	you	work	around	holes	in	your	data	sets,	but	 they	can
also	 create	 some	 frustrating	 problems.	 Suppose,	 for	 example,	 that	 you've
collected	1,000	pass:[observations]	and	wish	to	take	their	average	with	R's	mean
function.	If	even	one	of	the	values	is	NA,	your	result	will	be	NA:

c(NA,	1:50)

##	NA		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16

##	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

##	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50

mean(c(NA,	1:50))

##	NA

Understandably,	 you	may	 prefer	 a	 different	 behavior.	Most	 R	 functions	 come
with	 the	optional	argument,	na.rm,	which	 stands	 for	NA	 remove.	R	will	 ignore
NAs	when	it	evaluates	a	function	if	you	add	the	argument	na.rm	=	TRUE:

mean(c(NA,	1:50),	na.rm	=	TRUE)

##	25.5

7.0.3.2	is.na



On	occasion,	you	may	want	 to	 identify	 the	NAs	 in	your	data	 set	with	 a	 logical
test,	but	that	too	creates	a	problem.	How	would	you	go	about	it?	If	something	is
a	missing	value,	any	logical	test	that	uses	it	will	return	a	missing	value,	even	this
test:

NA	==	NA

##	NA

Which	means	that	tests	like	this	won't	help	you	find	missing	values:

c(1,	2,	3,	NA)	==	NA

##	NA	NA	NA	NA

But	don't	worry	 too	hard;	R	supplies	a	special	 function	 that	can	 test	whether	a
value	is	an	NA.	The	function	is	sensibly	named	is.na:

is.na(NA)

##	TRUE

vec	<-	c(1,	2,	3,	NA)

is.na(vec)

##	FALSE	FALSE	FALSE		TRUE

Let's	set	all	of	your	ace	values	 to	NA.	This	will	accomplish	 two	 things.	First,	 it
will	remind	you	that	you	do	not	know	the	final	value	of	each	ace.	Second,	it	will
prevent	 you	 from	 accidentally	 scoring	 a	 hand	 that	 has	 an	 ace	 before	 you
determine	the	ace's	final	value.

You	can	set	your	ace	values	to	NA	in	the	same	way	that	you	would	set	them	to	a
number:

deck5$value[deck5$face	==	"ace"]	<-	NA

head(deck5,	13)

##			face			suit	value

##			king	spades				10

##		queen	spades				10

##			jack	spades				10



##				ten	spades				10

##			nine	spades					9

##		eight	spades					8

##		seven	spades					7

##				six	spades					6

##			five	spades					5

##			four	spades					4

##		three	spades					3

##				two	spades					2

##				ace	spades				NA

Congratulations.	Your	deck	is	now	ready	for	a	game	of	blackjack.

7.0.4	Summary

You	 can	 modify	 values	 in	 place	 inside	 an	 R	 object	 when	 you	 combine	 R's
notation	syntax	with	the	assignment	operator,	<-.	This	lets	you	update	your	data
and	clean	your	data	sets

When	you	work	with	 large	data	sets,	modifying	and	retrieving	values	creates	a
logistical	problem	of	its	own.	How	can	you	search	through	the	data	to	find	the
values	that	you	want	to	modify	or	retrieve?	As	an	R	user,	you	can	do	this	with
logical	subsetting.	Create	a	 logical	 test	with	 logical	and	Boolean	operators	and
then	use	the	test	as	an	index	in	R's	bracket	notation.	R	will	return	the	values	that
you	are	looking	for,	even	if	you	do	not	know	where	they	are.

Retrieving	individual	values	will	not	be	your	only	concern	as	an	R	programmer.
You'll	 also	 need	 to	 retrieve	 entire	 data	 sets	 themselves;	 for	 example,	 you	may
call	one	in	a	function.	Environments	will	 teach	you	how	R	looks	up	and	saves
data	 sets	 and	 other	 R	 objects	 in	 its	 environment	 system.	 You'll	 then	 use	 this
knowledge	to	fix	the	deal	and	shuffle	functions.



8	Environments
Your	deck	is	now	ready	for	a	game	of	blackjack	(or	hearts	or	war),	but	are	your
shuffle	and	deal	functions	up	to	snuff?	Definitely	not.	For	example,	deal	deals
the	same	card	over	and	over	again:

deal(deck)

##	face			suit	value

##	king	spades				13

deal(deck)

##	face			suit	value

##	king	spades				13

deal(deck)

##	face			suit	value

##	king	spades				13

And	the	shuffle	function	doesn't	actually	shuffle	deck	(it	returns	a	copy	of	deck
that	 has	 been	 shuffled).	 In	 short,	 both	 of	 these	 functions	 use	deck,	 but	 neither
manipulates	deck—and	we	would	like	them	to.

To	 fix	 these	 functions,	 you	 will	 need	 to	 learn	 how	 R	 stores,	 looks	 up,	 and
manipulates	 objects	 like	 deck.	 R	 does	 all	 of	 these	 things	 with	 the	 help	 of	 an
environment	system.

8.1	Environments

Consider	for	a	moment	how	your	computer	stores	files.	Every	file	is	saved	in	a
folder,	and	each	folder	is	saved	in	another	folder,	which	forms	a	hierarchical	file
system.	If	your	computer	wants	to	open	up	a	file,	it	must	first	look	up	the	file	in
this	file	system.

You	can	see	your	file	system	by	opening	a	finder	window.	For	example,	Figure
8.1	shows	part	of	the	file	system	on	my	computer.	I	have	tons	of	folders.	Inside
one	of	them	is	a	subfolder	named	Documents,	inside	of	that	subfolder	is	a	sub-
subfolder	named	ggsubplot,	inside	of	that	folder	is	a	folder	named	inst,	inside	of



that	is	a	folder	named	doc,	and	inside	of	that	is	a	file	named	manual.pdf.

Figure	 8.1:	 Your	 computer	 arranges	 files	 into	 a	 hierarchy	 of	 folders	 and
subfolders.	To	look	at	a	file,	you	need	to	find	where	it	is	saved	in	the	file	system.

R	 uses	 a	 similar	 system	 to	 save	 R	 objects.	 Each	 object	 is	 saved	 inside	 of	 an
environment,	 a	 list-like	object	 that	 resembles	 a	 folder	 on	your	 computer.	Each
environment	 is	connected	 to	a	parent	environment,	a	higher-level	environment,
which	creates	a	hierarchy	of	environments.

You	 can	 see	 R's	 environment	 system	 with	 the	 parenvs	 function	 in	 the	 pryr
package	 (note	 parenvs	 came	 in	 the	 pryr	 package	 when	 this	 book	 was	 first
published).	 parenvs(all	 =	 TRUE)	 will	 return	 a	 list	 of	 the	 environments	 that
your	 R	 session	 is	 using.	 The	 actual	 output	 will	 vary	 from	 session	 to	 session
depending	 on	 which	 packages	 you	 have	 loaded.	 Here's	 the	 output	 from	 my
current	session:

library(pryr)

parenvs(all	=	TRUE)

##				label																												name															

##	1		<environment:	R_GlobalEnv>							""																	

##	2		<environment:	package:pryr>		"package:pryr"	

##	3		<environment:	0x7fff3321c388>				"tools:rstudio"				

##	4		<environment:	package:stats>					"package:stats"				

##	5		<environment:	package:graphics>		"package:graphics"	



##	6		<environment:	package:grDevices>	"package:grDevices"

##	7		<environment:	package:utils>					"package:utils"				

##	8		<environment:	package:datasets>		"package:datasets"	

##	9		<environment:	package:methods>			"package:methods"		

##	10	<environment:	0x7fff3193dab0>				"Autoloads"								

##	11	<environment:	base>														""																	

##	12	<environment:	R_EmptyEnv>								""																	

It	 takes	 some	 imagination	 to	 interpret	 this	 output,	 so	 let's	 visualize	 the
environments	 as	 a	 system	 of	 folders,	 Figure	 8.2.	 You	 can	 think	 of	 the
environment	tree	like	this.	The	lowest-level	environment	is	named	R_GlobalEnv
and	is	saved	inside	an	environment	named	package:pryr,	which	is	saved	inside
the	environment	named	0x7fff3321c388,	 and	 so	on,	until	 you	get	 to	 the	 final,
highest-level	environment,	R_EmptyEnv.	R_EmptyEnv	 is	 the	only	R	environment
that	does	not	have	a	parent	environment.

Figure	 8.2:	 R	 stores	 R	 objects	 in	 an	 environment	 tree	 that	 resembles	 your
computer's	folder	system.

Remember	that	 this	example	is	 just	a	metaphor.	R's	environments	exist	 in	your



RAM	 memory,	 and	 not	 in	 your	 file	 system.	 Also,	 R	 environments	 aren't
technically	saved	inside	one	another.	Each	environment	is	connected	to	a	parent
environment,	which	makes	 it	 easy	 to	 search	 up	R's	 environment	 tree.	But	 this
connection	is	one-way:	there's	no	way	to	look	at	one	environment	and	tell	what
its	 "children"	 are.	 So	 you	 cannot	 search	 down	 R's	 environment	 tree.	 In	 other
ways,	though,	R's	environment	system	works	similar	to	a	file	system.

8.2	Working	with	Environments

R	 comes	 with	 some	 helper	 functions	 that	 you	 can	 use	 to	 explore	 your
environment	 tree.	 First,	 you	 can	 refer	 to	 any	 of	 the	 environments	 in	 your	 tree
with	 as.environment.	 as.environment	 takes	 an	 environment	 name	 (as	 a
character	string)	and	returns	the	corresponding	environment:

as.environment("package:stats")

##	<environment:	package:stats>

##	attr(,"name")

##	[1]	"package:stats"

##	attr(,"path")

##	[1]	"/Library/Frameworks/R.framework/Versions/3.0/Resources/library/stats"

Three	 environments	 in	 your	 tree	 also	 come	with	 their	 own	 accessor	 functions.
These	are	the	global	environment	(R_GlobalEnv),	 the	base	environment	(base),
and	the	empty	environment	(R_EmptyEnv).	You	can	refer	to	them	with:

globalenv()

##	<environment:	R_GlobalEnv>

baseenv()

##	<environment:	base>

emptyenv()

##<environment:	R_EmptyEnv>

Next,	you	can	look	up	an	environment's	parent	with	parent.env:

parent.env(globalenv())



##	<environment:	package:pryr>

##	attr(,"name")

##	[1]	"package:pryr"

##	attr(,"path")

##	[1]	"/Library/Frameworks/R.framework/Versions/3.0/Resources/library/pryr"

Notice	that	the	empty	environment	is	the	only	R	environment	without	a	parent:

parent.env(emptyenv())

##	Error	in	parent.env(emptyenv())	:	the	empty	environment	has	no	parent

You	can	view	 the	objects	 saved	 in	 an	 environment	with	ls	 or	ls.str.	ls	 will
return	just	the	object	names,	but	ls.str	will	display	a	little	about	each	object's
structure:

ls(emptyenv())

##	character(0)

ls(globalenv())

##		"deal"				"deck"				"deck2"			"deck3"			"deck4"			"deck5"		

##		"die"					"gender"		"hand"				"lst"					"mat"					"mil"				

##		"new"					"now"					"shuffle"	"vec"		

The	empty	environment	is—not	surprisingly—empty;	the	base	environment	has
too	 many	 objects	 to	 list	 here;	 and	 the	 global	 environment	 has	 some	 familiar
faces.	It	is	where	R	has	saved	all	of	the	objects	that	you've	created	so	far.

RStudio's	 environment	 pane	 displays	 all	 of	 the	 objects	 in	 your	 global
environment.

You	 can	 use	 R's	 $	 syntax	 to	 access	 an	 object	 in	 a	 specific	 environment.	 For
example,	you	can	access	deck	from	the	global	environment:

head(globalenv()$deck,	3)

##		face			suit	value

##		king	spades				13

##	queen	spades				12



##		jack	spades				11

And	 you	 can	 use	 the	 assign	 function	 to	 save	 an	 object	 into	 a	 particular
environment.	 First	 give	 assign	 the	 name	 of	 the	 new	 object	 (as	 a	 character
string).	 Then	 give	 assign	 the	 value	 of	 the	 new	 object,	 and	 finally	 the
environment	to	save	the	object	in:

assign("new",	"Hello	Global",	envir	=	globalenv())

globalenv()$new

##	"Hello	Global"

Notice	that	assign	works	similar	to	<-.	If	an	object	already	exists	with	the	given
name	 in	 the	 given	 environment,	 assign	 will	 overwrite	 it	 without	 asking	 for
permission.	 This	 makes	 assign	 useful	 for	 updating	 objects	 but	 creates	 the
potential	for	heartache.

Now	that	you	can	explore	R's	environment	tree,	let's	examine	how	R	uses	it.	R
works	 closely	with	 the	 environment	 tree	 to	 look	up	 objects,	 store	 objects,	 and
evaluate	functions.	How	R	does	each	of	 these	 tasks	will	depend	on	 the	current
active	environment.

8.2.1	The	Active	Environment

At	any	moment	of	time,	R	is	working	closely	with	a	single	environment.	R	will
store	 new	 objects	 in	 this	 environment	 (if	 you	 create	 any),	 and	R	will	 use	 this
environment	as	a	starting	point	to	look	up	existing	objects	(if	you	call	any).	I'll
call	this	special	environment	the	active	environment.	The	active	environment	is
usually	the	global	environment,	but	this	may	change	when	you	run	a	function.

You	can	use	environment	to	see	the	current	active	environment:

environment()

<environment:	R_GlobalEnv>

The	global	environment	plays	a	special	role	in	R.	It	is	the	active	environment	for
every	command	 that	you	run	at	 the	command	 line.	As	a	 result,	any	object	 that



you	create	at	the	command	line	will	be	saved	in	the	global	environment.	You	can
think	of	the	global	environment	as	your	user	workspace.

When	you	call	an	object	at	the	command	line,	R	will	look	for	it	first	in	the	global
environment.	But	what	 if	 the	object	 is	 not	 there?	 In	 that	 case,	R	will	 follow	a
series	of	rules	to	look	up	the	object.

8.3	Scoping	Rules

R	follows	a	special	set	of	rules	to	look	up	objects.	These	rules	are	known	as	R's
scoping	rules,	and	you've	already	met	a	couple	of	them:

1.	 R	looks	for	objects	in	the	current	active	environment.
2.	 When	you	work	at	the	command	line,	the	active	environment	is	the	global

environment.	Hence,	R	looks	up	objects	that	you	call	at	the	command	line
in	the	global	environment.

Here	 is	a	 third	rule	 that	explains	how	R	finds	objects	 that	are	not	 in	 the	active
environment

3.	 When	 R	 does	 not	 find	 an	 object	 in	 an	 environment,	 R	 looks	 in	 the
environment's	parent	environment,	then	the	parent	of	the	parent,	and	so	on,
until	R	finds	the	object	or	reaches	the	empty	environment.

So,	 if	 you	 call	 an	 object	 at	 the	 command	 line,	R	will	 look	 for	 it	 in	 the	 global
environment.	 If	 R	 can't	 find	 it	 there,	 R	 will	 look	 in	 the	 parent	 of	 the	 global
environment,	and	then	the	parent	of	the	parent,	and	so	on,	working	its	way	up	the
environment	tree	until	 it	 finds	the	object,	as	 in	Figure	8.3.	If	R	cannot	find	the
object	 in	 any	 environment,	 it	 will	 return	 an	 error	 that	 says	 the	 object	 is	 not
found.



Figure	8.3:	R	will	search	for	an	object	by	name	in	the	active	environment,	here
the	global	environment.	If	R	does	not	find	the	object	there,	it	will	search	in	the
active	environment's	parent,	and	then	the	parent's	parent,	and	so	on	until	R	finds
the	object	or	runs	out	of	environments.

Remember	 that	 functions	 are	 a	 type	 of	 object	 in	 R.	 R	will	 store	 and	 look	 up
functions	 the	 same	way	 it	 stores	 and	 looks	 up	 other	 objects,	 by	 searching	 for
them	by	name	in	the	environment	tree.

8.4	Assignment

When	 you	 assign	 a	 value	 to	 an	 object,	 R	 saves	 the	 value	 in	 the	 active
environment	under	 the	object's	name.	 If	an	object	with	 the	same	name	already
exists	in	the	active	environment,	R	will	overwrite	it.

For	example,	an	object	named	new	exists	in	the	global	environment:

new

##	"Hello	Global"

You	 can	 save	 a	 new	 object	 named	 new	 to	 the	 global	 environment	 with	 this
command.	R	will	overwrite	the	old	object	as	a	result:

new	<-	"Hello	Active"



new

##	"Hello	Active"

This	arrangement	creates	a	quandary	 for	R	whenever	R	 runs	a	 function.	Many
functions	save	temporary	objects	that	help	them	do	their	jobs.	For	example,	the
roll	function	from	Project	1:	Weighted	Dice	saved	an	object	named	die	and	an
object	named	dice:

roll	<-	function()	{

		die	<-	1:6

		dice	<-	sample(die,	size	=	2,	replace	=	TRUE)

		sum(dice)

}

R	must	 save	 these	 temporary	 objects	 in	 the	 active	 environment;	 but	 if	R	 does
that,	 it	may	overwrite	existing	objects.	Function	authors	cannot	guess	ahead	of
time	which	names	may	already	exist	 in	your	 active	environment.	How	does	R
avoid	 this	 risk?	 Every	 time	 R	 runs	 a	 function,	 it	 creates	 a	 new	 active
environment	to	evaluate	the	function	in.

8.5	Evaluation

R	creates	a	new	environment	each	 time	 it	 evaluates	 a	 function.	R	will	 use	 the
new	environment	as	the	active	environment	while	it	runs	the	function,	and	then
R	will	return	to	the	environment	that	you	called	the	function	from,	bringing	the
function's	result	with	it.	Let's	call	these	new	environments	runtime	environments
because	R	creates	them	at	runtime	to	evaluate	functions.

We'll	use	the	following	function	to	explore	R's	runtime	environments.	We	want
to	 know	what	 the	 environments	 look	 like:	what	 are	 their	 parent	 environments,
and	what	objects	do	they	contain?	show_env	is	designed	to	tell	us:

show_env	<-	function(){

		list(ran.in	=	environment(),	

				parent	=	parent.env(environment()),	

				objects	=	ls.str(environment()))

}



show_env	 is	 itself	 a	 function,	 so	 when	 we	 call	 show_env(),	 R	 will	 create	 a
runtime	 environment	 to	 evaluate	 the	 function	 in.	 The	 results	 of	show_env	 will
tell	 us	 the	name	of	 the	 runtime	 environment,	 its	 parent,	 and	which	objects	 the
runtime	environment	contains:

show_env()

##	$ran.in

##	<environment:	0x7ff711d12e28>

##	

##	$parent

##	<environment:	R_GlobalEnv>

##	

##	$objects

The	results	reveal	that	R	created	a	new	environment	named	0x7ff711d12e28	to
run	show_env()	in.	The	environment	had	no	objects	in	it,	and	its	parent	was	the
global	 environment.	 So	 for	 purposes	 of	 running	 show_env,	 R's	 environment
tree	looked	like	Figure	8.4.

Let's	run	show_env	again:

show_env()

##	$ran.in

##	<environment:	0x7ff715f49808>

##	

##	$parent

##	<environment:	R_GlobalEnv>

##	

##	$objects

This	time	show_env	ran	in	a	new	environment,	0x7ff715f49808.	R	creates	a	new
environment	 each	 time	 you	 run	 a	 function.	 The	 0x7ff715f49808	 environment
looks	exactly	the	same	as	0x7ff711d12e28.	It	is	empty	and	has	the	same	global
environment	as	its	parent.



Figure	8.4:	R	creates	a	new	environment	to	run	show_env	in.	The	environment	is
a	child	of	the	global	environment.

Now	 let's	 consider	which	environment	R	will	 use	 as	 the	parent	of	 the	 runtime
environment.

R	 will	 connect	 a	 function's	 runtime	 environment	 to	 the	 environment	 that	 the
function	was	 first	 created	 in.	 This	 environment	 plays	 an	 important	 role	 in	 the
function's	life—because	all	of	the	function's	runtime	environments	will	use	it	as
a	parent.	Let's	call	 this	environment	the	origin	environment.	You	can	look	up	a
function's	origin	environment	by	running	environment	on	the	function:

environment(show_env)

##	<environment:	R_GlobalEnv>

The	 origin	 environment	 of	 show_env	 is	 the	 global	 environment	 because	 we
created	show_env	at	the	command	line,	but	the	origin	environment	does	not	need
to	be	 the	global	 environment.	For	example,	 the	environment	of	parenvs	 is	 the
pryr	package:

environment(parenvs)

##	<environment:	namespace:pryr>



In	 other	 words,	 the	 parent	 of	 a	 runtime	 environment	 will	 not	 always	 be	 the
global	 environment;	 it	 will	 be	 whichever	 environment	 the	 function	 was	 first
created	in.

Finally,	 let's	 look	 at	 the	 objects	 contained	 in	 a	 runtime	 environment.	 At	 the
moment,	show_env's	runtime	environments	do	not	contain	any	objects,	but	that	is
easy	to	fix.	Just	have	show_env	create	some	objects	 in	 its	body	of	code.	R	will
store	 any	 objects	 created	 by	 show_env	 in	 its	 runtime	 environment.	 Why?
Because	 the	 runtime	 environment	 will	 be	 the	 active	 environment	 when	 those
objects	are	created:

show_env	<-	function(){

		a	<-	1

		b	<-	2

		c	<-	3

		list(ran.in	=	environment(),	

				parent	=	parent.env(environment()),	

				objects	=	ls.str(environment()))

}

This	 time	 when	 we	 run	 show_env,	 R	 stores	 a,	 b,	 and	 c	 in	 the	 runtime
environment:

show_env()

##	$ran.in

##	<environment:	0x7ff712312cd0>

##	

##	$parent

##	<environment:	R_GlobalEnv>

##	

##	$objects

##	a	:		num	1

##	b	:		num	2

##	c	:		num	3

This	 is	 how	 R	 ensures	 that	 a	 function	 does	 not	 overwrite	 anything	 that	 it
shouldn't.	Any	objects	 created	 by	 the	 function	 are	 stored	 in	 a	 safe,	 out-of-the-
way	runtime	environment.

R	will	also	put	a	second	type	of	object	 in	a	runtime	environment.	If	a	function



has	arguments,	R	will	copy	over	each	argument	to	the	runtime	environment.	The
argument	 will	 appear	 as	 an	 object	 that	 has	 the	 name	 of	 the	 argument	 but	 the
value	of	whatever	input	the	user	provided	for	the	argument.	This	ensures	that	a
function	will	be	able	to	find	and	use	each	of	its	arguments:

foo	<-	"take	me	to	your	runtime"

show_env	<-	function(x	=	foo){

		list(ran.in	=	environment(),	

				parent	=	parent.env(environment()),	

				objects	=	ls.str(environment()))

}

show_env()

##	$ran.in

##	<environment:	0x7ff712398958>

##	

##	$parent

##	<environment:	R_GlobalEnv>

##	

##	$objects

##	x	:		chr	"take	me	to	your	runtime"

Let's	put	 this	all	 together	 to	see	how	R	evaluates	a	 function.	Before	you	call	a
function,	 R	 is	 working	 in	 an	 active	 environment;	 let's	 call	 this	 the	 calling
environment.	It	is	the	environment	R	calls	the	function	from.

Then	you	call	the	function.	R	responds	by	setting	up	a	new	runtime	environment.
This	 environment	will	 be	 a	 child	 of	 the	 function's	 origin	 enviornment.	 R	will
copy	 each	 of	 the	 function's	 arguments	 into	 the	 runtime	 environment	 and	 then
make	the	runtime	environment	the	new	active	environment.

Next,	R	runs	the	code	in	the	body	of	the	function.	If	the	code	creates	any	objects,
R	stores	 them	in	 the	active,	 that	 is,	 runtime	environment.	 If	 the	code	calls	any
objects,	 R	 uses	 its	 scoping	 rules	 to	 look	 them	 up.	 R	 will	 search	 the	 runtime
environment,	 then	 the	 parent	 of	 the	 runtime	 environment	 (which	 will	 be	 the
origin	environment),	then	the	parent	of	the	origin	environment,	and	so	on.	Notice
that	the	calling	environment	might	not	be	on	the	search	path.	Usually,	a	function
will	only	call	its	arguments,	which	R	can	find	in	the	active	runtime	environment.

Finally,	R	finishes	running	the	function.	It	switches	the	active	environment	back



to	the	calling	environment.	Now	R	executes	any	other	commands	in	the	line	of
code	 that	 called	 the	 function.	 So	 if	 you	 save	 the	 result	 of	 the	 function	 to	 an
object	with	<-,	the	new	object	will	be	stored	in	the	calling	environment.

To	recap,	R	stores	its	objects	in	an	environment	system.	At	any	moment	of	time,
R	is	working	closely	with	a	single	active	environment.	It	stores	new	objects	 in
this	environment,	and	it	uses	the	environment	as	a	starting	point	when	it	searches
for	 existing	 objects.	R's	 active	 environment	 is	 usually	 the	 global	 environment,
but	R	will	adjust	the	active	environment	to	do	things	like	run	functions	in	a	safe
manner.

How	can	you	use	this	knowledge	to	fix	the	deal	and	shuffle	functions?

First,	 let's	 start	 with	 a	 warm-up	 question.	 Suppose	 I	 redefine	 deal	 at	 the
command	line	like	this:

deal	<-	function()	{

		deck[1,	]

}

Notice	that	deal	no	longer	takes	an	argument,	and	it	calls	the	deck	object,	which
lives	in	the	global	environment.

Exercise	 8.1:	 (Will	 deal	 work?)	Will	 R	 be	 able	 to	 find	 deck	 and	 return	 an
answer	when	I	call	the	new	version	of	deal,	such	as	deal()?
Solution.	Yes.	 deal	 will	 still	 work	 the	 same	 as	 before.	 R	 will	 run	 deal	 in	 a
runtime	environment	that	is	a	child	of	the	global	environment.	Why	will	it	be	a
child	of	 the	global	 environment?	Because	 the	global	 environment	 is	 the	origin
environment	of	deal	(we	defined	deal	in	the	global	environment):

environment(deal)

##	<environment:	R_GlobalEnv>

When	deal	calls	deck,	R	will	need	to	look	up	the	deck	object.	R's	scoping	rules
will	 lead	 it	 to	 the	version	of	deck	 in	 the	global	 environment,	 as	 in	Figure	8.5.
deal	works	as	expected	as	a	result:

deal()



##		face			suit	value

##		king	spades				13

Figure	8.5:	R	finds	deck	by	looking	in	the	parent	of	deal's	runtime	environment.
The	parent	 is	 the	global	environment,	deal's	origin	environment.	Here,	R	 finds
the	copy	of	deck.

Now	let's	fix	the	deal	function	to	remove	the	cards	it	has	dealt	from	deck.	Recall
that	deal	 returns	 the	 top	 card	 of	deck	 but	 does	 not	 remove	 the	 card	 from	 the
deck.	As	a	result,	deal	always	returns	the	same	card:

deal()

##		face			suit	value

##		king	spades				13

deal()

##		face			suit	value

##		king	spades				13

You	know	enough	R	syntax	to	remove	the	top	card	of	deck.	The	following	code
will	save	a	prisitine	copy	of	deck	and	then	remove	the	top	card:

DECK	<-	deck

deck	<-	deck[-1,	]



head(deck,	3)

##		face			suit	value

##	queen	spades				12

##		jack	spades				11

##			ten	spades				10

Now	let's	add	the	code	to	deal.	Here	deal	saves	(and	then	returns)	the	top	card
of	deck.	In	between,	it	removes	the	card	from	deck...or	does	it?

deal	<-	function()	{

		card	<-	deck[1,	]

		deck	<-	deck[-1,	]

		card

}

This	 code	 won't	 work	 because	 R	 will	 be	 in	 a	 runtime	 environment	 when	 it
executes	deck	<-	deck[-1,	].	 Instead	of	overwriting	 the	global	copy	of	deck
with	 deck[-1,	 ],	 deal	 will	 just	 create	 a	 slightly	 altered	 copy	 of	 deck	 in	 its
runtime	environment,	as	in	Figure	8.6.

Figure	8.6:	The	deal	function	looks	up	deck	in	the	global	environment	but	saves
deck[-1,	]	in	the	runtime	environment	as	a	new	object	named	deck.



Exercise	8.2:	(Overwrite	deck)	Rewrite	the	deck	<-	deck[-1,	]	line	of	deal
to	assign	deck[-1,	]	to	an	object	named	deck	in	the	global	environment.	Hint:
consider	the	assign	function.
Solution.	You	 can	 assign	 an	 object	 to	 a	 specific	 environment	with	 the	 assign
function:

deal	<-	function()	{

		card	<-	deck[1,	]

		assign("deck",	deck[-1,	],	envir	=	globalenv())

		card

}

Now	deal	will	finally	clean	up	the	global	copy	of	deck,	and	we	can	deal	cards
just	as	we	would	in	real	life:

deal()

##		face			suit	value

##	queen	spades				12

deal()

##	face			suit	value

##	jack	spades				11

deal()

##	face			suit	value

##		ten	spades				10

Let's	turn	our	attention	to	the	shuffle	function:

shuffle	<-	function(cards)	{	

		random	<-	sample(1:52,	size	=	52)

		cards[random,	]

}

shuffle(deck)	doesn't	shuffle	the	deck	object;	it	returns	a	shuffled	copy	of	the
deck	object:

head(deck,	3)

##		face			suit	value

##		nine	spades					9



##	eight	spades					8

##	seven	spades					7

a	<-	shuffle(deck)

head(deck,	3)

##		face			suit	value

##		nine	spades					9

##	eight	spades					8

##	seven	spades					7

head(a,	3)

##		face					suit	value

##			ace	diamonds					1

##	seven				clubs					7

##			two				clubs					2

This	 behavior	 is	 now	 undesirable	 in	 two	ways.	 First,	 shuffle	 fails	 to	 shuffle
deck.	Second,	shuffle	returns	a	copy	of	deck,	which	may	be	missing	the	cards
that	have	been	dealt	away.	It	would	be	better	if	shuffle	returned	the	dealt	cards
to	the	deck	and	then	shuffled.	This	is	what	happens	when	you	shuffle	a	deck	of
cards	in	real	life.

Exercise	8.3:	(Rewrite	shuffle)	Rewrite	shuffle	so	that	it	replaces	the	copy	of
deck	 that	 lives	 in	 the	 global	 environment	with	 a	 shuffled	 version	 of	DECK,	 the
intact	copy	of	deck	that	also	lives	in	the	global	environment.	The	new	version	of
shuffle	should	have	no	arguments	and	return	no	output.
Solution.	You	can	update	shuffle	 in	the	same	way	that	you	updated	deck.	The
following	version	will	do	the	job:

shuffle	<-	function(){

		random	<-	sample(1:52,	size	=	52)

		assign("deck",	DECK[random,	],	envir	=	globalenv())

}

Since	 DECK	 lives	 in	 the	 global	 environment,	 shuffle's	 environment	 of	 origin,
shuffle	 will	 be	 able	 to	 find	 DECK	 at	 runtime.	 R	 will	 search	 for	 DECK	 first	 in
shuffle's	runtime	environment,	and	then	in	shuffle's	origin	environment—the
global	environment—which	is	where	DECK	is	stored.

The	second	line	of	shuffle	will	create	a	reordered	copy	of	DECK	and	save	it	as
deck	 in	 the	 global	 environment.	 This	will	 overwrite	 the	 previous,	 nonshuffled



version	of	deck.

8.6	Closures

Our	system	finally	works.	For	example,	you	can	shuffle	the	cards	and	then	deal	a
hand	of	blackjack:

shuffle()

deal()

##		face			suit	value

##	queen	hearts				12

deal()

##		face			suit	value

##	eight	hearts					8

But	the	system	requires	deck	and	DECK	 to	exist	 in	the	global	environment.	Lots
of	 things	 happen	 in	 this	 environment,	 and	 it	 is	 possible	 that	 deck	 may	 get
modified	or	erased	by	accident.

It	would	be	better	if	we	could	store	deck	in	a	safe,	out-of-the-way	place,	like	one
of	those	safe,	out-of-the-way	environments	that	R	creates	to	run	functions	in.	In
fact,	storing	deck	in	a	runtime	environment	is	not	such	a	bad	idea.

You	could	create	a	function	that	takes	deck	as	an	argument	and	saves	a	copy	of
deck	as	DECK.	The	function	could	also	save	its	own	copies	of	deal	and	shuffle:

setup	<-	function(deck)	{

		DECK	<-	deck

		DEAL	<-	function()	{

				card	<-	deck[1,	]

				assign("deck",	deck[-1,	],	envir	=	globalenv())

				card

		}

		SHUFFLE	<-	function(){

				random	<-	sample(1:52,	size	=	52)

				assign("deck",	DECK[random,	],	envir	=	globalenv())

	}



}

When	you	run	setup,	R	will	create	a	runtime	environment	to	store	these	objects
in.	The	environment	will	look	like	Figure	8.7.

Now	 all	 of	 these	 things	 are	 safely	 out	 of	 the	 way	 in	 a	 child	 of	 the	 global
environment.	That	makes	 them	 safe	 but	 hard	 to	 use.	Let's	 ask	setup	 to	 return
DEAL	and	SHUFFLE	so	we	can	use	them.	The	best	way	to	do	this	is	to	return	the
functions	as	a	list:

setup	<-	function(deck)	{

		DECK	<-	deck

		DEAL	<-	function()	{

				card	<-	deck[1,	]

				assign("deck",	deck[-1,	],	envir	=	globalenv())

				card

		}

		SHUFFLE	<-	function(){

				random	<-	sample(1:52,	size	=	52)

				assign("deck",	DECK[random,	],	envir	=	globalenv())

	}

	list(deal	=	DEAL,	shuffle	=	SHUFFLE)

}

cards	<-	setup(deck)



Figure	8.7:	Running	setup	will	store	deck	and	DECK	in	an	out-of-the-way	place,
and	create	a	DEAL	and	SHUFFLE	function.	Each	of	these	objects	will	be	stored
in	an	environment	whose	parent	is	the	global	environment.

Then	you	can	save	each	of	 the	elements	of	 the	 list	 to	a	dedicated	object	 in	 the
global	environment:

deal	<-	cards$deal

shuffle	<-	cards$shuffle

Now	 you	 can	 run	 deal	 and	 shuffle	 just	 as	 before.	 Each	 object	 contains	 the
same	code	as	the	original	deal	and	shuffle:

deal

##	function()	{

##					card	<-	deck[1,	]

##					assign("deck",	deck[-1,	],	envir	=	globalenv())

##					card

##			}

##	<environment:	0x7ff7169c3390>

shuffle

##	function(){

##					random	<-	sample(1:52,	size	=	52)

##					assign("deck",	DECK[random,	],	envir	=	globalenv())



##		}

##	<environment:	0x7ff7169c3390>

However,	 the	 functions	 now	 have	 one	 important	 difference.	 Their	 origin
environment	 is	 no	 longer	 the	 global	 environment	 (although	deal	 and	 shuffle
are	currently	saved	there).	Their	origin	environment	is	the	runtime	environment
that	R	made	when	you	ran	setup.	That's	where	R	created	DEAL	and	SHUFFLE,	the
functions	copied	into	the	new	deal	and	shuffle,	as	shown	in:

environment(deal)

##	<environment:	0x7ff7169c3390>

environment(shuffle)

##	<environment:	0x7ff7169c3390>

Why	 does	 this	 matter?	 Because	 now	 when	 you	 run	 deal	 or	 shuffle,	 R	 will
evaluate	the	functions	in	a	runtime	environment	that	uses	0x7ff7169c3390	as	its
parent.	DECK	and	deck	will	be	in	this	parent	environment,	which	means	that	deal
and	shuffle	will	be	able	to	find	them	at	runtime.	DECK	and	deck	will	be	in	the
functions'	search	path	but	still	out	of	the	way	in	every	other	respect,	as	shown	in
Figure	8.8.

Figure	 8.8:	 Now	 deal	 and	 shuffle	 will	 be	 run	 in	 an	 environment	 that	 has	 the
protected	deck	and	DECK	in	its	search	path.

This	arrangement	is	called	a	closure.	setup's	runtime	environment	"encloses"	the
deal	and	shuffle	functions.	Both	deal	and	shuffle	can	work	closely	with	the



objects	contained	in	the	enclosing	environment,	but	almost	nothing	else	can.	The
enclosing	 environment	 is	 not	 on	 the	 search	 path	 for	 any	 other	 R	 function	 or
environment.

You	may	have	noticed	that	deal	and	shuffle	still	update	the	deck	object	in	the
global	environment.	Don't	worry,	we're	about	to	change	that.	We	want	deal	and
shuffle	 to	 work	 exclusively	 with	 the	 objects	 in	 the	 parent	 (enclosing)
environment	 of	 their	 runtime	 environments.	 Instead	 of	 having	 each	 function
reference	 the	global	environment	 to	update	deck,	you	can	have	 them	reference
their	parent	environment	at	runtime,	as	shown	in	Figure	8.9:

setup	<-	function(deck)	{

		DECK	<-	deck

		DEAL	<-	function()	{

				card	<-	deck[1,	]

				assign("deck",	deck[-1,	],	envir	=	parent.env(environment()))

				card

		}

		SHUFFLE	<-	function(){

				random	<-	sample(1:52,	size	=	52)

				assign("deck",	DECK[random,	],	envir	=	parent.env(environment()))

	}

	list(deal	=	DEAL,	shuffle	=	SHUFFLE)

}

cards	<-	setup(deck)

deal	<-	cards$deal

shuffle	<-	cards$shuffle



Figure	8.9:	When	you	change	your	code,	deal	and	shuffle	will	go	from	updating
the	global	environment	(left)	to	updating	their	parent	environment	(right).

We	 finally	 have	 a	 self-contained	 card	 game.	 You	 can	 delete	 (or	 modify)	 the
global	copy	of	deck	as	much	as	you	want	and	still	play	cards.	deal	and	shuffle
will	use	the	pristine,	protected	copy	of	deck:

rm(deck)

shuffle()

deal()

##	face			suit	value

##		ace	hearts					1

deal()

##	face		suit	value

##	jack	clubs				11

Blackjack!

8.7	Summary

R	saves	its	objects	in	an	environment	system	that	resembles	your	computer's	file
system.	 If	 you	 understand	 this	 system,	 you	 can	 predict	 how	 R	 will	 look	 up
objects.	If	you	call	an	object	at	the	command	line,	R	will	look	for	the	object	in



the	global	environment	and	then	the	parents	of	the	global	environment,	working
its	way	up	the	environment	tree	one	environment	at	a	time.

R	will	use	a	slightly	different	search	path	when	you	call	an	object	from	inside	of
a	 function.	When	you	 run	a	 function,	R	creates	 a	new	environment	 to	execute
commands	 in.	This	 environment	will	 be	 a	 child	 of	 the	 environment	where	 the
function	was	originally	defined.	This	may	be	the	global	environment,	but	it	also
may	not	 be.	You	 can	 use	 this	 behavior	 to	 create	 closures,	which	 are	 functions
linked	to	objects	in	protected	environments.

As	you	become	familiar	with	R's	environment	system,	you	can	use	it	to	produce
elegant	 results,	 like	we	did	here.	However,	 the	 real	value	of	understanding	 the
environment	system	comes	from	knowing	how	R	functions	do	their	job.	You	can
use	this	knowledge	to	figure	out	what	is	going	wrong	when	a	function	does	not
perform	as	expected.

8.8	Project	2	Wrap-up

You	now	have	full	control	over	the	data	sets	and	values	that	you	load	into	R.	You
can	store	data	as	R	objects,	you	can	retrieve	and	manipulate	data	values	at	will,
and	 you	 can	 even	 predict	 how	R	will	 store	 and	 look	 up	 your	 objects	 in	 your
computer's	memory.

You	may	not	realize	it	yet,	but	your	expertise	makes	you	a	powerful,	computer-
augmented	data	user.	You	can	use	R	to	save	and	work	with	larger	data	sets	than
you	could	otherwise	handle.	So	far	we've	only	worked	with	deck,	a	small	data
set;	but	you	can	use	 the	same	 techniques	 to	work	with	any	data	set	 that	 fits	 in
your	computer's	memory.

However,	storing	data	is	not	the	only	logistical	task	that	you	will	face	as	a	data
scientist.	You	will	often	want	to	do	tasks	with	your	data	that	are	so	complex	or
repetitive	that	they	are	difficult	to	do	without	a	computer.	Some	of	the	things	can
be	 done	 with	 functions	 that	 already	 exist	 in	 R	 and	 its	 packages,	 but	 others
cannot.	You	will	be	 the	most	versatile	as	a	data	scientist	 if	you	can	write	your
own	programs	 for	computers	 to	 follow.	R	can	help	you	do	 this.	When	you	are
ready,	Project	3:	Slot	Machine	will	 teach	you	the	most	useful	skills	 for	writing
programs	in	R.



Project	3:	Slot	Machine
Slot	machines	 are	 the	most	 popular	 game	 in	modern	 casinos.	 If	 you've	 never
seen	one,	a	slot	machine	resembles	an	arcade	game	that	has	a	lever	on	its	side.
For	a	small	fee	you	can	pull	the	lever,	and	the	machine	will	generate	a	random
combination	of	three	symbols.	If	the	correct	combination	appears,	you	can	win	a
prize,	maybe	even	the	jackpot.

Slot	machines	make	 fantastic	profits	 for	casinos	because	 they	offer	a	very	 low
payout	rate.	In	many	games,	such	as	Blackjack	and	Roulette,	the	odds	are	only
slightly	stacked	in	the	casino's	favor.	In	the	long	run,	the	casino	pays	back	97	to
98	cents	 in	prizes	of	 every	dollar	 that	 a	gambler	 spends	on	 these	games.	With
slot	machines,	it	is	typical	for	a	casino	to	only	pay	back	90	to	95	cents—and	the
casino	keeps	the	rest.	If	this	seems	underhanded,	keep	in	mind	that	slot	machines
are	one	of	the	most	popular	games	at	a	casino;	few	people	seem	to	mind.	And	if
you	 consider	 that	 state	 lotteries	 have	 payout	 rates	 that	 are	 much	 closer	 to	 50
cents	on	the	dollar,	slot	machines	don't	look	that	bad.

In	this	project,	you	will	build	a	real,	working	slot	machine	modeled	after	some
real	life	Video	Lottery	Terminals	from	Manitoba,	Canada.	The	terminals	were	a
source	of	scandal	in	the	1990s.	You'll	get	to	the	bottom	of	this	scandal	by	writing
a	program	that	recreates	the	slot	machines.	You'll	then	do	some	calculations	and
run	some	simulations	that	reveal	the	true	payout	rate	of	the	machines.

This	project	will	teach	you	how	to	write	programs	and	run	simulations	in	R.	You
will	also	learn	how	to:

Use	a	practical	strategy	to	design	programs
Use	if	and	else	statements	to	tell	R	what	to	do	when
Create	lookup	tables	to	find	values
Use	for,	while,	and	repeat	loops	to	automate	repetitive	operations
Use	S3	methods,	R's	version	of	Object-Oriented	Programming
Measure	the	speed	of	R	code
Write	fast,	vectorized	R	code



9	Programs
In	this	chapter,	you	will	build	a	real,	working	slot	machine	that	you	can	play	by
running	an	R	function.	When	you're	finished,	you'll	be	able	to	play	it	like	this:

play()

##	0	0	DD

##	$0

play()

##	7	7	7

##	$80

The	play	 function	will	 need	 to	 do	 two	 things.	 First,	 it	 will	 need	 to	 randomly
generate	 three	 symbols;	 and,	 second,	 it	will	need	 to	calculate	a	prize	based	on
those	symbols.

The	first	step	is	easy	to	simulate.	You	can	randomly	generate	three	symbols	with
the	 sample	 function—just	 like	 you	 randomly	 "rolled"	 two	 dice	 in	 Project	 1:
Weighted	Dice.	The	following	function	generates	three	symbols	from	a	group	of
common	 slot	 machine	 symbols:	 diamonds	 (DD),	 sevens	 (7),	 triple	 bars	 (BBB),
double	bars	 (BB),	 single	bars	 (B),	cherries	 (C),	 and	zeroes	 (0).	 The	 symbols	 are
selected	randomly,	and	each	symbol	appears	with	a	different	probability:

get_symbols	<-	function()	{

		wheel	<-	c("DD",	"7",	"BBB",	"BB",	"B",	"C",	"0")

		sample(wheel,	size	=	3,	replace	=	TRUE,	

				prob	=	c(0.03,	0.03,	0.06,	0.1,	0.25,	0.01,	0.52))

}

You	can	use	get_symbols	to	generate	the	symbols	used	in	your	slot	machine:

get_symbols()

##	"BBB"	"0"			"C"		

get_symbols()



##	"0"	"0"	"0"

get_symbols()

##	"7"	"0"	"B"

get_symbols	 uses	 the	 probabilities	 observed	 in	 a	 group	 of	 video	 lottery
terminals	 from	 Manitoba,	 Canada.	 These	 slot	 machines	 became	 briefly
controversial	in	the	1990s,	when	a	reporter	decided	to	test	their	payout	rate.	The
machines	 appeared	 to	 pay	 out	 only	 40	 cents	 on	 the	 dollar,	 even	 though	 the
manufacturer	 claimed	 they	would	 pay	 out	 92	 cents	 on	 the	 dollar.	 The	 original
data	collected	on	the	machines	and	a	description	of	the	controversy	is	available
online	in	a	journal	article	by	W.	John	Braun.	The	controversy	died	down	when
additional	testing	showed	that	the	manufacturer	was	correct.

The	Manitoba	slot	machines	use	the	complicated	payout	scheme	shown	in	Table
9.1.	A	player	will	win	a	prize	if	he	gets:

Three	of	the	same	type	of	symbol	(except	for	three	zeroes)
Three	bars	(of	mixed	variety)
One	or	more	cherries

Otherwise,	the	player	receives	no	prize.

The	 monetary	 value	 of	 the	 prize	 is	 determined	 by	 the	 exact	 combination	 of
symbols	 and	 is	 further	 modified	 by	 the	 presence	 of	 diamonds.	 Diamonds	 are
treated	like	"wild	cards,"	which	means	they	can	be	considered	any	other	symbol
if	 it	 would	 increase	 a	 player's	 prize.	 For	 example,	 a	 player	 who	 rolls	 7	 7	 DD
would	earn	a	prize	for	getting	three	sevens.	There	is	one	exception	to	this	rule,
however:	 a	diamond	cannot	be	 considered	 a	 cherry	unless	 the	player	 also	gets
one	real	cherry.	This	prevents	a	dud	roll	like,	0	DD	0	from	being	scored	as	0	C	0.

Diamonds	 are	 also	 special	 in	 another	 way.	 Every	 diamond	 that	 appears	 in	 a
combination	doubles	the	amount	of	the	final	prize.	So	7	7	DD	would	actually	be
scored	higher	than	7	7	7.	Three	sevens	would	earn	you	$80,	but	two	sevens	and	a
diamond	would	 earn	 you	 $160.	 One	 seven	 and	 two	 diamonds	would	 be	 even
better,	resulting	in	a	prize	that	has	been	doubled	twice,	or	$320.	A	jackpot	occurs
when	 a	 player	 rolls	 DD	 DD	 DD.	 Then	 a	 player	 earns	 $100	 doubled	 three	 times,
which	is	$800.

Table	9.1:	Each	play	of	the	slot
machine	costs	$1.	A	player's

http://bit.ly/jse_Braun


machine	costs	$1.	A	player's
symbols	determine	how	much

they	win.	Diamonds	(DD)	are	wild,
and	each	diamond	doubles	the
final	prize.	*	=	any	symbol.
Combination Prize($)

DD	DD	DD 100
7	7	7 80
BBB	BBB	BBB 40
BB	BB	BB 25
B	B	B 10
C	C	C 10
Any	combination	of	bars 5
C	C	* 5
C	*	C 5
*	C	C 5
C	*	* 2
*	C	* 2
*	*	C 2

To	create	your	play	function,	you	will	need	to	write	a	program	that	can	take	the
output	of	get_symbols	and	calculate	the	correct	prize	based	on	Table	9.1.

In	 R,	 programs	 are	 saved	 either	 as	 R	 scripts	 or	 as	 functions.	We'll	 save	 your
program	as	a	function	named	score.	When	you	are	finished,	you	will	be	able	to
use	score	to	calculate	a	prize	like	this:

score(c("DD",	"DD",	"DD"))

##	800

After	that	it	will	be	easy	to	create	the	full	slot	machine,	like	this:

play	<-	function()	{

		symbols	<-	get_symbols()

		print(symbols)

		score(symbols)



}

The	 print	 command	 prints	 its	 output	 to	 the	 console	 window,	 which	 makes
print	a	useful	way	to	display	messages	from	within	the	body	of	a	function.

You	 may	 notice	 that	 play	 calls	 a	 new	 function,	 print.	 This	 will	 help	 play
display	the	three	slot	machine	symbols,	since	they	do	not	get	returned	by	the	last
line	of	the	function.	The	print	command	prints	its	output	to	the	console	window
--	even	if	R	calls	it	from	within	a	function.

In	Project	1:	Weighted	Dice,	I	encouraged	you	to	write	all	of	your	R	code	in	an
R	 script,	 a	 text	 file	 where	 you	 can	 compose	 and	 save	 code.	 That	 advice	 will
become	 very	 important	 as	 you	work	 through	 this	 chapter.	Remember	 that	 you
can	open	an	R	script	in	RStudio	by	going	to	the	menu	bar	and	clicking	on	File	>
New	File	>	R	Script.

9.1	Strategy

Scoring	 slot-machine	 results	 is	 a	 complex	 task	 that	 will	 require	 a	 complex
algorithm.	You	can	make	this,	and	other	coding	tasks,	easier	by	using	a	simple
strategy:

Break	complex	tasks	into	simple	subtasks.
Use	concrete	examples.
Describe	your	solutions	in	English,	then	convert	them	to	R.

Let's	 start	 by	 looking	 at	 how	 you	 can	 divide	 a	 program	 into	 subtasks	 that	 are
simple	to	work	with.

A	 program	 is	 a	 set	 of	 step-by-step	 instructions	 for	 your	 computer	 to	 follow.
Taken	together,	these	instructions	may	accomplish	something	very	sophisticated.
Taken	apart,	each	individual	step	will	likely	be	simple	and	straightforward.

You	 can	 make	 coding	 easier	 by	 identifying	 the	 individual	 steps	 or	 subtasks
within	your	program.	You	can	then	work	on	each	subtask	separately.	If	a	subtask
seems	complicated,	try	to	divide	it	again	into	even	subtasks	that	are	even	more
simple.	You	can	often	 reduce	an	R	program	into	substasks	so	simple	 that	each
can	be	performed	with	a	preexisting	function.

R	programs	contain	two	types	of	subtasks:	sequential	steps	and	parallel	cases.



9.1.1	Sequential	Steps

One	way	 to	 subdivide	a	program	 is	 into	a	 series	of	 sequential	 steps.	The	play
function	 takes	 the	 approach,	 shown	 in	 Figure	 9.1.	 First,	 it	 generates	 three
symbols	(step	1),	then	it	displays	them	in	the	console	window	(step	2),	and	then
it	scores	them	(step	3):

play	<-	function()	{

		#	step	1:	generate	symbols

		symbols	<-	get_symbols()

		#	step	2:	display	the	symbols

		print(symbols)

		#	step	3:	score	the	symbols

		score(symbols)

}

To	have	R	execute	steps	 in	sequence,	place	 the	steps	one	after	another	 in	an	R
script	or	function	body.

Figure	9.1:	The	play	function	uses	a	series	of	steps.

9.1.2	Parallel	Cases

Another	way	to	divide	a	task	is	to	spot	groups	of	similar	cases	within	the	task.
Some	tasks	require	different	algorithms	for	different	groups	of	input.	If	you	can



identify	those	groups,	you	can	work	out	their	algorithms	one	at	a	time.

For	example,	score	will	need	to	calculate	the	prize	one	way	if	symbols	contains
three	of	a	kind	(In	that	case,	score	will	need	to	match	the	common	symbol	to	a
prize).	score	will	need	to	calculate	the	prize	a	second	way	if	the	symbols	are	all
bars	(In	that	case,	score	can	just	assign	a	prize	of	$5).	And,	finally,	score	will
need	to	calculate	the	prize	in	a	third	way	if	the	symbols	do	not	contain	three	of	a
kind	or	all	bars	(In	that	case,	score	must	count	the	number	of	cherries	present).
score	will	never	use	all	three	of	these	algorithms	at	once;	it	will	always	choose
just	one	algorithm	to	run	based	on	the	combination	of	symbols.

Diamonds	complicate	all	of	this	because	diamonds	can	be	treated	as	wild	cards.
Let's	ignore	that	for	now	and	focus	on	the	simpler	case	where	diamonds	double
the	prize	but	are	not	wilds.	score	can	double	the	prize	as	necessary	after	it	runs
one	of	the	following	algorithms,	as	shown	in	Figure	9.2.

Adding	the	score	cases	to	the	play	steps	reveals	a	strategy	for	the	complete	slot
machine	program,	as	shown	in	Figure	9.3.

We've	 already	 solved	 the	 first	 few	 steps	 in	 this	 strategy.	Our	 program	 can	 get
three	slot	machine	symbols	with	the	get_symbols	function.	Then	it	can	display
the	 symbols	with	 the	print	 function.	Now	 let's	 examine	how	 the	program	can
handle	the	parallel	score	cases.

Figure	9.2:	The	score	function	must	distinguish	between	parallel	cases.



Figure	9.3:	The	complete	slot	machine	simulation	will	involve	subtasks	that	are
arranged	both	in	series	and	in	parallel.

9.2	if	Statements

Linking	cases	together	in	parallel	requires	a	bit	of	structure;	your	program	faces
a	 fork	 in	 the	 road	 whenever	 it	 must	 choose	 between	 cases.	 You	 can	 help	 the
program	navigate	this	fork	with	an	if	statement.

An	if	 statement	 tells	R	 to	do	 a	 certain	 task	 for	 a	 certain	 case.	 In	English	you
would	say	something	like,	"If	this	is	true,	do	that."	In	R,	you	would	say:

if	(this)	{

		that

}

The	this	object	should	be	a	 logical	 test	or	an	R	expression	 that	evaluates	 to	a
single	TRUE	or	FALSE.	If	this	evaluates	 to	TRUE,	R	will	 run	all	of	 the	code	 that
appears	between	the	braces	that	follow	the	if	statement	(i.e.,	between	the	{	and
}	symbols).	If	this	evaluates	to	FALSE,	R	will	skip	the	code	between	the	braces
without	running	it.

For	example,	you	could	write	an	if	statement	that	ensures	some	object,	num,	 is
positive:

if	(num	<	0)	{



		num	<-	num	*	-1

}

If	num	<	0	is	TRUE,	R	will	multiply	num	by	negative	one,	which	will	make	num
positive:

num	<-	-2

if	(num	<	0)	{

		num	<-	num	*	-1

}

num

##	2

If	num	<	0	is	FALSE,	R	will	do	nothing	and	num	will	remain	as	it	is—positive	(or
zero):

num	<-	4

if	(num	<	0)	{

		num	<-	num	*	-1

}

num

##	4

The	condition	of	an	if	statement	must	evaluate	to	a	single	TRUE	or	FALSE.	If	the
condition	creates	a	vector	of	TRUEs	and	FALSEs	(which	is	easier	to	make	than	you
may	think),	your	if	statement	will	print	a	warning	message	and	use	only	the	first
element	of	the	vector.	Remember	that	you	can	condense	vectors	of	logical	values
to	a	single	TRUE	or	FALSE	with	the	functions	any	and	all.

You	 don't	 have	 to	 limit	 your	 if	 statements	 to	 a	 single	 line	 of	 code;	 you	 can
include	as	many	lines	as	you	like	between	the	braces.	For	example,	the	following
code	 uses	many	 lines	 to	 ensure	 that	num	 is	 positive.	 The	 additional	 lines	 print
some	informative	statements	if	num	begins	as	a	negative	number.	R	will	skip	the
entire	 code	 block—print	 statements	 and	 all—if	 num	 begins	 as	 a	 positive
number:



num	<-	-1

if	(num	<	0)	{

		print("num	is	negative.")

		print("Don't	worry,	I'll	fix	it.")

		num	<-	num	*	-1

		print("Now	num	is	positive.")

}

##	"num	is	negative."

##	"Don't	worry,	I'll	fix	it."

##	"Now	num	is	positive."

num

##	1

Try	the	following	quizzes	to	develop	your	understanding	of	if	statements.

Exercise	9.1:	(Quiz	A)	What	will	this	return?

x	<-	1

if	(3	==	3)	{

		x	<-	2

}

x

Solution.	 The	 code	 will	 return	 the	 number	 2.	 x	 begins	 as	 1,	 and	 then	 R
encounters	the	if	statement.	Since	the	condition	evaluates	to	TRUE,	R	will	run	x
<-	2,	changing	the	value	of	x.
Exercise	9.2:	(Quiz	B)	What	will	this	return?

x	<-	1

if	(TRUE)	{

		x	<-	2

}

x

Solution.	This	code	will	also	return	the	number	2.	It	works	the	same	as	the	code
in	Quiz	A,	except	the	condition	in	this	statement	is	already	TRUE.	R	doesn't	even
need	to	evaluate	it.	As	a	result,	the	code	inside	the	if	statement	will	be	run,	and
x	will	be	set	to	2.
Exercise	9.3:	(Quiz	C)	What	will	this	return?

x	<-	1

if	(x	==	1)	{



		x	<-	2

		if	(x	==	1)	{

				x	<-	3

		}

}

x

Solution.	Once	again,	the	code	will	return	the	number	2.	x	starts	out	as	1,	and	the
condition	of	the	first	if	statement	will	evaluate	to	TRUE,	which	causes	R	to	run
the	 code	 in	 the	 body	 of	 the	 if	 statement.	 First,	 R	 sets	 x	 equal	 to	 2,	 then	 R
evaluates	the	second	if	statement,	which	is	in	the	body	of	the	first.	This	time	x
==	1	will	evaluate	to	FALSE	because	x	now	equals	2.	As	a	result,	R	ignores	x	<-
3	and	exits	both	if	statements.

9.3	else	Statements

if	statements	tell	R	what	to	do	when	your	condition	is	true,	but	you	can	also	tell
R	what	to	do	when	the	condition	is	false.	else	is	a	counterpart	to	if	that	extends
an	if	statement	to	include	a	second	case.	In	English,	you	would	say,	"If	 this	is
true,	do	plan	A;	else	do	plan	B."	In	R,	you	would	say:

if	(this)	{

		Plan	A

}	else	{

		Plan	B

}

When	this	evaluates	to	TRUE,	R	will	run	the	code	in	the	first	set	of	braces,	but
not	the	code	in	the	second.	When	this	evaluates	to	FALSE,	R	will	run	the	code	in
the	second	set	of	braces,	but	not	the	first.	You	can	use	this	arrangement	to	cover
all	of	the	possible	cases.	For	example,	you	could	write	some	code	that	rounds	a
decimal	to	the	nearest	integer.

Start	with	a	decimal:

a	<-	3.14

Then	isolate	the	decimal	component	with	trunc:



dec	<-	a	-	trunc(a)

dec

##	0.14

trunc	takes	a	number	and	returns	only	the	portion	of	the	number	that	appears	to
the	left	of	the	decimal	place	(i.e.,	the	integer	part	of	the	number).
a	-	trunc(a)	is	a	convenient	way	to	return	the	decimal	part	of	a.

Then	use	an	if	else	tree	to	round	the	number	(either	up	or	down):

if	(dec	>=	0.5)	{

		a	<-	trunc(a)	+	1

}	else	{

		a	<-	trunc(a)

}

a

##	3

If	 your	 situation	 has	 more	 than	 two	 mutually	 exclusive	 cases,	 you	 can	 string
multiple	 if	 and	 else	 statements	 together	 by	 adding	 a	 new	 if	 statement
immediately	after	else.	For	example:

a	<-	1

b	<-	1

if	(a	>	b)	{

		print("A	wins!")

}	else	if	(a	<	b)	{

		print("B	wins!")

}	else	{

		print("Tie.")

}

##	"Tie."

R	will	work	through	the	if	conditions	until	one	evaluates	 to	TRUE,	 then	R	will
ignore	any	remaining	if	and	else	clauses	in	the	tree.	If	no	conditions	evaluate	to
TRUE,	R	will	run	the	final	else	statement.

If	two	if	statements	describe	mutually	exclusive	events,	it	is	better	to	join	the	if
statements	with	an	else	if	 than	 to	 list	 them	separately.	This	 lets	R	 ignore	 the



second	if	statement	whenever	the	first	returns	a	TRUE,	which	saves	work.

You	 can	 use	 if	 and	 else	 to	 link	 the	 subtasks	 in	 your	 slot-machine	 function.
Open	a	fresh	R	script,	and	copy	this	code	into	it.	The	code	will	be	the	skeleton	of
our	final	score	function.	Compare	it	to	the	flow	chart	for	score	in	Figure	9.2:

if	(	#	Case	1:	all	the	same	<1>)	{

		prize	<-	#	look	up	the	prize	<3>

}	else	if	(	#	Case	2:	all	bars	<2>	)	{

		prize	<-	#	assign	$5	<4>

}	else	{

		#	count	cherries	<5>

		prize	<-	#	calculate	a	prize	<7>

}

#	count	diamonds	<6>

#	double	the	prize	if	necessary	<8>

Our	 skeleton	 is	 rather	 incomplete;	 there	 are	 many	 sections	 that	 are	 just	 code
comments	 instead	 of	 real	 code.	However,	we've	 reduced	 the	 program	 to	 eight
simple	subtasks:

<1>	-	Test	whether	the	symbols	are	three	of	a	kind.
<2>	-	Test	whether	the	symbols	are	all	bars.
<3>	-	Look	up	the	prize	for	three	of	a	kind	based	on	the	common	symbol.
<4>	-	Assign	a	prize	of	$5.
<5>	-	Count	the	number	of	cherries.
<6>	-	Count	the	number	of	diamonds.
<7>	-	Calculate	a	prize	based	on	the	number	of	cherries.
<8>	-	Adjust	the	prize	for	diamonds.

If	you	like,	you	can	reorganize	your	flow	chart	around	these	tasks,	as	in	Figure
9.4.	The	chart	will	describe	the	same	strategy,	but	in	a	more	precise	way.	I'll	use
a	diamond	shape	to	symbolize	an	if	else	decision.



Figure	9.4:	score	can	navigate	three	cases	with	two	if	else	decisions.	We	can	also
break	some	of	our	tasks	into	two	steps.

Now	we	can	work	through	the	subtasks	one	at	a	time,	adding	R	code	to	the	if
tree	 as	 we	 go.	 Each	 subtask	 will	 be	 easy	 to	 solve	 if	 you	 set	 up	 a	 concrete
example	to	work	with	and	try	to	describe	a	solution	in	English	before	coding	in
R.

The	first	subtask	asks	you	to	test	whether	the	symbols	are	three	of	a	kind.	How
should	you	begin	writing	the	code	for	this	subtask?

You	know	that	the	final	score	function	will	look	something	like	this:

score	<-	function(symbols)	{

		#	calculate	a	prize

		prize

}

Its	argument,	symbols,	will	be	the	output	of	get_symbols,	a	vector	that	contains
three	 character	 strings.	 You	 could	 start	 writing	 score	 as	 I	 have	written	 it,	 by
defining	 an	 object	 named	 score	 and	 then	 slowly	 filling	 in	 the	 body	 of	 the
function.	However,	 this	would	 be	 a	 bad	 idea.	The	 eventual	 function	will	 have
eight	 separate	 parts,	 and	 it	 will	 not	work	 correctly	 until	 all	 of	 those	 parts	 are
written	 (and	 themselves	work	 correctly).	This	means	 you	would	 have	 to	write



the	 entire	 score	 function	 before	 you	 could	 test	 any	 of	 the	 subtasks.	 If	 score
doesn't	 work—which	 is	 very	 likely—you	 will	 not	 know	which	 subtask	 needs
fixed.

You	can	save	yourself	time	and	headaches	if	you	focus	on	one	subtask	at	a	time.
For	each	subtask,	create	a	concrete	example	that	you	can	test	your	code	on.	For
example,	you	know	that	score	will	need	to	work	on	a	vector	named	symbols	that
contains	three	character	strings.	If	you	make	a	real	vector	named	symbols,	you
can	run	the	code	for	many	of	your	subtasks	on	the	vector	as	you	go:

symbols	<-	c("7",	"7",	"7")

If	a	piece	of	code	does	not	work	on	symbols,	you	will	know	that	you	need	to	fix
it	 before	 you	move	on.	You	 can	 change	 the	 value	 of	symbols	 from	subtask	 to
subtask	to	ensure	that	your	code	works	in	every	situation:

symbols	<-	c("B",	"BB",	"BBB")

symbols	<-	c("C",	"DD",	"0")

Only	combine	your	subtasks	into	a	score	function	once	each	subtask	works	on	a
concrete	example.	If	you	follow	this	plan,	you	will	spend	more	time	using	your
functions	and	less	time	trying	to	figure	out	why	they	do	not	work.

After	you	set	up	a	concrete	example,	try	to	describe	how	you	will	do	the	subtask
in	English.	The	more	precisely	you	can	describe	your	solution,	the	easier	it	will
be	to	write	your	R	code.

Our	first	subtask	asks	us	to	"test	whether	the	symbols	are	three	of	a	kind."	This
phrase	does	not	suggest	any	useful	R	code	 to	me.	However,	 I	could	describe	a
more	precise	test	for	three	of	a	kind:	three	symbols	will	be	the	same	if	the	first
symbol	 is	equal	 to	 the	second	and	 the	second	symbol	 is	equal	 to	 the	 third.	Or,
even	more	precisely:

A	 vector	 named	 symbols	 will	 contain	 three	 of	 the	 same	 symbol	 if	 the	 first
element	of	symbols	 is	 equal	 to	 the	 second	 element	 of	symbols	 and	 the	 second
element	of	symbols	is	equal	to	the	third	element	of	symbols.

Exercise	 9.4:	 (Write	 a	 Test)	Turn	 the	 preceding	 statement	 into	 a	 logical	 test



written	 in	 R.	 Use	 your	 knowledge	 of	 logical	 tests,	 Boolean	 operators,	 and
subsetting	from	R	Notation.	The	 test	should	work	with	 the	vector	symbols	and
return	a	TRUE	if	and	only	if	each	element	in	symbols	is	the	same.	Be	sure	to	test
your	code	on	symbols.
Solution.	Here	 are	 a	 couple	 of	ways	 to	 test	 that	symbols	 contains	 three	 of	 the
same	symbol.	The	first	method	parallels	the	English	suggestion	above,	but	there
are	other	ways	to	do	the	same	test.	There	is	no	right	or	wrong	answer,	so	long	as
your	 solution	 works,	 which	 is	 easy	 to	 check	 because	 you've	 created	 a	 vector
named	symbols:

symbols

##		"7"	"7"	"7"

symbols[1]	==	symbols[2]	&	symbols[2]	==	symbols[3]

##	TRUE

symbols[1]	==	symbols[2]	&	symbols[1]	==	symbols[3]

##	TRUE

all(symbols	==	symbols[1])

##	TRUE

As	your	 vocabulary	 of	R	 functions	 broadens,	 you'll	 think	 of	more	ways	 to	 do
basic	tasks.	One	method	that	I	like	for	checking	three	of	a	kind	is:

length(unique(symbols)	==	1)

The	unique	function	returns	every	unique	term	that	appears	in	a	vector.	If	your
symbols	vector	contains	three	of	a	kind	(i.e.,	one	unique	term	that	appears	three
times),	then	unique(symbols)	will	return	a	vector	of	length	1.

Now	that	you	have	a	working	test,	you	can	add	it	to	your	slot-machine	script:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

if	(same)	{

		prize	<-	#	look	up	the	prize

}	else	if	(	#	Case	2:	all	bars	)	{

		prize	<-	#	assign	$5

}	else	{



		#	count	cherries

		prize	<-	#	calculate	a	prize

}

#	count	diamonds

#	double	the	prize	if	necessary

&&	and	||	behave	like	&	and	|	but	can	sometimes	be	more	efficient.	The	double
operators	will	not	evaluate	the	second	test	in	a	pair	of	tests	if	the	first	test	makes
the	 result	 clear.	For	 example,	 if	symbols[1]	 does	not	equal	symbols[2]	 in	 the
next	 expression,	 &&	 will	 not	 evaluate	 symbols[2]	 ==	 symbols[3];	 it	 can
immediately	 return	 a	 FALSE	 for	 the	whole	 expression	 (because	 FALSE	 &	 TRUE
and	FALSE	&	FALSE	both	evaluate	to	FALSE).	This	efficiency	can	speed	up	your
programs;	however,	double	operators	are	not	appropriate	everywhere.	&&	and	||
are	 not	 vectorized,	which	means	 they	 can	 only	 handle	 a	 single	 logical	 test	 on
each	side	of	the	operator.

The	 second	 prize	 case	 occurs	 when	 all	 the	 symbols	 are	 a	 type	 of	 bar,	 for
example,	 B,	 BB,	 and	 BBB.	 Let's	 begin	 by	 creating	 a	 concrete	 example	 to	 work
with:

symbols	<-	c("B",	"BBB",	"BB")

Exercise	9.5:	(Test	for	All	Bars)	Use	R's	logical	and	Boolean	operators	to	write
a	 test	 that	 will	 determine	 whether	 a	 vector	 named	 symbols	 contains	 only
symbols	that	are	a	type	of	bar.	Check	whether	your	test	works	with	our	example
symbols	vector.	Remember	to	describe	how	the	test	should	work	in	English,	and
then	convert	the	solution	to	R.
Solution.	As	 with	 many	 things	 in	 R,	 there	 are	 multiple	 ways	 to	 test	 whether
symbols	 contains	 all	 bars.	 For	 example,	 you	 could	write	 a	 very	 long	 test	 that
uses	multiple	Boolean	operators,	like	this:

symbols[1]	==	"B"	|	symbols[1]	==	"BB"	|	symbols[1]	==	"BBB"	&

		symbols[2]	==	"B"	|	symbols[2]	==	"BB"	|	symbols[2]	==	"BBB"	&

		symbols[3]	==	"B"	|	symbols[3]	==	"BB"	|	symbols[3]	==	"BBB"

##	TRUE

However,	this	is	not	a	very	efficient	solution,	because	R	has	to	run	nine	logical
tests	 (and	 you	 have	 to	 type	 them).	You	 can	 often	 replace	multiple	|	 operators
with	a	single	%in%.	Also,	you	can	check	that	a	test	is	true	for	each	element	in	a



vector	with	all.	These	two	changes	shorten	the	preceding	code	to:

all(symbols	%in%	c("B",	"BB",	"BBB"))

##	TRUE

Let's	add	this	code	to	our	script:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		prize	<-	#	look	up	the	prize

}	else	if	(all(bars))	{

		prize	<-	#	assign	$5

}	else	{

		#	count	cherries

		prize	<-	#	calculate	a	prize

}

#	count	diamonds

#	double	the	prize	if	necessary

You	 may	 have	 noticed	 that	 I	 split	 this	 test	 up	 into	 two	 steps,	 bars	 and
all(bars).	That's	just	a	matter	of	personal	preference.	Wherever	possible,	I	like
to	write	my	 code	 so	 it	 can	be	 read	with	 function	 and	object	 names	 conveying
what	they	do.

You	also	may	have	noticed	 that	our	 test	 for	Case	2	will	capture	some	symbols
that	should	be	in	Case	1	because	they	contain	three	of	a	kind:

symbols	<-	c("B",	"B",	"B")

all(symbols	%in%	c("B",	"BB",	"BBB"))

##	TRUE

That	won't	be	a	problem,	however,	because	we've	connected	our	cases	with	else
if	in	the	if	tree.	As	soon	as	R	comes	to	a	case	that	evaluates	to	TRUE,	it	will	skip
over	the	rest	of	the	tree.	Think	of	it	this	way:	each	else	 tells	R	to	only	run	the
code	that	follows	it	 if	none	of	 the	previous	conditions	have	been	met.	So	when
we	have	three	of	the	same	type	of	bar,	R	will	evaluate	the	code	for	Case	1	and



then	skip	the	code	for	Case	2	(and	Case	3).

Our	 next	 subtask	 is	 to	 assign	 a	 prize	 for	 symbols.	 When	 the	 symbols	 vector
contains	three	of	the	same	symbol,	the	prize	will	depend	on	which	symbol	there
are	three	of.	If	there	are	three	DDs,	the	prize	will	be	$100;	if	there	are	three	7s,	the
prize	will	be	$80;	and	so	on.

This	suggests	another	if	tree.	You	could	assign	a	prize	with	some	code	like	this:

if	(same)	{

		symbol	<-	symbols[1]

		if	(symbol	==	"DD")	{

				prize	<-	800

		}	else	if	(symbol	==	"7")	{

				prize	<-	80

		}	else	if	(symbol	==	"BBB")	{

				prize	<-	40

		}	else	if	(symbol	==	"BB")	{

				prize	<-	5

		}	else	if	(symbol	==	"B")	{

				prize	<-	10

		}	else	if	(symbol	==	"C")	{

				prize	<-	10

		}	else	if	(symbol	==	"0")	{

				prize	<-	0

		}

}

While	this	code	will	work,	it	is	a	bit	long	to	write	and	read,	and	it	may	require	R
to	perform	multiple	 logical	 tests	before	delivering	the	correct	prize.	We	can	do
better	with	a	different	method.

9.4	Lookup	Tables

Very	often	in	R,	the	simplest	way	to	do	something	will	involve	subsetting.	How
could	you	use	subsetting	here?	Since	you	know	the	exact	 relationship	between
the	 symbols	 and	 their	 prizes,	 you	 can	 create	 a	 vector	 that	 captures	 this
information.	 This	 vector	 can	 store	 symbols	 as	 names	 and	 prize	 values	 as
elements:



payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

		"B"	=	10,	"C"	=	10,	"0"	=	0)

payouts

##		DD			7	BBB		BB			B			C			0	

##	100		80		40		25		10		10			0	

Now	you	can	extract	 the	correct	prize	 for	any	symbol	by	subsetting	 the	vector
with	the	symbol's	name:

payouts["DD"]

##		DD	

##	100	

payouts["B"]

##		B

##	10

If	you	want	to	leave	behind	the	symbol's	name	when	subsetting,	you	can	run	the
unname	function	on	the	output:

unname(payouts["DD"])

##	100	

unname	returns	a	copy	of	an	object	with	the	names	attribute	removed.

payouts	is	a	type	of	lookup	table,	an	R	object	that	you	can	use	to	look	up	values.
Subsetting	 payouts	 provides	 a	 simple	 way	 to	 find	 the	 prize	 for	 a	 symbol.	 It
doesn't	 take	many	lines	of	code,	and	it	does	the	same	amount	of	work	whether
your	 symbol	 is	DD	 or	0.	You	 can	 create	 lookup	 tables	 in	R	 by	 creating	 named
objects	that	can	be	subsetted	in	clever	ways.

Sadly,	our	method	is	not	quite	automatic;	we	need	to	tell	R	which	symbol	to	look
up	 in	 payouts.	 Or	 do	 we?	What	 would	 happen	 if	 you	 subsetted	 payouts	 by
symbols[1]?	Give	it	a	try:

symbols	<-	c("7",	"7",	"7")

symbols[1]

##	"7"



payouts[symbols[1]]

##		7	

##	80	

symbols	<-	c("C",	"C",	"C")

payouts[symbols[1]]

##		C	

##	10	

You	don't	need	to	know	the	exact	symbol	to	look	up	because	you	can	tell	R	to
look	up	whichever	symbol	happens	to	be	in	symbols.	You	can	find	this	symbol
with	symbols[1],	symbols[2],	or	symbols[3],	because	each	contains	 the	same
symbol	in	this	case.	You	now	have	a	simple	automated	way	to	calculate	the	prize
when	symbols	contains	three	of	a	kind.	Let's	add	it	to	our	code	and	then	look	at
Case	2:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	#	assign	$5

}	else	{

		#	count	cherries

		prize	<-	#	calculate	a	prize

}

#	count	diamonds

#	double	the	prize	if	necessary

Case	2	occurs	whenever	the	symbols	are	all	bars.	In	that	case,	the	prize	will	be
$5,	which	is	easy	to	assign:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	



				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	5

}	else	{

		#	count	cherries

		prize	<-	#	calculate	a	prize

}

#	count	diamonds

#	double	the	prize	if	necessary

Now	we	can	work	on	the	last	case.	Here,	you'll	need	to	know	how	many	cherries
are	in	symbols	before	you	can	calculate	a	prize.

Exercise	9.6:	 (Find	C's)	How	can	you	 tell	which	elements	of	a	vector	named
symbols	are	a	C?	Devise	a	test	and	try	it	out.

Challenge

How	might	you	count	the	number	of	Cs	in	a	vector	named	symbols?	Remember
R's	coercion	rules.
Solution.	As	always,	let's	work	with	a	real	example:

symbols	<-	c("C",	"DD",	"C")

One	way	to	test	for	cherries	would	be	to	check	which,	if	any,	of	the	symbols	are
a	C:

symbols	==	"C"

##	TRUE	FALSE		TRUE

It'd	be	even	more	useful	to	count	how	many	of	the	symbols	are	cherries.	You	can
do	this	with	sum,	which	expects	numeric	input,	not	logical.	Knowing	this,	R	will
coerce	 the	 TRUEs	 and	 FALSEs	 to	 1s	 and	 0s	 before	 doing	 the	 summation.	 As	 a
result,	sum	will	return	the	number	of	TRUEs,	which	is	also	the	number	of	cherries:

sum(symbols	==	"C")

##	2



You	can	use	the	same	method	to	count	the	number	of	diamonds	in	symbols:

sum(symbols	==	"DD")

##	1

Let's	add	both	of	these	subtasks	to	the	program	skeleton:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	5

}	else	{

		cherries	<-	sum(symbols	==	"C")

		prize	<-	#	calculate	a	prize

}

diamonds	<-	sum(symbols	==	"DD")

#	double	the	prize	if	necessary

Since	Case	3	appears	further	down	the	if	 tree	 than	Cases	1	and	2,	 the	code	in
Case	3	will	only	be	applied	to	players	that	do	not	have	three	of	a	kind	or	all	bars.
According	to	the	slot	machine's	payout	scheme,	these	players	will	win	$5	if	they
have	two	cherries	and	$2	if	they	have	one	cherry.	If	the	player	has	no	cherries,
she	gets	a	prize	of	$0.	We	don't	need	to	worry	about	three	cherries	because	that
outcome	is	already	covered	in	Case	1.

As	 in	 Case	 1,	 you	 could	 write	 an	 if	 tree	 that	 handles	 each	 combination	 of
cherries,	but	just	like	in	Case	1,	this	would	be	an	inefficient	solution:

if	(cherries	==	2)	{

		prize	<-	5

}	else	if	(cherries	==	1)	{

		prize	<-	2

}	else	{}

		prize	<-	0



}

Again,	 I	 think	 the	 best	 solution	 will	 involve	 subsetting.	 If	 you	 are	 feeling
ambitious,	you	can	try	to	work	this	solution	out	on	your	own,	but	you	will	learn
just	as	quickly	by	mentally	working	through	the	following	proposed	solution.

We	know	that	our	prize	should	be	$0	if	we	have	no	cherries,	$2	if	we	have	one
cherry,	and	$5	if	we	have	two	cherries.	You	can	create	a	vector	that	contains	this
information.	This	will	be	a	very	simple	lookup	table:

c(0,	2,	5)

Now,	 like	 in	Case	1,	you	can	subset	 the	vector	 to	 retrieve	 the	correct	prize.	 In
this	 case,	 the	prize's	 aren't	 identified	by	a	 symbol	name,	but	by	 the	number	of
cherries	present.	Do	we	have	that	information?	Yes,	it	is	stored	in	cherries.	We
can	 use	 basic	 integer	 subsetting	 to	 get	 the	 correct	 prize	 from	 the	 prior	 lookup
table,	for	example,	c(0,	2,	5)[1].

cherries	 isn't	 exactly	 suited	 for	 integer	 subsetting	 because	 it	 could	 contain	 a
zero,	 but	 that's	 easy	 to	 fix.	 We	 can	 subset	 with	 cherries	 +	 1.	 Now	 when
cherries	equals	zero,	we	have:

cherries	+	1

##	1

c(0,	2,	5)[cherries	+	1]

##	0

When	cherries	equals	one,	we	have:

cherries	+	1

##	2

c(0,	2,	5)[cherries	+	1]

##	2

And	when	cherries	equals	two,	we	have:



cherries	+	1

##	3

c(0,	2,	5)[cherries	+	1]

##	5

Examine	these	solutions	until	you	are	satisfied	that	they	return	the	correct	prize
for	each	number	of	cherries.	Then	add	the	code	to	your	script,	as	follows:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	5

}	else	{

		cherries	<-	sum(symbols	==	"C")

		prize	<-	c(0,	2,	5)[cherries	+	1]

}

diamonds	<-	sum(symbols	==	"DD")

#	double	the	prize	if	necessary

Lookup	Tables	Versus	if	Trees

This	is	the	second	time	we've	created	a	lookup	table	to	avoid	writing	an	if	tree.
Why	is	this	technique	helpful	and	why	does	it	keep	appearing?	Many	if	trees	in
R	are	essential.	They	provide	a	useful	way	to	tell	R	to	use	different	algorithms	in
different	cases.	However,	if	trees	are	not	appropriate	everywhere.

if	trees	have	a	couple	of	drawbacks.	First,	they	require	R	to	run	multiple	tests	as
it	works	its	way	down	the	if	tree,	which	can	create	unnecessary	work.	Second,
as	 you'll	 see	 in	Speed,	 it	 can	 be	 difficult	 to	 use	if	 trees	 in	 vectorized	 code,	 a
style	 of	 code	 that	 takes	 advantage	 of	R's	 programming	 strengths	 to	 create	 fast
programs.	Lookup	tables	do	not	suffer	from	either	of	these	drawbacks.

You	won't	be	able	to	replace	every	if	tree	with	a	lookup	table,	nor	should	you.



However,	you	can	usually	use	lookup	tables	to	avoid	assigning	variables	with	if
trees.	As	a	general	rule,	use	an	if	 tree	 if	each	branch	of	 the	 tree	runs	different
code.	Use	a	lookup	table	if	each	branch	of	the	tree	only	assigns	a	different	value.

To	convert	an	if	 tree	 to	a	 lookup	 table,	 identify	 the	values	 to	be	assigned	and
store	them	in	a	vector.	Next,	identify	the	selection	criteria	used	in	the	conditions
of	the	if	tree.	If	the	conditions	use	character	strings,	give	your	vector	names	and
use	 name-based	 subsetting.	 If	 the	 conditions	 use	 integers,	 use	 integer-based
subsetting.

The	 final	 subtask	 is	 to	 double	 the	 prize	 once	 for	 every	 diamond	 present.	 This
means	 that	 the	 final	 prize	 will	 be	 some	 multiple	 of	 the	 current	 prize.	 For
example,	if	no	diamonds	are	present,	the	prize	will	be:

prize	*	1						#	1	=	2	^	0

If	one	diamond	is	present,	it	will	be:

prize	*	2						#	2	=	2	^	1

If	two	diamonds	are	present,	it	will	be:

prize	*	4						#	4	=	2	^	2

And	if	three	diamonds	are	present,	it	will	be:

prize	*	8						#	8	=	2	^	3

Can	you	 think	of	an	easy	way	 to	handle	 this?	How	about	something	similar	 to
these	examples?

Exercise	9.7:	(Adjust	for	Diamonds)	Write	a	method	for	adjusting	prize	based
on	diamonds.	Describe	a	solution	in	English	first,	and	then	write	your	code.
Solution.	 Here	 is	 a	 concise	 solution	 inspired	 by	 the	 previous	 pattern.	 The
adjusted	prize	will	equal:



prize	*	2	^	diamonds

which	gives	us	our	final	score	script:

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	5

}	else	{

		cherries	<-	sum(symbols	==	"C")

		prize	<-	c(0,	2,	5)[cherries	+	1]

}

diamonds	<-	sum(symbols	==	"DD")

prize	*	2	^	diamonds

9.5	Code	Comments

You	now	have	a	working	score	script	that	you	can	save	to	a	function.	Before	you
save	 your	 script,	 though,	 consider	 adding	 comments	 to	 your	 code	 with	 a	 #.
Comments	can	make	your	code	easier	to	understand	by	explaining	why	the	code
does	 what	 it	 does.	 You	 can	 also	 use	 comments	 to	 break	 long	 programs	 into
scannable	 chunks.	For	 example,	 I	would	 include	 three	 comments	 in	 the	score
code:

#	identify	case

same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

#	get	prize

if	(same)	{

		payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

				"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize	<-	unname(payouts[symbols[1]])

}	else	if	(all(bars))	{

		prize	<-	5



}	else	{

		cherries	<-	sum(symbols	==	"C")

		prize	<-	c(0,	2,	5)[cherries	+	1]

}

#	adjust	for	diamonds

diamonds	<-	sum(symbols	==	"DD")

prize	*	2	^	diamonds

Now	that	each	part	of	your	code	works,	you	can	wrap	it	into	a	function	with	the
methods	 you	 learned	 in	 Writing	 Your	 Own	 Functions.	 Either	 use	 RStudio's
Extract	 Function	 option	 in	 the	 menu	 bar	 under	 Code,	 or	 use	 the	 function
function.	Ensure	 that	 the	 last	 line	of	 the	 function	 returns	a	 result	 (it	does),	and
identify	any	arguments	used	by	your	function.	Often	the	concrete	examples	that
you	 used	 to	 test	 your	 code,	 like	 symbols,	 will	 become	 the	 arguments	 of	 your
function.	Run	the	following	code	to	start	using	the	score	function:

score	<-	function	(symbols)	{

		#	identify	case

		same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

		bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

		

		#	get	prize

		if	(same)	{

				payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

						"B"	=	10,	"C"	=	10,	"0"	=	0)

				prize	<-	unname(payouts[symbols[1]])

		}	else	if	(all(bars))	{

				prize	<-	5

		}	else	{

				cherries	<-	sum(symbols	==	"C")

				prize	<-	c(0,	2,	5)[cherries	+	1]

		}

		

		#	adjust	for	diamonds

		diamonds	<-	sum(symbols	==	"DD")

		prize	*	2	^	diamonds

}

Once	you	have	defined	the	score	function,	the	play	function	will	work	as	well:

play	<-	function()	{



		symbols	<-	get_symbols()

		print(symbols)

		score(symbols)

}

Now	it	is	easy	to	play	the	slot	machine:

play()

##	"0"		"BB"	"B"	

##	0

play()

##	"DD"		"0"	"B"		

##	0

play()

##	"BB"	"BB"	"B"	

##	25

9.6	Summary

An	R	program	is	a	set	of	instructions	for	your	computer	to	follow	that	has	been
organized	 into	 a	 sequence	 of	 steps	 and	 cases.	 This	may	make	 programs	 seem
simple,	 but	 don't	 be	 fooled:	 you	 can	 create	 complicated	 results	 with	 the	 right
combination	of	simple	steps	(and	cases).

As	 a	 programmer,	 you	 are	 more	 likely	 to	 be	 fooled	 in	 the	 opposite	 way.	 A
program	 may	 seem	 impossible	 to	 write	 when	 you	 know	 that	 it	 must	 do
something	 impressive.	Do	 not	 panic	 in	 these	 situations.	Divide	 the	 job	 before
you	 into	 simple	 tasks,	 and	 then	 divide	 the	 tasks	 again.	 You	 can	 visualize	 the
relationship	 between	 tasks	 with	 a	 flow	 chart	 if	 it	 helps.	 Then	 work	 on	 the
subtasks	 one	 at	 a	 time.	Describe	 solutions	 in	English,	 then	 convert	 them	 to	R
code.	Test	each	solution	against	concrete	examples	as	you	go.	Once	each	of	your
subtasks	works,	combine	your	code	into	a	function	that	you	can	share	and	reuse.

R	provides	 tools	 that	can	help	you	do	 this.	You	can	manage	cases	with	if	and
else	statements.	You	can	create	a	lookup	table	with	objects	and	subsetting.	You
can	add	code	comments	with	#.	And	you	can	save	your	programs	as	a	function
with	function.



Things	often	go	wrong	when	people	write	programs.	It	will	be	up	to	you	to	find
the	source	of	any	errors	that	occur	and	to	fix	them.	It	should	be	easy	to	find	the
source	of	your	errors	if	you	use	a	stepwise	approach	to	writing	functions,	writing
—and	then	testing—one	bit	at	a	time.	However,	if	the	source	of	an	error	eludes
you,	or	you	find	yourself	working	with	large	chunks	of	untested	code,	consider
using	R's	built	in	debugging	tools,	described	in	Debugging	R	Code.

The	 next	 two	 chapters	 will	 teach	 you	 more	 tools	 that	 you	 can	 use	 in	 your
programs.	As	you	master	these	tools,	you	will	find	it	easier	to	write	R	programs
that	let	you	do	whatever	you	wish	to	your	data.	In	S3,	you	will	learn	how	to	use
R's	S3	system,	an	invisible	hand	that	shapes	many	parts	of	R.	You	will	use	the
system	to	build	a	custom	class	for	your	slot	machine	output,	and	you	will	tell	R
how	to	display	objects	that	have	your	class.



10	S3
You	 may	 have	 noticed	 that	 your	 slot	 machine	 results	 do	 not	 look	 the	 way	 I
promised	they	would.	I	suggested	that	the	slot	machine	would	display	its	results
like	this:

play()

##	0	0	DD

##	$0

But	the	current	machine	displays	its	results	in	a	less	pretty	format:

play()

##	"0"		"0"	"DD"	

##	0

Moreover,	the	slot	machine	uses	a	hack	to	display	symbols	(we	call	print	from
within	play).	As	 a	 result,	 the	 symbols	 do	 not	 follow	 your	 prize	 output	 if	 you
save	it:

one_play	<-	play()

##	"B"	"0"	"B"	

one_play

##	0

You	can	fix	both	of	these	problems	with	R's	S3	system.

10.1	The	S3	System

S3	 refers	 to	 a	 class	 system	 built	 into	 R.	 The	 system	 governs	 how	 R	 handles
objects	of	different	classes.	Certain	R	functions	will	look	up	an	object's	S3	class,
and	then	behave	differently	in	response.



The	 print	 function	 is	 like	 this.	When	 you	 print	 a	 numeric	 vector,	 print	 will
display	a	number:

num	<-	1000000000

print(num)

##	1000000000

But	 if	 you	 give	 that	 number	 the	S3	 class	POSIXct	 followed	 by	POSIXt,	 print
will	display	a	time:

class(num)	<-	c("POSIXct",	"POSIXt")

print(num)

##	"2001-09-08	19:46:40	CST"

If	you	use	objects	with	classes—and	you	do—you	will	run	into	R's	S3	system.
S3	behavior	can	seem	odd	at	 first,	but	 is	easy	 to	predict	once	you	are	 familiar
with	it.

R's	S3	system	is	built	around	three	components:	attributes	(especially	the	class
attribute),	generic	functions,	and	methods.

10.2	Attributes

In	Attributes,	 you	 learned	 that	many	R	objects	 come	with	 attributes,	 pieces	 of
extra	information	that	are	given	a	name	and	appended	to	the	object.	Attributes	do
not	affect	 the	values	of	the	object,	but	stick	to	the	object	as	a	type	of	metadata
that	R	can	use	to	handle	the	object.	For	example,	a	data	frame	stores	its	row	and
column	names	as	attributes.	Data	frames	also	store	their	class,	"data.frame",	as
an	attribute.

You	can	see	an	object's	attributes	with	attribute.	If	you	run	attribute	on	the
deck	data	frame	that	you	created	in	Project	2:	Playing	Cards,	you	will	see:

attributes(deck)

##	$names

##	[1]	"face"		"suit"		"value"

##	



##	$class

##	[1]	"data.frame"

##	

##	$row.names

##		[1]		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17	18	19	

##	[20]	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

##	[37]	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52

R	 comes	 with	 many	 helper	 functions	 that	 let	 you	 set	 and	 access	 the	 most
common	 attributes	 used	 in	 R.	 You've	 already	 met	 the	 names,	 dim,	 and	 class
functions,	which	each	work	with	an	eponymously	named	attribute.	However,	R
also	 has	 row.names,	 levels,	 and	many	 other	 attribute-based	 helper	 functions.
You	can	use	any	of	these	functions	to	retrieve	an	attribute's	value:

row.names(deck)

##		[1]	"1"		"2"		"3"		"4"		"5"		"6"		"7"		"8"		"9"		"10"	"11"	"12"	"13"

##	[14]	"14"	"15"	"16"	"17"	"18"	"19"	"20"	"21"	"22"	"23"	"24"	"25"	"26"

##	[27]	"27"	"28"	"29"	"30"	"31"	"32"	"33"	"34"	"35"	"36"	"37"	"38"	"39"

##	[40]	"40"	"41"	"42"	"43"	"44"	"45"	"46"	"47"	"48"	"49"	"50"	"51"	"52"

or	to	change	an	attribute's	value:

row.names(deck)	<-	101:152

or	to	give	an	object	a	new	attribute	altogether:

levels(deck)	<-	c("level	1",	"level	2",	"level	3")

attributes(deck)

##	$names

##	[1]	"face"		"suit"		"value"

##	

##	$class

##	[1]	"data.frame"

##	

##	$row.names

##		[1]	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117

##	[18]	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134

##	[35]	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151



##	[52]	152

##	

##	$levels

##	[1]	"level	1"	"level	2"	"level	3"

R	 is	 very	 laissez	 faire	 when	 it	 comes	 to	 attributes.	 It	 will	 let	 you	 add	 any
attributes	 that	you	 like	 to	an	object	 (and	 then	 it	will	usually	 ignore	 them).	The
only	time	R	will	complain	is	when	a	function	needs	to	find	an	attribute	and	it	is
not	there.

You	can	add	any	general	attribute	to	an	object	with	attr;	you	can	also	use	attr
to	look	up	the	value	of	any	attribute	of	an	object.	Let's	see	how	this	works	with
one_play,	the	result	of	playing	our	slot	machine	one	time:

one_play	<-	play()

one_play

##	0

attributes(one_play)

##	NULL

attr	 takes	 two	 arguments:	 an	 R	 object	 and	 the	 name	 of	 an	 attribute	 (as	 a
character	string).	To	give	the	R	object	an	attribute	of	the	specified	name,	save	a
value	to	the	output	of	attr.	Let's	give	one_play	an	attribute	named	symbols	that
contains	a	vector	of	character	strings:

attr(one_play,	"symbols")	<-	c("B",	"0",	"B")

attributes(one_play)

##	$symbols

##	[1]	"B"	"0"	"B"

To	look	up	the	value	of	any	attribute,	give	attr	an	R	object	and	the	name	of	the
attribute	you	would	like	to	look	up:

attr(one_play,	"symbols")

##	"B"	"0"	"B"



If	you	give	an	attribute	to	an	atomic	vector,	like	one_play,	R	will	usually	display
the	 attribute	 beneath	 the	 vector's	 values.	However,	 if	 the	 attribute	 changes	 the
vector's	class,	R	may	display	all	of	 the	information	in	the	vector	 in	a	new	way
(as	we	saw	with	POSIXct	objects):

one_play

##	[1]	0

##	attr(,"symbols")

##	[1]	"B"	"0"	"B"

R	will	generally	ignore	an	object's	attributes	unless	you	give	them	a	name	that	an
R	 function	 looks	 for,	 like	 names	 or	 class.	 For	 example,	 R	 will	 ignore	 the
symbols	attribute	of	one_play	as	you	manipulate	one_play:

one_play	+	1

##		1

##	attr(,"symbols")

##		"B"	"0"	"B"

Exercise	10.1:	(Add	an	Attribute)	Modify	play	 to	return	a	prize	that	contains
the	 symbols	 associated	 with	 it	 as	 an	 attribute	 named	 symbols.	 Remove	 the
redundant	call	to	print(symbols):

play	<-	function()	{

		symbols	<-	get_symbols()

		print(symbols)

		score(symbols)

}

Solution.	You	 can	 create	 a	 new	 version	 of	 play	 by	 capturing	 the	 output	 of
score(symbols)	 and	 assigning	 an	 attribute	 to	 it.	 play	 can	 then	 return	 the
enhanced	version	of	the	output:

play	<-	function()	{

		symbols	<-	get_symbols()

		prize	<-	score(symbols)

		attr(prize,	"symbols")	<-	symbols

		prize

}

Now	play	returns	both	the	prize	and	the	symbols	associated	with	the	prize.	The



results	may	not	look	pretty,	but	the	symbols	stick	with	the	prize	when	we	copy	it
to	a	new	object.	We	can	work	on	tidying	up	the	display	in	a	minute:

play()

##	[1]	0

##	attr(,"symbols")

##	[1]	"B"		"BB"	"0"	

	

two_play	<-	play()

	

two_play

##	[1]	0

##	attr(,"symbols")

##	[1]	"0"	"B"	"0"

You	 can	 also	 generate	 a	 prize	 and	 set	 its	 attributes	 in	 one	 step	 with	 the
structure	 function.	 structure	 creates	 an	 object	with	 a	 set	 of	 attributes.	 The
first	 argument	 of	 structure	 should	 be	 an	 R	 object	 or	 set	 of	 values,	 and	 the
remaining	 arguments	 should	 be	 named	 attributes	 for	 structure	 to	 add	 to	 the
object.	You	can	give	these	arguments	any	argument	names	you	like.	structure
will	 add	 the	 attributes	 to	 the	 object	 under	 the	 names	 that	 you	 provide	 as
argument	names:

play	<-	function()	{

		symbols	<-	get_symbols()

		structure(score(symbols),	symbols	=	symbols)

}

three_play	<-	play()

three_play

##		0

##		attr(,"symbols")

##		"0"		"BB"	"B"	

Now	that	your	play	output	contains	a	symbols	attribute,	what	can	you	do	with
it?	 You	 can	 write	 your	 own	 functions	 that	 lookup	 and	 use	 the	 attribute.	 For
example,	 the	following	function	will	 look	up	one_play's	symbols	 attribute	 and
use	 it	 to	 display	 one_play	 in	 a	 pretty	 manner.	 We	 will	 use	 this	 function	 to
display	our	slot	results,	so	let's	take	a	moment	to	study	what	it	does:



slot_display	<-	function(prize){

		#	extract	symbols

		symbols	<-	attr(prize,	"symbols")

		#	collapse	symbols	into	single	string

		symbols	<-	paste(symbols,	collapse	=	"	")

		#	combine	symbol	with	prize	as	a	character	string

		#	\n	is	special	escape	sequence	for	a	new	line	(i.e.	return	or	enter)

		string	<-	paste(symbols,	prize,	sep	=	"\n$")

		#	display	character	string	in	console	without	quotes

		cat(string)

}

slot_display(one_play)

##	B	0	B

##	$0

The	 function	 expects	 an	 object	 like	one_play	 that	 has	 both	 a	 numerical	 value
and	a	symbols	attribute.	The	first	 line	of	the	function	will	 look	up	the	value	of
the	 symbols	 attribute	 and	 save	 it	 as	 an	 object	 named	 symbols.	 Let's	 make	 an
example	symbols	object	so	we	can	see	what	the	rest	of	the	function	does.	We	can
use	one_play's	symbols	attribute	to	do	the	job.	symbols	will	be	a	vector	of	three-
character	strings:

symbols	<-	attr(one_play,	"symbols")

symbols

##	"B"	"0"	"B"

Next,	slot_display	uses	paste	 to	 collapse	 the	 three	 strings	 in	symbols	 into	 a
single-character	string.	paste	collapses	a	vector	of	character	strings	into	a	single
string	 when	 you	 give	 it	 the	 collapse	 argument.	 paste	 will	 use	 the	 value	 of
collapse	to	separate	the	formerly	distinct	strings.	Hence,	symbols	becomes	B	0
B	the	three	strings	separated	by	a	space:

symbols	<-	paste(symbols,	collapse	=	"	")



symbols

##	"B	0	B"

Our	function	then	uses	paste	in	a	new	way	to	combine	symbols	with	the	value
of	prize.	paste	combines	separate	objects	into	a	character	string	when	you	give
it	a	sep	argument.	For	example,	here	paste	will	combine	the	string	in	symbols,	B
0	B,	with	the	number	in	prize,	0.	paste	will	use	 the	value	of	sep	argument	 to
separate	 the	inputs	 in	 the	new	string.	Here,	 that	value	is	\n$,	 so	our	 result	will
look	like	"B	0	B\n$0":

prize	<-	one_play

string	<-	paste(symbols,	prize,	sep	=	"\n$")

string

##	"B	0	B\n$0"

The	last	line	of	slot_display	calls	cat	on	the	new	string.	cat	 is	like	print;	 it
displays	 its	 input	 at	 the	 command	 line.	 However,	 cat	 does	 not	 surround	 its
output	with	quotation	marks.	cat	also	replaces	every	\n	with	a	new	line	or	line
break.	The	result	 is	what	we	see.	Notice	that	 it	 looks	just	how	I	suggested	that
our	play	output	should	look	in	Programs:

cat(string)

##	B	0	B

##	$0

You	can	use	slot_display	to	manually	clean	up	the	output	of	play:

slot_display(play())

##	C	B	0

##	$2

slot_display(play())

##	7	0	BB

##	$0

This	method	of	cleaning	the	output	requires	you	to	manually	intervene	in	your	R
session	 (to	 call	 slot_display).	 There	 is	 a	 function	 that	 you	 can	 use	 to



automatically	clean	up	the	output	of	play	each	time	it	is	displayed.	This	function
is	print,	and	it	is	a	generic	function.

10.3	Generic	Functions

R	uses	print	more	often	than	you	may	think;	R	calls	print	each	time	it	displays
a	result	in	your	console	window.	This	call	happens	in	the	background,	so	you	do
not	notice	 it;	but	 the	call	explains	how	output	makes	 it	 to	 the	console	window
(recall	that	print	always	prints	its	argument	in	the	console	window).	This	print
call	also	explains	why	the	output	of	print	always	matches	what	you	see	when
you	display	an	object	at	the	command	line:

print(pi)

##	3.141593

pi

##	3.141593

print(head(deck))

##		face			suit	value

##		king	spades				13

##	queen	spades				12

##		jack	spades				11

##			ten	spades				10

##		nine	spades					9

##	eight	spades					8

head(deck)

##		face			suit	value

##		king	spades				13

##	queen	spades				12

##		jack	spades				11

##			ten	spades				10

##		nine	spades					9

##	eight	spades					8

print(play())

##		5

##	attr(,"symbols")

##		"B"		"BB"	"B"	



play()

##		5

##	attr(,"symbols")

##		"B"		"BB"	"B"	

You	can	change	how	R	displays	your	slot	output	by	rewriting	print	to	look	like
slot_display.	Then	R	would	print	the	output	in	our	tidy	format.	However,	this
method	 would	 have	 negative	 side	 effects.	 You	 do	 not	 want	 R	 to	 call
slot_display	 when	 it	 prints	 a	 data	 frame,	 a	 numerical	 vector,	 or	 any	 other
object.

Fortunately,	print	is	not	a	normal	function;	it	is	a	generic	function.	This	means
that	print	 is	written	 in	a	way	 that	 lets	 it	do	different	 things	 in	different	cases.
You've	already	seen	this	behavior	in	action	(although	you	may	not	have	realized
it).	print	did	one	thing	when	we	looked	at	the	unclassed	version	of	num:

num	<-	1000000000

print(num)

##	1000000000

and	a	different	thing	when	we	gave	num	a	class:

class(num)	<-	c("POSIXct",	"POSIXt")

print(num)

##	"2001-09-08	19:46:40	CST"

Take	a	look	at	the	code	inside	print	 to	see	how	it	does	this.	You	may	imagine
that	print	 looks	up	 the	class	attribute	of	 its	 input	and	 then	uses	an	+if+	 tree	 to
pick	 which	 output	 to	 display.	 If	 this	 occurred	 to	 you,	 great	 job!	 print	 does
something	very	similar,	but	much	more	simple.

10.4	Methods

When	you	call	print,	print	calls	a	special	function,	UseMethod:

print

##	function	(x,	...)	



##	UseMethod("print")

##	<bytecode:	0x7ffee4c62f80>

##	<environment:	namespace:base>

UseMethod	examines	the	class	of	the	input	that	you	provide	for	the	first	argument
of	print,	and	 then	passes	all	of	your	arguments	 to	a	new	function	designed	 to
handle	that	class	of	input.	For	example,	when	you	give	print	a	POSIXct	object,
UseMethod	will	pass	all	of	print's	arguments	to	print.POSIXct.	R	will	then	run
print.POSIXct	and	return	the	results:

print.POSIXct

##	function	(x,	...)	

##	{

##					max.print	<-	getOption("max.print",	9999L)

##					if	(max.print	<	length(x))	{

##									print(format(x[seq_len(max.print)],	usetz	=	TRUE),	...)

##									cat("	[	reached	getOption(\"max.print\")	--	omitted",	

##													length(x)	-	max.print,	"entries	]\n")

##					}

##					else	print(format(x,	usetz	=	TRUE),	...)

##					invisible(x)

##	}

##	<bytecode:	0x7fa948f3d008>

##	<environment:	namespace:base>

If	you	give	print	a	factor	object,	UseMethod	will	pass	all	of	print's	arguments
to	print.factor.	R	will	then	run	print.factor	and	return	the	results:

print.factor

##	function	(x,	quote	=	FALSE,	max.levels	=	NULL,	width	=	getOption("width"),	

##					...)	

##	{

##					ord	<-	is.ordered(x)

##					if	(length(x)	==	0L)	

##									cat(if	(ord)	

##													"ordered"

##	...

##									drop	<-	n	>	maxl

##									cat(if	(drop)	

##													paste(format(n),	""),	T0,	paste(if	(drop)	

##													c(lev[1L:max(1,	maxl	-	1)],	"...",	if	(maxl	>	1)	lev[n])

##									else	lev,	collapse	=	colsep),	"\n",	sep	=	"")



##					}

##					invisible(x)

##	}

##	<bytecode:	0x7fa94a64d470>

##	<environment:	namespace:base>

print.POSIXct	and	print.factor	are	called	methods	of	print.	By	themselves,
print.POSIXct	and	print.factor	work	like	regular	R	functions.	However,	each
was	written	specifically	so	UseMethod	could	call	it	 to	handle	a	specific	class	of
print	input.

Notice	 that	 print.POSIXct	 and	 print.factor	 do	 two	 different	 things	 (also
notice	that	I	abridged	the	middle	of	print.factor—it	is	a	long	function).	This	is
how	 print	 manages	 to	 do	 different	 things	 in	 different	 cases.	 print	 calls
UseMethod,	which	calls	a	specialized	method	based	on	the	class	of	print's	 first
argument.

You	can	see	which	methods	exist	 for	a	generic	function	by	calling	methods	on
the	function.	For	example,	print	has	almost	200	methods	(which	gives	you	an
idea	of	how	many	classes	exist	in	R):

methods(print)

##			[1]	print.acf*																																			

##			[2]	print.anova																																		

##			[3]	print.aov*																																			

##		...																						

##	[176]	print.xgettext*																														

##	[177]	print.xngettext*																													

##	[178]	print.xtabs*

##

##			Nonvisible	functions	are	asterisked

This	system	of	generic	functions,	methods,	and	class-based	dispatch	is	known	as
S3	because	it	originated	in	the	third	version	of	S,	the	programming	language	that
would	evolve	 into	S-PLUS	and	R.	Many	common	R	functions	are	S3	generics
that	work	with	a	set	of	class	methods.	For	example,	summary	and	head	also	call
UseMethod.	 More	 basic	 functions,	 like	 c,	 +,	 -,	 <	 and	 others	 also	 behave	 like
generic	functions,	although	they	call	.primitive	instead	of	UseMethod.



The	 S3	 system	 allows	 R	 functions	 to	 behave	 in	 different	 ways	 for	 different
classes.	You	 can	 use	 S3	 to	 format	 your	 slot	 output.	 First,	 give	 your	 output	 its
own	class.	Then	write	a	print	method	 for	 that	class.	To	do	 this	efficiently,	you
will	need	to	know	a	little	about	how	UseMethod	selects	a	method	function	to	use.

10.4.1	Method	Dispatch

UseMethod	uses	a	very	simple	system	to	match	methods	to	functions.

Every	S3	method	has	a	two-part	name.	The	first	part	of	the	name	will	refer	to	the
function	 that	 the	 method	 works	 with.	 The	 second	 part	 will	 refer	 to	 the	 class.
These	two	parts	will	be	separated	by	a	period.	So	for	example,	the	print	method
that	works	with	functions	will	be	called	print.function.	The	summary	method
that	works	with	matrices	will	be	called	summary.matrix.	And	so	on.

When	UseMethod	needs	to	call	a	method,	it	searches	for	an	R	function	with	the
correct	S3-style	name.	The	function	does	not	have	 to	be	special	 in	any	way;	 it
just	needs	to	have	the	correct	name.

You	can	participate	in	this	system	by	writing	your	own	function	and	giving	it	a
valid	 S3-style	 name.	 For	 example,	 let's	 give	 one_play	 a	 class	 of	 its	 own.	 It
doesn't	matter	what	 you	 call	 the	 class;	R	will	 store	 any	 character	 string	 in	 the
class	attribute:

class(one_play)	<-	"slots"

Now	 let's	write	 an	 S3	 print	method	 for	 the	 +slots+	 class.	 The	method	 doesn't
need	to	do	anything	special—it	doesn't	even	need	to	print	one_play.	But	it	does
need	 to	 be	 named	 print.slots;	 otherwise	 UseMethod	 will	 not	 find	 it.	 The
method	should	also	take	the	same	arguments	as	print;	otherwise,	R	will	give	an
error	when	it	tries	to	pass	the	arguments	to	print.slots:

args(print)

##	function	(x,	...)	

##	NULL

print.slots	<-	function(x,	...)	{

		cat("I'm	using	the	print.slots	method")

}



Does	 our	 method	 work?	 Yes,	 and	 not	 only	 that;	 R	 uses	 the	 print	 method	 to
display	the	contents	of	one_play.	This	method	isn't	very	useful,	so	I'm	going	to
remove	it.	You'll	have	a	chance	to	write	a	better	one	in	a	minute:

print(one_play)

##	I'm	using	the	print.slots	method

one_play

##	I'm	using	the	print.slots	method

rm(print.slots)

Some	R	objects	have	multiple	classes.	For	example,	the	output	of	Sys.time	has
two	classes.	Which	class	will	UseMethod	use	to	find	a	print	method?

now	<-	Sys.time()

attributes(now)

##	$class

##	[1]	"POSIXct"	"POSIXt"	

UseMethod	will	 first	 look	for	a	method	 that	matches	 the	first	class	 listed	 in	 the
object's	 class	 vector.	 If	 UseMethod	 cannot	 find	 one,	 it	 will	 then	 look	 for	 the
method	that	matches	the	second	class	(and	so	on	if	there	are	more	classes	in	an
object's	class	vector).

If	you	give	print	an	object	whose	class	or	classes	do	not	have	a	print	method,
UseMethod	will	call	print.default,	a	special	method	written	to	handle	general
cases.

Let's	use	this	system	to	write	a	better	print	method	for	the	slot	machine	output.

Exercise	10.2:	(Make	a	Print	Method)	Write	a	new	print	method	for	the	slots
class.	 The	 method	 should	 call	 slot_display	 to	 return	 well-formatted	 slot-
machine	output.

What	name	must	you	use	for	this	method?
Solution.	 It	 is	 surprisingly	 easy	 to	write	 a	 good	 print.slots	method	 because



we've	 already	 done	 all	 of	 the	 hard	 work	 when	 we	 wrote	 slot_display.	 For
example,	the	following	method	will	work.	Just	make	sure	the	method	is	named
print.slots	 so	 UseMethod	 can	 find	 it,	 and	 make	 sure	 that	 it	 takes	 the	 same
arguments	 as	 print	 so	 UseMethod	 can	 pass	 those	 arguments	 to	 print.slots
without	any	trouble:

print.slots	<-	function(x,	...)	{

		slot_display(x)

}

Now	R	will	automatically	use	slot_display	to	display	objects	of	class	+slots+
(and	only	objects	of	class	"slots"):

one_play

##	B	0	B

##	$0

Let's	ensure	that	every	piece	of	slot	machine	output	has	the	slots	class.

Exercise	10.3:	 (Add	a	Class)	Modify	 the	play	 function	so	 it	assigns	slots	 to
the	class	attribute	of	its	output:

play	<-	function()	{

		symbols	<-	get_symbols()

		structure(score(symbols),	symbols	=	symbols)

}

Solution.	You	can	set	the	class	attribute	of	the	output	at	the	same	time	that	you
set	the	+symbols+	attribute.	Just	add	class	=	"slots"	to	the	structure	call:

play	<-	function()	{

		symbols	<-	get_symbols()

		structure(score(symbols),	symbols	=	symbols,	class	=	"slots")

}

Now	each	of	our	slot	machine	plays	will	have	the	class	slots:

class(play())

##	"slots"



As	a	result,	R	will	display	them	in	the	correct	slot-machine	format:

play()

##	BB	BB	BBB

##	$5

play()

##	BB	0	0

##	$0

10.5	Classes

You	can	use	the	S3	system	to	make	a	robust	new	class	of	objects	in	R.	Then	R
will	treat	objects	of	your	class	in	a	consistent,	sensible	manner.	To	make	a	class:

Choose	a	name	for	your	class.
Assign	each	instance	of	your	class	a	+class+	attribute.
Write	class	methods	for	any	generic	function	 likely	 to	use	objects	of	your
class.

Many	R	packages	are	based	on	classes	that	have	been	built	in	a	similar	manner.
While	this	work	is	simple,	it	may	not	be	easy.	For	example,	consider	how	many
methods	exist	for	predefined	classes.

You	 can	 call	 methods	 on	 a	 class	 with	 the	 class	 argument,	 which	 takes	 a
character	string.	methods	will	return	every	method	written	for	 the	class.	Notice
that	methods	will	not	be	able	to	show	you	methods	that	come	in	an	unloaded	R
package:

methods(class	=	"factor")

##		[1]	[.factor													[[.factor											

##		[3]	[[<-.factor										[<-.factor										

##		[5]	all.equal.factor					as.character.factor	

##		[7]	as.data.frame.factor	as.Date.factor						

##		[9]	as.list.factor							as.logical.factor			

##	[11]	as.POSIXlt.factor				as.vector.factor				

##	[13]	droplevels.factor				format.factor							

##	[15]	is.na<-.factor							length<-.factor					

##	[17]	levels<-.factor						Math.factor									

##	[19]	Ops.factor											plot.factor*								



##	[21]	print.factor									relevel.factor*					

##	[23]	relist.factor*							rep.factor										

##	[25]	summary.factor							Summary.factor						

##	[27]	xtfrm.factor								

##	

##				Nonvisible	functions	are	asterisked

This	 output	 indicates	 how	 much	 work	 is	 required	 to	 create	 a	 robust,	 well-
behaved	class.	You	will	usually	need	to	write	a	class	method	for	every	basic	R
operation.

Consider	two	challenges	that	you	will	face	right	away.	First,	R	drops	attributes
(like	class)	when	it	combines	objects	into	a	vector:

play1	<-	play()

play1

##	B	BBB	BBB

##	$5

play2	<-	play()

play2

##	0	B	0

##	$0

c(play1,	play2)

##	[1]	5	0

Here,	 R	 stops	 using	 print.slots	 to	 display	 the	 vector	 because	 the	 vector
c(play1,	play2)	no	longer	has	a	"slots"	+class+	attribute.

Next,	R	will	drop	 the	attributes	of	 an	object	 (like	class)	when	you	subset	 the
object:

play1[1]

##	[1]	5

You	 can	 avoid	 this	 behavior	 by	 writing	 a	 c.slots	 method	 and	 a	 [.slots
method,	but	 then	difficulties	will	quickly	accrue.	How	would	you	combine	 the
symbols	 attributes	 of	multiple	 plays	 into	 a	 vector	 of	 symbols	 attributes?	How
would	you	change	print.slots	to	handle	vectors	of	outputs?	These	challenges



are	open	for	you	to	explore.	However,	you	will	usually	not	have	to	attempt	this
type	of	large-scale	programming	as	a	data	scientist.

In	 our	 case,	 it	 is	 very	 handy	 to	 let	slots	 objects	 revert	 to	 single	 prize	 values
when	we	combine	groups	of	them	together	into	a	vector.

10.6	S3	and	Debugging

S3	can	be	annoying	if	you	are	trying	to	understand	R	functions.	It	is	difficult	to
tell	what	a	function	does	if	its	code	body	contains	a	call	to	UseMethod.	Now	that
you	know	that	UseMethod	calls	a	class-specific	method,	you	can	search	for	and
examine	 the	 method	 directly.	 It	 will	 be	 a	 function	 whose	 name	 follows	 the
<function.class>	 syntax,	or	possibly	<function.default>.	You	 can	 also	use
the	methods	 function	 to	 see	what	methods	 are	 associated	with	 a	 function	 or	 a
class.

10.7	S4	and	R5

R	also	contains	two	other	systems	that	create	class	specific	behavior.	These	are
known	as	S4	and	R5	(or	reference	classes).	Each	of	these	systems	is	much	harder
to	use	 than	S3,	 and	perhaps	as	 a	 consequence,	more	 rare.	However,	 they	offer
safeguards	 that	 S3	 does	 not.	 If	 you'd	 like	 to	 learn	more	 about	 these	 systems,
including	 how	 to	write	 and	 use	 your	 own	 generic	 functions,	 I	 recommend	 the
book	Advanced	R	Programming	by	Hadley	Wickham.

10.8	Summary

Values	are	not	the	only	place	to	store	information	in	R,	and	functions	are	not	the
only	way	 to	create	unique	behavior.	You	can	also	do	both	of	 these	 things	with
R's	S3	 system.	The	S3	 system	provides	 a	 simple	way	 to	 create	 object-specific
behavior	in	R.	In	other	words,	it	 is	R's	version	of	object-oriented	programming
(OOP).	 The	 system	 is	 implemented	 by	 generic	 functions.	 These	 functions
examine	 the	 class	 attribute	 of	 their	 input	 and	 call	 a	 class-specific	 method	 to
generate	output.	Many	S3	methods	will	look	for	and	use	additional	information
that	 is	 stored	 in	 an	 object's	 attributes.	 Many	 common	 R	 functions	 are	 S3
generics.

http://adv-r.had.co.nz/


R's	S3	system	is	more	helpful	for	the	tasks	of	computer	science	than	the	tasks	of
data	science,	but	understanding	S3	can	help	you	troubleshoot	your	work	in	R	as
a	data	scientist.

You	now	know	quite	a	bit	about	how	to	write	R	code	that	performs	custom	tasks,
but	how	could	you	repeat	these	tasks?	As	a	data	scientist,	you	will	often	repeat
tasks,	sometimes	thousands	or	even	millions	of	times.	Why?	Because	repetition
lets	you	simulate	results	and	estimate	probabilities.	Loops	will	show	you	how	to
automate	repetition	with	R's	for	and	while	functions.	You'll	use	for	to	simulate
various	slot	machine	plays	and	to	calculate	the	payout	rate	of	your	slot	machine.



11	Loops
Loops	are	R's	method	for	repeating	a	task,	which	makes	them	a	useful	 tool	for
programming	simulations.	This	chapter	will	teach	you	how	to	use	R's	loop	tools.

Let's	use	the	score	function	to	solve	a	real-world	problem.

Your	 slot	machine	 is	modeled	 after	 real	machines	 that	were	 accused	 of	 fraud.
The	machines	appeared	to	pay	out	40	cents	on	the	dollar,	but	 the	manufacturer
claimed	 that	 they	 paid	 out	 92	 cents	 on	 the	 dollar.	You	 can	 calculate	 the	 exact
payout	rate	of	your	machine	with	the	score	program.	The	payout	rate	will	be	the
expected	value	of	the	slot	machine's	prize.

11.1	Expected	Values

The	expected	value	of	 a	 random	event	 is	 a	 type	of	weighted	 average;	 it	 is	 the
sum	of	each	possible	outcome	of	the	event,	weighted	by	the	probability	that	each
outcome	occurs:

You	can	think	of	the	expected	value	as	the	average	prize	that	you	would	observe
if	you	played	the	slot	machine	an	infinite	number	of	times.	Let's	use	the	formula
to	 calculate	 some	 simple	 expected	 values.	 Then	we	will	 apply	 the	 formula	 to
your	slot	machine.

Do	you	remember	the	die	you	created	in	Project	1:	Weighted	Dice?

die	<-	c(1,	2,	3,	4,	5,	6)

Each	 time	you	 roll	 the	 die,	 it	 returns	 a	 value	 selected	 at	 random	 (one	 through
six).	You	can	find	the	expected	value	of	rolling	the	die	with	the	formula:



The	 s	are	the	possible	outcomes	of	rolling	the	die:	1,	2,	3,	4,	5,	and	6;	and
the	 's	are	the	probabilities	associated	with	each	of	the	outcomes.	If	your
die	 is	 fair,	 each	 outcome	 will	 occur	 with	 the	 same	 probability:	 1/6.	 So	 our
equation	simplifies	to:

Hence,	the	expected	value	of	rolling	a	fair	die	is	3.5.	You	may	notice	that	this	is
also	 the	average	value	of	 the	die.	The	expected	value	will	equal	 the	average	 if
every	outcome	has	the	same	chance	of	occurring.

But	what	if	each	outcome	has	a	different	chance	of	occurring?	For	example,	we
weighted	our	dice	in	Packages	and	Help	Pages	so	that	each	die	rolled	1,	2,	3,	4,
and	 5	 with	 probability	 1/8	 and	 6	 with	 probability	 3/8.	 You	 can	 use	 the	 same
formula	to	calculate	the	expected	value	in	these	conditions:

Hence,	the	expected	value	of	a	loaded	die	does	not	equal	the	average	value	of	its
outcomes.	 If	 you	 rolled	 a	 loaded	 die	 an	 infinite	 number	 of	 times,	 the	 average
outcome	would	be	4.125,	which	 is	higher	 than	what	you	would	expect	 from	a
fair	die.

Notice	 that	 we	 did	 the	 same	 three	 things	 to	 calculate	 both	 of	 these	 expected
values.	We	have:

Listed	out	all	of	the	possible	outcomes
Determined	the	value	of	each	outcome	(here	just	the	value	of	the	die)
Calculated	the	probability	that	each	outcome	occurred

The	expected	value	was	then	just	the	sum	of	the	values	in	step	2	multiplied	by



the	probabilities	in	step	3.

You	 can	 use	 these	 steps	 to	 calculate	 more	 sophisticated	 expected	 values.	 For
example,	 you	 could	 calculate	 the	 expected	 value	 of	 rolling	 a	 pair	 of	weighted
dice.	Let's	do	this	step	by	step.

First,	list	out	all	of	the	possible	outcomes.	A	total	of	36	different	outcomes	can
appear	when	you	roll	two	dice.	For	example,	you	might	roll	(1,	1),	which	notates
one	on	the	first	die	and	one	on	the	second	die.	Or,	you	may	roll	(1,	2),	one	on	the
first	die	and	two	on	the	second.	And	so	on.	Listing	out	these	combinations	can
be	tedious,	but	R	has	a	function	that	can	help.

11.2	expand.grid

The	 expand.grid	 function	 in	 R	 provides	 a	 quick	 way	 to	 write	 out	 every
combination	 of	 the	 elements	 in	 n	 vectors.	 For	 example,	 you	 can	 list	 every
combination	of	two	dice.	To	do	so,	run	expand.grid	on	two	copies	of	die:

rolls	<-	expand.grid(die,	die)

expand.grid	will	return	a	data	frame	that	contains	every	way	to	pair	an	element
from	the	first	die	vector	with	an	element	from	the	second	die	vector.	This	will
capture	all	36	possible	combinations	of	values:

rolls

##				Var1	Var2

##	1					1				1

##	2					2				1

##	3					3				1

##	...

##	34				4				6

##	35				5				6

##	36				6				6

You	can	use	expand.grid	with	more	than	two	vectors	if	you	like.	For	example,
you	could	 list	 every	 combination	of	 rolling	 three	dice	with	expand.grid(die,
die,	die)	and	every	combination	of	 rolling	four	dice	with	expand.grid(die,
die,	die,	die),	and	so	on.	expand.grid	will	always	return	a	data	 frame	 that



contains	 each	 possible	 combination	 of	 n	 elements	 from	 the	 n	 vectors.	 Each
combination	will	contain	exactly	one	element	from	each	vector.

You	 can	 determine	 the	 value	 of	 each	 roll	 once	 you've	 made	 your	 list	 of
outcomes.	This	will	be	the	sum	of	the	two	dice,	which	you	can	calculate	using
R's	element-wise	execution:

rolls$value	<-	rolls$Var1	+	rolls$Var2

head(rolls,	3)

##	Var1	Var2	value

##				1				1					2

##				2				1					3

##				3				1					4

R	will	match	up	the	elements	in	each	vector	before	adding	them	together.	As	a
result,	 each	element	of	value	will	 refer	 to	 the	 elements	of	Var1	 and	Var2	 that
appear	in	the	same	row.

Next,	 you	must	 determine	 the	 probability	 that	 each	 combination	 appears.	You
can	calculate	this	with	a	basic	rule	of	probability:

The	 probability	 that	 n	 independent,	 random	 events	 all	 occur	 is	 equal	 to	 the
product	of	the	probabilities	that	each	random	event	occurs.

Or	more	succinctly:

So	the	probability	that	we	roll	a	(1,	1)	will	be	equal	to	the	probability	that	we	roll
a	one	on	the	first	die,	1/8,	times	the	probability	that	we	roll	a	one	on	the	second
die,	1/8:

And	the	probability	that	we	roll	a	(1,	2)	will	be:



And	so	on.

Let	me	suggest	a	three-step	process	for	calculating	these	probabilities	in	R.	First,
we	can	look	up	the	probabilities	of	rolling	the	values	in	Var1.	We'll	do	this	with
the	lookup	table	that	follows:

prob	<-	c("1"	=	1/8,	"2"	=	1/8,	"3"	=	1/8,	"4"	=	1/8,	"5"	=	1/8,	"6"

prob

##					1					2					3					4					5					6	

##	0.125	0.125	0.125	0.125	0.125	0.375	

If	 you	 subset	 this	 table	 by	 rolls$Var1,	 you	 will	 get	 a	 vector	 of	 probabilities
perfectly	keyed	to	the	values	of	Var1:

rolls$Var1

##	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6

prob[rolls$Var1]

##					1					2					3					4					5					6					1					2					3					4					5					6	

##	0.125	0.125	0.125	0.125	0.125	0.375	0.125	0.125	0.125	0.125	0.125	0.375	

##					1					2					3					4					5					6					1					2					3					4					5					6	

##	0.125	0.125	0.125	0.125	0.125	0.375	0.125	0.125	0.125	0.125	0.125	0.375	

##					1					2					3					4					5					6					1					2					3					4					5					6	

##	0.125	0.125	0.125	0.125	0.125	0.375	0.125	0.125	0.125	0.125	0.125	0.375	

rolls$prob1	<-	prob[rolls$Var1]

head(rolls,	3)

##	Var1	Var2	value	prob1

##				1				1					2	0.125

##				2				1					3	0.125

##				3				1					4	0.125

Second,	we	can	look	up	the	probabilities	of	rolling	the	values	in	Var2:



rolls$prob2	<-	prob[rolls$Var2]

head(rolls,	3)

##	Var1	Var2	value	prob1	prob2

##				1				1					2	0.125	0.125

##				2				1					3	0.125	0.125

##				3				1					4	0.125	0.125

Third,	 we	 can	 calculate	 the	 probability	 of	 rolling	 each	 combination	 by
multiplying	prob1	by	prob2:

rolls$prob	<-	rolls$prob1	*	rolls$prob2

head(rolls,	3)

##	Var1	Var2	value	prob1	prob2					prob

##				1				1					2	0.125	0.125	0.015625

##				2				1					3	0.125	0.125	0.015625

##				3				1					4	0.125	0.125	0.015625

It	 is	 easy	 to	 calculate	 the	 expected	value	now	 that	we	have	each	outcome,	 the
value	of	each	outcome,	and	the	probability	of	each	outcome.	The	expected	value
will	be	the	summation	of	the	dice	values	multiplied	by	the	dice	probabilities:

sum(rolls$value	*	rolls$prob)

##	8.25

So	the	expected	value	of	rolling	two	loaded	dice	is	8.25.	If	you	rolled	a	pair	of
loaded	dice	an	infinite	number	of	times,	the	average	sum	would	be	8.25.	(If	you
are	curious,	the	expected	value	of	rolling	a	pair	of	fair	dice	is	7,	which	explains
why	7	plays	such	a	large	role	in	dice	games	like	craps.)

Now	that	you've	warmed	up,	let's	use	our	method	to	calculate	the	expected	value
of	the	slot	machine	prize.	We	will	follow	the	same	steps	we	just	took:

We	will	 list	out	every	possible	outcome	of	playing	the	machine.	This	will
be	a	list	of	every	combination	of	three	slot	symbols.
We	 will	 calculate	 the	 probability	 of	 getting	 each	 combination	 when	 you
play	the	machine.



We	will	determine	the	prize	that	we	would	win	for	each	combination.

When	we	are	finished,	we	will	have	a	data	set	that	looks	like	this:

##	Var1	Var2	Var3	prob1	prob2	prob3					prob	prize

##			DD			DD			DD		0.03		0.03		0.03	0.000027			800

##				7			DD			DD		0.03		0.03		0.03	0.000027					0

##		BBB			DD			DD		0.06		0.03		0.03	0.000054					0

##	...	and	so	on.

The	 expected	 value	 will	 then	 be	 the	 sum	 of	 the	 prizes	 multiplied	 by	 their
probability	of	occuring:

Ready	to	begin?

Exercise	11.1:	(List	the	Combinations)	Use	expand.grid	to	make	a	data	frame
that	 contains	 every	 possible	 combination	 of	 three	 symbols	 from	 the	 wheel
vector:

wheel	<-	c("DD",	"7",	"BBB",	"BB",	"B",	"C",	"0")

Be	sure	to	add	the	argument	stringsAsFactors	=	FALSE	 to	your	expand.grid
call;	 otherwise,	 expand.grid	 will	 save	 the	 combinations	 as	 factors,	 an
unfortunate	choice	that	will	disrupt	the	score	function.

Solution.	To	create	a	data	frame	of	each	combination	of	three	symbols,	you	need
to	run	expand.grid	and	give	it	three	copies	of	wheel.	The	result	will	be	a	data
frame	with	343	rows,	one	for	each	unique	combination	of	three	slot	symbols:

combos	<-	expand.grid(wheel,	wheel,	wheel,	stringsAsFactors	=	FALSE)

combos

##			Var1	Var2	Var3

##	1			DD			DD			DD

##	2				7			DD			DD

##	3		BBB			DD			DD

##	4			BB			DD			DD



##	5				B			DD			DD

##	6				C			DD			DD

##	...

##	341				B				0				0

##	342				C				0				0

##	343				0				0				0

Now,	let's	calculate	the	probability	of	getting	each	combination.	You	can	use	the
probabilities	contained	 in	 the	prob	 argument	of	get_symbols	 to	do	 this.	These
probabilities	 determine	 how	 frequently	 each	 symbol	 is	 chosen	when	 your	 slot
machine	generates	symbols.	They	were	calculated	after	observing	345	plays	of
the	Manitoba	 video	 lottery	 terminals.	 Zeroes	 have	 the	 largest	 chance	 of	 being
selected	(0.52)	and	cherries	the	least	(0.01):

get_symbols	<-	function()	{

		wheel	<-	c("DD",	"7",	"BBB",	"BB",	"B",	"C",	"0")

		sample(wheel,	size	=	3,	replace	=	TRUE,	

				prob	=	c(0.03,	0.03,	0.06,	0.1,	0.25,	0.01,	0.52)

}

Exercise	11.2:	 (Make	a	Lookup	Table)	 Isolate	 the	previous	probabilities	 in	a
lookup	table.	What	names	will	you	use	in	your	table?
Solution.	Your	names	should	match	 the	 input	 that	you	want	 to	 look	up.	 In	 this
case,	the	input	will	be	the	character	strings	that	appear	in	Var1,	Var2,	and	Var3.
So	your	lookup	table	should	look	like	this:

prob	<-	c("DD"	=	0.03,	"7"	=	0.03,	"BBB"	=	0.06,	

		"BB"	=	0.1,	"B"	=	0.25,	"C"	=	0.01,	"0"	=	0.52)

Now	let's	look	up	our	probabilities.

Exercise	11.3:	(Lookup	the	Probabilities)	Look	up	the	probabilities	of	getting
the	values	in	Var1.	Then	add	them	to	combos	as	a	column	named	prob1.	Then	do
the	same	for	Var2	(prob2)	and	Var3	(prob3).
Solution.	Remember	 that	 you	use	R's	 selection	notation	 to	 look	up	values	 in	 a
lookup	table.	The	values	that	result	will	be	keyed	to	the	index	that	you	use:

combos$prob1	<-	prob[combos$Var1]

combos$prob2	<-	prob[combos$Var2]

combos$prob3	<-	prob[combos$Var3]



head(combos,	3)

##	Var1	Var2	Var3	prob1	prob2	prob3

##			DD			DD			DD		0.03		0.03		0.03

##				7			DD			DD		0.03		0.03		0.03

##		BBB			DD			DD		0.06		0.03		0.03

Now	 how	 should	we	 calculate	 the	 total	 probability	 of	 each	 combination?	Our
three	slot	symbols	are	all	chosen	independently,	which	means	that	the	same	rule
that	governed	our	dice	probabilities	governs	our	symbol	probabilities:

Exercise	11.4:	(Calculate	Probabilities	for	Each	Combination)	Calculate	 the
overall	probabilities	for	each	combination.	Save	them	as	a	column	named	prob
in	combos,	then	check	your	work.

You	 can	 check	 that	 the	 math	 worked	 by	 summing	 the	 probabilities.	 The
probabilities	should	add	up	to	one,	because	one	of	the	combinations	must	appear
when	you	play	the	slot	machine.	In	other	words,	a	combination	will	appear,	with
probability	of	one.

You	 can	 calculate	 the	 probabilities	 of	 every	 possible	 combination	 in	 one	 fell
swoop	with	some	element-wise	execution:

combos$prob	<-	combos$prob1	*	combos$prob2	*	combos$prob3

head(combos,	3)

##	Var1	Var2	Var3	prob1	prob2	prob3					prob

##			DD			DD			DD		0.03		0.03		0.03	0.000027

##				7			DD			DD		0.03		0.03		0.03	0.000027

##		BBB			DD			DD		0.06		0.03		0.03	0.000054

The	sum	of	the	probabilities	is	one,	which	suggests	that	our	math	is	correct:

sum(combos$prob)

##	1

You	only	need	to	do	one	more	thing	before	you	can	calculate	the	expected	value:



you	must	determine	the	prize	for	each	combination	in	combos.	You	can	calculate
the	prize	with	score.	For	example,	we	can	calculate	the	prize	for	the	first	row	of
combos	like	this:

symbols	<-	c(combos[1,	1],	combos[1,	2],	combos[1,	3])

##	"DD"	"DD"	"DD"

score(symbols)

##	800

However	 there	 are	 343	 rows,	 which	 makes	 for	 tedious	 work	 if	 you	 plan	 to
calculate	the	scores	manually.	It	will	be	quicker	to	automate	this	task	and	have	R
do	it	for	you,	which	you	can	do	with	a	for	loop.

11.3	for	Loops

A	for	loop	repeats	a	chunk	of	code	many	times,	once	for	each	element	in	a	set	of
input.	for	loops	provide	a	way	to	tell	R,	"Do	this	for	every	value	of	that."	In	R
syntax,	this	looks	like:

for	(value	in	that)	{

		this

}

The	 that	 object	 should	 be	 a	 set	 of	 objects	 (often	 a	 vector	 of	 numbers	 or
character	 strings).	 The	 for	 loop	will	 run	 the	 code	 in	 that	 appears	 between	 the
braces	 once	 for	 each	member	 of	 that.	 For	 example,	 the	 for	 loop	 below	 runs
print("one	run")	once	for	each	element	in	a	vector	of	character	strings:

for	(value	in	c("My",	"first",	"for",	"loop"))	{

		print("one	run")

}

##	"one	run"

##	"one	run"

##	"one	run"

##	"one	run"



The	value	symbol	in	a	for	loop	acts	like	an	argument	in	a	function.	The	for	loop
will	create	an	object	named	value	and	assign	it	a	new	value	on	each	run	of	the
loop.	The	code	in	your	loop	can	access	this	value	by	calling	the	value	object.

What	values	will	the	for	loop	assign	to	value?	It	will	use	the	elements	in	the	set
that	 you	 run	 the	 loop	 on.	 for	 starts	 with	 the	 first	 element	 and	 then	 assigns	 a
different	element	to	value	on	each	run	of	the	for	loop,	until	all	of	the	elements
have	 been	 assigned	 to	 value.	 For	 example,	 the	 for	 loop	 below	 will	 run
print(value)	four	times	and	will	print	out	one	element	of	c("My",	"second",
"for",	"loop")	each	time:

for	(value	in	c("My",	"second",	"for",	"loop"))	{

		print(value)

}

##	"My"

##	"second"

##	"for"

##	"loop"

On	the	first	run,	the	for	loop	substituted	"My"	for	value	in	print(value).	On	the
second	run	 it	 substituted	"second",	 and	so	on	until	for	had	run	print(value)
once	with	every	element	in	the	set:

If	 you	 look	 at	value	 after	 the	 loop	 runs,	 you	will	 see	 that	 it	 still	 contains	 the
value	of	the	last	element	in	the	set:

value

##	"loop"

I've	been	using	 the	symbol	value	 in	my	 for	 loops,	but	 there	 is	nothing	special
about	it.	You	can	use	any	symbol	you	like	in	your	loop	to	do	the	same	thing	as
long	 as	 the	 symbol	 appears	 before	 in	 in	 the	 parentheses	 that	 follow	 for.	 For
example,	you	could	rewrite	the	previous	loop	with	any	of	the	following:

for	(word	in	c("My",	"second",	"for",	"loop"))	{

		print(word)

}

for	(string	in	c("My",	"second",	"for",	"loop"))	{

		print(string)



}

for	(i	in	c("My",	"second",	"for",	"loop"))	{

		print(i)

}

Choose	your	symbols	carefully

R	will	 run	 your	 loop	 in	 whichever	 environment	 you	 call	 it	 from.	 This	 is	 bad
news	if	your	loop	uses	object	names	that	already	exist	in	the	environment.	Your
loop	 will	 overwrite	 the	 existing	 objects	 with	 the	 objects	 that	 it	 creates.	 This
applies	to	the	value	symbol	as	well.

For	loops	run	on	sets

In	many	programming	languages,	for	loops	are	designed	to	work	with	integers,
not	sets.	You	give	 the	 loop	a	starting	value	and	an	ending	value,	as	well	as	an
increment	to	advance	the	value	by	between	loops.	The	for	loop	then	runs	until
the	loop	value	exceeds	the	ending	value.

You	 can	 recreate	 this	 effect	 in	 R	 by	 having	 a	 for	 loop	 execute	 on	 a	 set	 of
integers,	but	don't	lose	track	of	the	fact	that	R's	for	loops	execute	on	members	of
a	set,	not	sequences	of	integers.

for	loops	are	very	useful	in	programming	because	they	help	you	connect	a	piece
of	code	with	each	element	in	a	set.	For	example,	we	could	use	a	for	loop	to	run
score	once	for	each	row	in	combos.	However,	R's	for	loops	have	a	shortcoming
that	 you'll	want	 to	 know	 about	 before	 you	 start	 using	 them:	for	 loops	 do	 not
return	output.

for	loops	are	like	Las	Vegas:	what	happens	in	a	for	loop	stays	in	a	for	loop.	If
you	want	to	use	the	products	of	a	for	loop,	you	must	write	the	for	loop	so	that	it
saves	its	own	output	as	it	goes.

Our	previous	examples	appeared	to	return	output,	but	this	was	misleading.	The
examples	worked	because	we	called	print,	which	always	prints	its	arguments	in
the	console	 (even	 if	 it	 is	called	 from	a	 function,	a	for	 loop,	or	anything	else).
Our	for	loops	won't	return	anything	if	you	remove	the	print	call:

for	(value	in	c("My",	"third",	"for",	"loop"))	{



		value

}

##

To	save	output	from	a	for	loop,	you	must	write	the	loop	so	that	it	saves	its	own
output	as	it	runs.	You	can	do	this	by	creating	an	empty	vector	or	list	before	you
run	the	for	loop.	Then	use	the	for	loop	to	fill	up	the	vector	or	list.	When	the	for
loop	is	finished,	you'll	be	able	to	access	the	vector	or	list,	which	will	now	have
all	of	your	results.

Let's	see	this	in	action.	The	following	code	creates	an	empty	vector	of	length	4:

chars	<-	vector(length	=	4)

The	next	loop	will	fill	it	with	strings:

words	<-	c("My",	"fourth",	"for",	"loop")

for	(i	in	1:4)	{

		chars[i]	<-	words[i]

}

chars

##	"My"				"fourth"	"for"			"loop"

This	approach	will	usually	require	you	to	change	the	sets	that	you	execute	your
for	loop	on.	Instead	of	executing	on	a	set	of	objects,	execute	on	a	set	of	integers
that	 you	 can	 use	 to	 index	 both	 your	 object	 and	 your	 storage	 vector.	 This
approach	is	very	common	in	R.	You'll	find	in	practice	that	you	use	for	loops	not
so	much	to	run	code,	but	to	fill	up	vectors	and	lists	with	the	results	of	code.

Let's	 use	 a	 for	 loop	 to	 calculate	 the	 prize	 for	 each	 row	 in	 combos.	 To	 begin,
create	a	new	column	in	combos	to	store	the	results	of	the	for	loop:

combos$prize	<-	NA

head(combos,	3)

##		Var1	Var2	Var3	prob1	prob2	prob3					prob	prize



##				DD			DD			DD		0.03		0.03		0.03	0.000027				NA

##					7			DD			DD		0.03		0.03		0.03	0.000027				NA

##			BBB			DD			DD		0.06		0.03		0.03	0.000054				NA

The	 code	 creates	 a	 new	 column	 named	 prize	 and	 fills	 it	 with	 NAs.	 R	 uses	 its
recycling	rules	to	populate	every	value	of	the	column	with	NA.

Exercise	11.5:	(Build	a	Loop)	Construct	a	for	 loop	 that	will	 run	score	on	all
343	rows	of	combos.	The	loop	should	run	score	on	the	first	three	entries	of	the
_i_th	 row	 of	 combos	 and	 should	 store	 the	 results	 in	 the	 _i_th	 entry	 of
combos$prize.
Solution.	You	can	score	the	rows	in	combos	with:

for	(i	in	1:nrow(combos))	{

		symbols	<-	c(combos[i,	1],	combos[i,	2],	combos[i,	3])

		combos$prize[i]	<-	score(symbols)

}

After	you	run	the	for	loop,	combos$prize	will	contain	the	correct	prize	for	each
row.	This	exercise	also	tests	the	score	function;	score	appears	to	work	correctly
for	every	possible	slot	combination:

head(combos,	3)

##	Var1	Var2	Var3	prob1	prob2	prob3					prob	prize

##			DD			DD			DD		0.03		0.03		0.03	0.000027			800

##				7			DD			DD		0.03		0.03		0.03	0.000027					0

##		BBB			DD			DD		0.06		0.03		0.03	0.000054					0

We're	now	ready	to	calculate	the	expected	value	of	the	prize.	The	expected	value
is	the	sum	of	combos$prize	weighted	by	combos$prob.	This	 is	also	 the	payout
rate	of	the	slot	machine:

sum(combos$prize	*	combos$prob)

##	0.538014

Uh	 oh.	 The	 expected	 prize	 is	 about	 0.54,	which	means	 our	 slot	machine	 only
pays	 54	 cents	 on	 the	 dollar	 over	 the	 long	 run.	 Does	 this	 mean	 that	 the
manufacturer	of	the	Manitoba	slot	machines	was	lying?



No,	because	we	ignored	an	important	feature	of	the	slot	machine	when	we	wrote
score:	a	diamond	is	wild.	You	can	treat	a	DD	as	any	other	symbol	if	it	increases
your	 prize,	with	 one	 exception.	You	 cannot	make	 a	DD	 a	C	 unless	 you	 already
have	another	C	in	your	symbols	(it'd	be	too	easy	if	every	DD	automatically	earned
you	$2).

The	 best	 thing	 about	 DDs	 is	 that	 their	 effects	 are	 cumulative.	 For	 example,
consider	 the	 combination	 B,	 DD,	 B.	 Not	 only	 does	 the	 DD	 count	 as	 a	 B,	 which
would	earn	a	prize	of	$10;	the	DD	also	doubles	the	prize	to	$20.

Adding	this	behavior	to	our	code	is	a	little	tougher	than	what	we	have	done	so
far,	 but	 it	 involves	 all	 of	 the	 same	 principles.	 You	 can	 decide	 that	 your	 slot
machine	doesn't	use	wilds	and	keep	the	code	that	we	have.	In	that	case,	your	slot
machine	will	have	a	payout	rate	of	about	54	percent.	Or,	you	could	rewrite	your
code	to	use	wilds.	If	you	do,	you	will	find	that	your	slot	machine	has	a	payout
rate	 of	 93	 percent,	 one	 percent	 higher	 than	 the	manufacturer's	 claim.	You	 can
calculate	this	rate	with	the	same	method	that	we	used	in	this	section.

Exercise	11.6:	 (Challenge)	There	are	many	ways	 to	modify	score	 that	would
count	DDs	as	wild.	If	you	would	like	to	test	your	skill	as	an	R	programmer,	try	to
write	your	own	version	of	score	that	correctly	handles	diamonds.

If	you	would	like	a	more	modest	challenge,	study	the	following	score	code.	 It
accounts	for	wild	diamonds	in	a	way	that	I	find	elegant	and	succinct.	See	if	you
can	understand	each	step	in	the	code	and	how	it	achieves	its	result.
Solution.	Here	is	a	version	of	score	that	handles	wild	diamonds:

score	<-	function(symbols)	{

		

		diamonds	<-	sum(symbols	==	"DD")

		cherries	<-	sum(symbols	==	"C")

		

		#	identify	case

		#	since	diamonds	are	wild,	only	nondiamonds	

		#	matter	for	three	of	a	kind	and	all	bars

		slots	<-	symbols[symbols	!=	"DD"]

		same	<-	length(unique(slots))	==	1

		bars	<-	slots	%in%	c("B",	"BB",	"BBB")

		#	assign	prize

		if	(diamonds	==	3)	{

				prize	<-	100



		}	else	if	(same)	{

				payouts	<-	c("7"	=	80,	"BBB"	=	40,	"BB"	=	25,

						"B"	=	10,	"C"	=	10,	"0"	=	0)

				prize	<-	unname(payouts[slots[1]])

		}	else	if	(all(bars))	{

				prize	<-	5

		}	else	if	(cherries	>	0)	{

				#	diamonds	count	as	cherries

				#	so	long	as	there	is	one	real	cherry

				prize	<-	c(0,	2,	5)[cherries	+	diamonds	+	1]

		}	else	{

				prize	<-	0

		}

		

		#	double	for	each	diamond

		prize	*	2^diamonds

}

Exercise	11.7:	(Calculate	the	Expected	Value)	Calculate	the	expected	value	of
the	slot	machine	when	it	uses	the	new	score	function.	You	can	use	the	existing
combos	 data	 frame,	 but	 you	 will	 need	 to	 build	 a	 for	 loop	 to	 recalculate
combos$prize.

To	update	the	expected	value,	just	update	combos$prize:

for	(i	in	1:nrow(combos))	{

		symbols	<-	c(combos[i,	1],	combos[i,	2],	combos[i,	3])

		combos$prize[i]	<-	score(symbols)

}

Then	recompute	the	expected	value:

sum(combos$prize	*	combos$prob)

##	0.934356

This	 result	 vindicates	 the	manufacturer's	 claim.	 If	 anything,	 the	 slot	machines
seem	more	generous	than	the	manufacturer	stated.

11.4	while	Loops



R	has	two	companions	to	the	for	 loop:	the	while	 loop	and	the	repeat	loop.	A
while	 loop	reruns	a	chunk	while	 a	certain	condition	 remains	TRUE.	To	create	a
while	loop,	follow	while	by	a	condition	and	a	chunk	of	code,	like	this:

while	(condition)	{

		code

}

while	will	rerun	condition,	which	should	be	a	logical	test,	at	the	start	of	each
loop.	If	condition	evaluates	to	TRUE,	while	will	run	the	code	between	its	braces.
If	condition	evaluates	to	FALSE,	while	will	finish	the	loop.

Why	might	 condition	 change	 from	 TRUE	 to	 FALSE?	 Presumably	 because	 the
code	inside	your	loop	has	changed	whether	the	condition	is	still	TRUE.	If	the	code
has	no	relationship	to	the	condition,	a	while	loop	will	run	until	you	stop	it.	So	be
careful.	You	can	stop	a	while	loop	by	hitting	Escape	or	by	clicking	on	the	stop-
sign	icon	at	the	top	of	the	RStudio	console	pane.	The	icon	will	appear	once	the
loop	begins	to	run.

Like	for	loops,	while	loops	do	not	return	a	result,	so	you	must	think	about	what
you	want	the	loop	to	return	and	save	it	to	an	object	during	the	loop.

You	can	use	while	 loops	 to	do	 things	 that	 take	a	varying	number	of	 iterations,
like	 calculating	 how	 long	 it	 takes	 to	 go	 broke	 playing	 slots	 (as	 follows).
However,	in	practice,	while	loops	are	much	less	common	than	for	loops	in	R:

plays_till_broke	<-	function(start_with)	{

		cash	<-	start_with

		n	<-	0

		while	(cash	>	0)	{

				cash	<-	cash	-	1	+	play()

				n	<-	n	+	1

		}

		n

}

plays_till_broke(100)

##	260



11.5	repeat	Loops

repeat	loops	are	even	more	basic	than	while	loops.	They	will	repeat	a	chunk	of
code	until	you	 tell	 them	to	stop	(by	hitting	Escape)	or	until	 they	encounter	 the
command	break,	which	will	stop	the	loop.

You	 can	 use	 a	 repeat	 loop	 to	 recreate	 plays_till_broke,	 my	 function	 that
simulates	how	long	it	takes	to	lose	money	while	playing	slots:

plays_till_broke	<-	function(start_with)	{

		cash	<-	start_with

		n	<-	0

		repeat	{

				cash	<-	cash	-	1	+	play()

				n	<-	n	+	1

				if	(cash	<=	0)	{

						break

				}

		}

		n

}

plays_till_broke(100)

##	237

11.6	Summary

You	can	repeat	tasks	in	R	with	for,	while,	and	repeat	loops.	To	use	for,	give	it
a	chunk	of	code	to	run	and	a	set	of	objects	to	loop	through.	for	will	run	the	code
chunk	once	for	each	object.	If	you	wish	to	save	the	output	of	your	loop,	you	can
assign	it	to	an	object	that	exists	outside	of	the	loop.

Repetition	plays	an	important	role	in	data	science.	It	is	the	basis	for	simulation,
as	well	as	for	estimates	of	variance	and	probability.	Loops	are	not	the	only	way
to	create	repetition	in	R	(consider	replicate	for	example),	but	they	are	one	of
the	most	popular	ways.

Unfortunately,	 loops	 in	 R	 can	 sometimes	 be	 slower	 than	 loops	 in	 other
languages.	As	 a	 result,	R's	 loops	 get	 a	 bad	 rap.	This	 reputation	 is	 not	 entirely



deserved,	 but	 it	 does	 highlight	 an	 important	 issue.	 Speed	 is	 essential	 to	 data
analysis.	When	your	code	runs	fast,	you	can	work	with	bigger	data	and	do	more
to	 it	before	you	 run	out	of	 time	or	computational	power.	Speed	will	 teach	you
how	to	write	fast	for	loops	and	fast	code	in	general	with	R.	There,	you	will	learn
to	write	vectorized	code,	a	style	of	lightning-fast	code	that	takes	advantage	of	all
of	R's	strengths.



12	Speed
As	a	data	scientist,	you	need	speed.	You	can	work	with	bigger	data	and	do	more
ambitious	tasks	when	your	code	runs	fast.	This	chapter	will	show	you	a	specific
way	to	write	fast	code	in	R.	You	will	then	use	the	method	to	simulate	10	million
plays	of	your	slot	machine.

12.1	Vectorized	Code

You	can	write	a	piece	of	code	in	many	different	ways,	but	the	fastest	R	code	will
usually	take	advantage	of	three	things:	logical	tests,	subsetting,	and	element-wise
execution.	 These	 are	 the	 things	 that	 R	 does	 best.	 Code	 that	 uses	 these	 things
usually	has	a	certain	quality:	it	is	vectorized;	the	code	can	take	a	vector	of	values
as	input	and	manipulate	each	value	in	the	vector	at	the	same	time.

To	 see	 what	 vectorized	 code	 looks	 like,	 compare	 these	 two	 examples	 of	 an
absolute	value	function.	Each	takes	a	vector	of	numbers	and	transforms	it	into	a
vector	 of	 absolute	 values	 (e.g.,	 positive	 numbers).	 The	 first	 example	 is	 not
vectorized;	abs_loop	uses	a	for	 loop	to	manipulate	each	element	of	 the	vector
one	at	a	time:

abs_loop	<-	function(vec){

		for	(i	in	1:length(vec))	{

				if	(vec[i]	<	0)	{

						vec[i]	<-	-vec[i]

				}

		}

		vec

}

The	 second	 example,	 abs_set,	 is	 a	 vectorized	 version	 of	 abs_loop.	 It	 uses
logical	subsetting	to	manipulate	every	negative	number	in	the	vector	at	the	same
time:

abs_sets	<-	function(vec){

		negs	<-	vec	<	0



		vec[negs]	<-	vec[negs]	*	-1

		vec

}

abs_set	is	much	faster	than	abs_loop	because	it	relies	on	operations	that	R	does
quickly:	logical	tests,	subsetting,	and	element-wise	execution.

You	 can	 use	 the	 system.time	 function	 to	 see	 just	 how	 fast	 abs_set	 is.
system.time	 takes	an	R	expression,	 runs	 it,	 and	 then	displays	how	much	 time
elapsed	while	the	expression	ran.

To	 compare	 abs_loop	 and	 abs_set,	 first	 make	 a	 long	 vector	 of	 positive	 and
negative	numbers.	long	will	contain	10	million	values:

long	<-	rep(c(-1,	1),	5000000)

rep	repeats	a	value,	or	vector	of	values,	many	times.	To	use	rep,	give	it	a	vector
of	 values	 and	 then	 the	 number	 of	 times	 to	 repeat	 the	 vector.	R	will	 return	 the
results	as	a	new,	longer	vector.

You	can	then	use	system.time	to	measure	how	much	time	it	takes	each	function
to	evaluate	long:

system.time(abs_loop(long))

##				user		system	elapsed	

##		15.982			0.032		16.018

system.time(abs_sets(long))

##				user		system	elapsed	

##			0.529			0.063			0.592

Don't	confuse	system.time	with	Sys.time,	which	returns	the	current	time.

The	first	 two	columns	of	 the	output	of	system.time	 report	how	many	seconds
your	computer	spent	executing	the	call	on	the	user	side	and	system	sides	of	your
process,	a	dichotomy	that	will	vary	from	OS	to	OS.

The	last	column	displays	how	many	seconds	elapsed	while	R	ran	the	expression.
The	results	show	that	abs_set	calculated	the	absolute	value	30	times	faster	than
abs_loop	 when	 applied	 to	 a	 vector	 of	 10	 million	 numbers.	 You	 can	 expect



similar	speed-ups	whenever	you	write	vectorized	code.

Exercise	 12.1:	 (How	 fast	 is	 abs?)	Many	 preexisting	 R	 functions	 are	 already
vectorized	and	have	been	optimized	to	perform	quickly.	You	can	make	your	code
faster	by	 relying	on	 these	 functions	whenever	possible.	For	example,	R	comes
with	a	built-in	absolute	value	function,	abs.

Check	 to	 see	 how	much	 faster	 abs	 computes	 the	 absolute	 value	 of	 long	 than
abs_loop	and	abs_set	do.

Solution.	You	 can	measure	 the	 speed	 of	abs	with	system.time.	 It	 takes	abs	 a
lightning-fast	 0.05	 seconds	 to	 calculate	 the	 absolute	 value	 of	 10	 million
numbers.	This	is	0.592	/	0.054	=	10.96	times	faster	than	abs_set	and	nearly	300
times	faster	than	abs_loop:

system.time(abs(long))

##			user		system	elapsed	

##		0.037			0.018			0.054

12.2	How	to	Write	Vectorized	Code

Vectorized	 code	 is	 easy	 to	 write	 in	 R	 because	 most	 R	 functions	 are	 already
vectorized.	 Code	 based	 on	 these	 functions	 can	 easily	 be	made	 vectorized	 and
therefore	fast.	To	create	vectorized	code:

1.	 Use	vectorized	functions	to	complete	the	sequential	steps	in	your	program.
2.	 Use	 logical	 subsetting	 to	 handle	 parallel	 cases.	 Try	 to	 manipulate	 every

element	in	a	case	at	once.

abs_loop	and	abs_set	illustrate	these	rules.	The	functions	both	handle	two	cases
and	 perform	 one	 sequential	 step,	 Figure	 12.1.	 If	 a	 number	 is	 positive,	 the
functions	 leave	 it	 alone.	 If	 a	 number	 is	 negative,	 the	 functions	multiply	 it	 by
negative	one.



Figure	12.1:	abs_loop	uses	a	for	loop	to	sift	data	into	one	of	two	cases:	negative
numbers	and	nonnegative	numbers.

You	can	identify	all	of	the	elements	of	a	vector	that	fall	into	a	case	with	a	logical
test.	R	will	execute	the	test	in	element-wise	fashion	and	return	a	TRUE	for	every
element	that	belongs	in	the	case.	For	example,	vec	<	0	identifies	every	value	of
vec	that	belongs	to	the	negative	case.	You	can	use	the	same	logical	test	to	extract
the	set	of	negative	values	with	logical	subsetting:

vec	<-	c(1,	-2,	3,	-4,	5,	-6,	7,	-8,	9,	-10)

vec	<	0

##	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE

vec[vec	<	0]

##	-2		-4		-6		-8	-10

The	plan	in	Figure	12.1	now	requires	a	sequential	step:	you	must	multiply	each
of	 the	 negative	 values	 by	 negative	 one.	 All	 of	 R's	 arithmetic	 operators	 are
vectorized,	so	you	can	use	*	 to	complete	 this	step	 in	vectorized	fashion.	*	will
multiply	each	number	in	vec[vec	<	0]	by	negative	one	at	the	same	time:

vec[vec	<	0]	*	-1

##	2		4		6		8	10

Finally,	you	can	use	R's	assignment	operator,	which	 is	also	vectorized,	 to	 save
the	new	set	over	the	old	set	in	the	original	vec	object.	Since	<-	is	vectorized,	the



elements	of	the	new	set	will	be	paired	up	to	the	elements	of	the	old	set,	in	order,
and	 then	 element-wise	 assignment	will	 occur.	As	 a	 result,	 each	negative	value
will	be	replaced	by	its	positive	partner,	as	in	Figure	12.2.

Figure	 12.2:	 Use	 logical	 subsetting	 to	 modify	 groups	 of	 values	 in	 place.	 R's
arithmetic	 and	 assignment	operators	 are	vectorized,	which	 lets	 you	manipulate
and	update	multiple	values	at	once.

Exercise	12.2:	(Vectorize	a	Function)	The	following	function	converts	a	vector
of	 slot	 symbols	 to	 a	 vector	 of	 new	 slot	 symbols.	 Can	 you	 vectorize	 it?	 How
much	faster	does	the	vectorized	version	work?

change_symbols	<-	function(vec){

		for	(i	in	1:length(vec)){

				if	(vec[i]	==	"DD")	{

						vec[i]	<-	"joker"

				}	else	if	(vec[i]	==	"C")	{

						vec[i]	<-	"ace"

				}	else	if	(vec[i]	==	"7")	{

						vec[i]	<-	"king"

				}else	if	(vec[i]	==	"B")	{

						vec[i]	<-	"queen"

				}	else	if	(vec[i]	==	"BB")	{

						vec[i]	<-	"jack"

				}	else	if	(vec[i]	==	"BBB")	{

						vec[i]	<-	"ten"



				}	else	{

						vec[i]	<-	"nine"

				}	

		}

		vec

}

vec	<-	c("DD",	"C",	"7",	"B",	"BB",	"BBB",	"0")

change_symbols(vec)

##		"joker"	"ace"			"king"		"queen"	"jack"		"ten"			"nine"

many	<-	rep(vec,	1000000)

system.time(change_symbols(many))

##				user		system	elapsed	

##		30.057			0.031		30.079

Solution.	 change_symbols	 uses	 a	 for	 loop	 to	 sort	 values	 into	 seven	 different
cases,	as	demonstrated	in	Figure	12.3.

To	vectorize	change_symbols,	create	a	logical	test	that	can	identify	each	case:

vec[vec	==	"DD"]

##	"DD"

vec[vec	==	"C"]

##	"C"

vec[vec	==	"7"]

##	"7"

vec[vec	==	"B"]

##	"B"

vec[vec	==	"BB"]

##	"BB"

vec[vec	==	"BBB"]

##	"BBB"

vec[vec	==	"0"]

##	"0"



Figure	12.3:	change_many	does	something	different	for	each	of	seven	cases.

Then	write	code	that	can	change	the	symbols	for	each	case:

vec[vec	==	"DD"]	<-	"joker"

vec[vec	==	"C"]	<-	"ace"

vec[vec	==	"7"]	<-	"king"

vec[vec	==	"B"]	<-	"queen"

vec[vec	==	"BB"]	<-	"jack"

vec[vec	==	"BBB"]	<-	"ten"

vec[vec	==	"0"]	<-	"nine"

When	 you	 combine	 this	 into	 a	 function,	 you	 have	 a	 vectorized	 version	 of
change_symbols	that	runs	about	14	times	faster:

change_vec	<-	function	(vec)	{

		vec[vec	==	"DD"]	<-	"joker"

		vec[vec	==	"C"]	<-	"ace"

		vec[vec	==	"7"]	<-	"king"

		vec[vec	==	"B"]	<-	"queen"

		vec[vec	==	"BB"]	<-	"jack"

		vec[vec	==	"BBB"]	<-	"ten"

		vec[vec	==	"0"]	<-	"nine"

		

		vec

}



system.time(change_vec(many))

##			user		system	elapsed	

##		1.994			0.059			2.051	

Or,	 even	 better,	 use	 a	 lookup	 table.	 Lookup	 tables	 are	 a	 vectorized	 method
because	they	rely	on	R's	vectorized	selection	operations:

change_vec2	<-	function(vec){

		tb	<-	c("DD"	=	"joker",	"C"	=	"ace",	"7"	=	"king",	"B"	=	"queen",	

				"BB"	=	"jack",	"BBB"	=	"ten",	"0"	=	"nine")

		unname(tb[vec])

}

system.time(change_vec(many))

##			user		system	elapsed	

##		0.687			0.059			0.746	

Here,	a	lookup	table	is	40	times	faster	than	the	original	function.

abs_loop	 and	 change_many	 illustrate	 a	 characteristic	 of	 vectorized	 code:
programmers	often	write	slower,	nonvectorized	code	by	relying	on	unnecessary
for	 loops,	 like	 the	 one	 in	 change_many.	 I	 think	 this	 is	 the	 result	 of	 a	 general
misunderstanding	about	R.	for	 loops	do	not	behave	the	same	way	in	R	as	they
do	in	other	languages,	which	means	you	should	write	code	differently	in	R	than
you	would	in	other	languages.

When	you	write	 in	 languages	 like	C	and	Fortran,	you	must	compile	your	code
before	your	computer	can	 run	 it.	This	compilation	 step	optimizes	how	 the	for
loops	in	the	code	use	your	computer's	memory,	which	makes	the	for	loops	very
fast.	As	a	result,	many	programmers	use	for	loops	frequently	when	they	write	in
C	and	Fortran.

When	 you	write	 in	R,	 however,	 you	 do	 not	 compile	 your	 code.	You	 skip	 this
step,	 which	 makes	 programming	 in	 R	 a	 more	 user-friendly	 experience.
Unfortunately,	this	also	means	you	do	not	give	your	loops	the	speed	boost	they
would	receive	in	C	or	Fortran.	As	a	result,	your	loops	will	run	slower	than	the
other	 operations	 we	 have	 studied:	 logical	 tests,	 subsetting,	 and	 element-wise
execution.	If	you	can	write	your	code	with	the	faster	operations	instead	of	a	for



loop,	you	should	do	so.	No	matter	which	language	you	write	in,	you	should	try
to	use	the	features	of	the	language	that	run	the	fastest.

if	and	for

A	 good	 way	 to	 spot	 for	 loops	 that	 could	 be	 vectorized	 is	 to	 look	 for
combinations	of	if	and	for.	if	can	only	be	applied	to	one	value	at	a	time,	which
means	it	is	often	used	in	conjunction	with	a	for	loop.	The	for	loop	helps	apply
if	to	an	entire	vector	of	values.	This	combination	can	usually	be	replaced	with
logical	subsetting,	which	will	do	the	same	thing	but	run	much	faster.

This	doesn't	mean	that	you	should	never	use	for	loops	in	R.	There	are	still	many
places	in	R	where	for	loops	make	sense.	for	loops	perform	a	basic	task	that	you
cannot	 always	 recreate	 with	 vectorized	 code.	 for	 loops	 are	 also	 easy	 to
understand	and	run	reasonably	fast	in	R,	so	long	as	you	take	a	few	precautions.

12.3	How	to	Write	Fast	for	Loops	in	R

You	can	dramatically	increase	the	speed	of	your	for	loops	by	doing	two	things
to	 optimize	 each	 loop.	 First,	 do	 as	much	 as	 you	 can	 outside	 of	 the	 for	 loop.
Every	line	of	code	that	you	place	inside	of	the	for	loop	will	be	run	many,	many
times.	If	a	line	of	code	only	needs	to	be	run	once,	place	it	outside	of	the	loop	to
avoid	repetition.

Second,	make	sure	that	any	storage	objects	that	you	use	with	the	loop	are	large
enough	to	contain	all	of	the	results	of	the	loop.	For	example,	both	loops	below
will	need	to	store	one	million	values.	The	first	loop	stores	its	values	in	an	object
named	output	that	begins	with	a	length	of	one	million:

system.time({

		output	<-	rep(NA,	1000000)	

		for	(i	in	1:1000000)	{

				output[i]	<-	i	+	1

		}

})

##			user		system	elapsed	

##		1.709			0.015			1.724	

The	second	loop	stores	its	values	in	an	object	named	output	that	begins	with	a



length	of	one.	R	will	expand	the	object	to	a	length	of	one	million	as	it	runs	the
loop.	The	code	in	this	 loop	is	very	similar	 to	the	code	in	the	first	 loop,	but	 the
loop	takes	37	minutes	longer	to	run	than	the	first	loop:

system.time({

		output	<-	NA	

		for	(i	in	1:1000000)	{

				output[i]	<-	i	+	1

		}

})

##					user			system		elapsed	

##	1689.537		560.951	2249.927

The	 two	 loops	 do	 the	 same	 thing,	 so	what	 accounts	 for	 the	 difference?	 In	 the
second	loop,	R	has	to	increase	the	length	of	output	by	one	for	each	run	of	the
loop.	To	do	this,	R	needs	to	find	a	new	place	in	your	computer's	memory	that	can
contain	the	larger	object.	R	must	then	copy	the	output	vector	over	and	erase	the
old	version	of	output	before	moving	on	to	the	next	run	of	the	loop.	By	the	end
of	 the	 loop,	 R	 has	 rewritten	 output	 in	 your	 computer's	 memory	 one	 million
times.

In	 the	 first	 case,	 the	 size	 of	 output	 never	 changes;	 R	 can	 define	 one	 output
object	in	memory	and	use	it	for	each	run	of	the	for	loop.

The	 authors	 of	R	use	 low-level	 languages	 like	C	 and	Fortran	 to	write	 basic	R
functions,	 many	 of	 which	 use	 for	 loops.	 These	 functions	 are	 compiled	 and
optimized	before	they	become	a	part	of	R,	which	makes	them	quite	fast.

Whenever	 you	 see	 .Primitive,	 .Internal,	 or	 .Call	 written	 in	 a	 function's
definition,	 you	 can	 be	 confident	 the	 function	 is	 calling	 code	 from	 another
language.	You'll	 get	 all	 of	 the	 speed	 advantages	 of	 that	 language	 by	 using	 the
function.

12.4	Vectorized	Code	in	Practice

To	see	how	vectorized	code	can	help	you	as	 a	data	 scientist,	 consider	our	 slot
machine	 project.	 In	 Loops,	 you	 calculated	 the	 exact	 payout	 rate	 for	 your	 slot
machine,	but	you	could	have	estimated	this	payout	rate	with	a	simulation.	If	you
played	 the	 slot	 machine	 many,	 many	 times,	 the	 average	 prize	 over	 all	 of	 the



plays	would	be	a	good	estimate	of	the	true	payout	rate.

This	method	of	estimation	is	based	on	the	law	of	large	numbers	and	is	similar	to
many	statistical	simulations.	To	run	this	simulation,	you	could	use	a	for	loop:

winnings	<-	vector(length	=	1000000)

for	(i	in	1:1000000)	{

		winnings[i]	<-	play()

}

mean(winnings)

##	0.9366984

The	estimated	payout	rate	after	10	million	runs	is	0.937,	which	is	very	close	to
the	 true	payout	 rate	of	0.934.	Note	 that	 I'm	using	 the	modified	score	 function
that	treats	diamonds	as	wilds.

If	you	run	this	simulation,	you	will	notice	that	it	takes	a	while	to	run.	In	fact,	the
simulation	takes	342,308	seconds	to	run,	which	is	about	5.7	minutes.	This	is	not
particularly	impressive,	and	you	can	do	better	by	using	vectorized	code:

system.time(for	(i	in	1:1000000)	{

		winnings[i]	<-	play()

})

##				user		system	elapsed	

##	342.041			0.355	342.308	

The	current	score	 function	is	not	vectorized.	It	 takes	a	single	slot	combination
and	uses	an	if	tree	to	assign	a	prize	to	it.	This	combination	of	an	if	tree	with	a
for	 loop	 suggests	 that	 you	 could	 write	 a	 piece	 of	 vectorized	 code	 that	 takes
many	slot	combinations	and	then	uses	logical	subsetting	to	operate	on	them	all	at
once.

For	 example,	 you	 could	 rewrite	 get_symbols	 to	 generate	 n	 slot	 combinations
and	return	 them	as	an	n	x	3	matrix,	 like	 the	one	 that	 follows.	Each	row	of	 the
matrix	will	contain	one	slot	combination	to	be	scored:

get_many_symbols	<-	function(n)	{

		wheel	<-	c("DD",	"7",	"BBB",	"BB",	"B",	"C",	"0")



		vec	<-	sample(wheel,	size	=	3	*	n,	replace	=	TRUE,

				prob	=	c(0.03,	0.03,	0.06,	0.1,	0.25,	0.01,	0.52))

		matrix(vec,	ncol	=	3)

}

get_many_symbols(5)

##						[,1]		[,2]	[,3]	

##	[1,]	"B"			"0"		"B"		

##	[2,]	"0"			"BB"	"7"		

##	[3,]	"0"			"0"		"BBB"

##	[4,]	"0"			"0"		"B"		

##	[5,]	"BBB"	"0"		"0"	

You	could	also	rewrite	play	to	take	a	parameter,	n,	and	return	n	prizes,	in	a	data
frame:

play_many	<-	function(n)	{

		symb_mat	<-	get_many_symbols(n	=	n)

		data.frame(w1	=	symb_mat[,1],	w2	=	symb_mat[,2],

													w3	=	symb_mat[,3],	prize	=	score_many(symb_mat))

}

This	new	function	would	make	it	easy	to	simulate	a	million,	or	even	10	million
plays	of	the	slot	machine,	which	will	be	our	goal.	When	we're	finished,	you	will
be	able	to	estimate	the	payout	rate	with:

#	plays	<-	play_many(10000000))

#	mean(plays$prize)

Now	you	 just	need	 to	write	score_many,	 a	 vectorized	 (matix-ized?)	version	of
score	that	takes	an	n	x	3	matrix	and	returns	n	prizes.	It	will	be	difficult	to	write
this	function	because	score	is	already	quite	complicated.	I	would	not	expect	you
to	 feel	 confident	 doing	 this	 on	 your	 own	 until	 you	 have	 more	 practice	 and
experience	than	we've	been	able	to	develop	here.

Should	 you	 like	 to	 test	 your	 skills	 and	 write	 a	 version	 of	 score_many,	 I
recommend	that	you	use	the	function	rowSums	within	your	code.	It	calculates	the
sum	of	each	row	of	numbers	(or	logicals)	in	a	matrix.



If	you	would	like	to	test	yourself	in	a	more	modest	way,	I	recommend	that	you
study	the	following	model	score_many	function	until	you	understand	how	each
part	works	and	how	the	parts	work	together	 to	create	a	vectorized	function.	To
do	this,	it	will	be	helpful	to	create	a	concrete	example,	like	this:

symbols	<-	matrix(

		c("DD",	"DD",	"DD",	

				"C",	"DD",	"0",	

				"B",	"B",	"B",	

				"B",	"BB",	"BBB",	

				"C",	"C",	"0",	

				"7",	"DD",	"DD"),	nrow	=	6,	byrow	=	TRUE)

symbols

##						[,1]	[,2]	[,3]	

##	[1,]	"DD"	"DD"	"DD"	

##	[2,]	"C"		"DD"	"0"		

##	[3,]	"B"		"B"		"B"		

##	[4,]	"B"		"BB"	"BBB"

##	[5,]	"C"		"C"		"0"		

##	[6,]	"7"		"DD"	"DD"	

Then	you	can	run	each	line	of	score_many	against	the	example	and	examine	the
results	as	you	go.

Exercise	 12.3:	 (Test	 Your	 Understanding)	 Study	 the	 model	 score_many
function	until	you	are	satisfied	that	you	understand	how	it	works	and	could	write
a	similar	function	yourself.
Exercise	12.4:	(Advanced	Challenge)	Instead	of	examining	the	model	answer,
write	your	own	vectorized	version	of	score.	Assume	that	the	data	is	stored	in	an
n	×	3	matrix	where	each	row	of	the	matrix	contains	one	combination	of	slots	to
be	scored.

You	can	use	the	version	of	score	that	treats	diamonds	as	wild	or	the	version	of
score	 that	 doesn't.	 However,	 the	 model	 answer	 will	 use	 the	 version	 treating
diamonds	as	wild.

Solution.	score_many	is	a	vectorized	version	of	score.	You	can	use	it	to	run	the
simulation	at	the	start	of	this	section	in	a	little	over	20	seconds.	This	is	17	times
faster	than	using	a	for	loop:



#	symbols	should	be	a	matrix	with	a	column	for	each	slot	machine	window

score_many	<-	function(symbols)	{

		#	Step	1:	Assign	base	prize	based	on	cherries	and	diamonds	---------

		##	Count	the	number	of	cherries	and	diamonds	in	each	combination

		cherries	<-	rowSums(symbols	==	"C")

		diamonds	<-	rowSums(symbols	==	"DD")	

		

		##	Wild	diamonds	count	as	cherries

		prize	<-	c(0,	2,	5)[cherries	+	diamonds	+	1]

		

		##	...but	not	if	there	are	zero	real	cherries	

		###	(cherries	is	coerced	to	FALSE	where	cherries	==	0)

		prize[!cherries]	<-	0

		

		#	Step	2:	Change	prize	for	combinations	that	contain	three	of	a	kind	

		same	<-	symbols[,	1]	==	symbols[,	2]	&	

				symbols[,	2]	==	symbols[,	3]

		payoffs	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	

				"BB"	=	25,	"B"	=	10,	"C"	=	10,	"0"	=	0)

		prize[same]	<-	payoffs[symbols[same,	1]]

		

		#	Step	3:	Change	prize	for	combinations	that	contain	all	bars	------

		bars	<-	symbols	==	"B"	|	symbols	==		"BB"	|	symbols	==	"BBB"

		all_bars	<-	bars[,	1]	&	bars[,	2]	&	bars[,	3]	&	!same

		prize[all_bars]	<-	5

		

		#	Step	4:	Handle	wilds	---------------------------------------------

		

		##	combos	with	two	diamonds

		two_wilds	<-	diamonds	==	2

		###	Identify	the	nonwild	symbol

		one	<-	two_wilds	&	symbols[,	1]	!=	symbols[,	2]	&	

				symbols[,	2]	==	symbols[,	3]

		two	<-	two_wilds	&	symbols[,	1]	!=	symbols[,	2]	&	

				symbols[,	1]	==	symbols[,	3]

		three	<-	two_wilds	&	symbols[,	1]	==	symbols[,	2]	&	

				symbols[,	2]	!=	symbols[,	3]

		

		###	Treat	as	three	of	a	kind

		prize[one]	<-	payoffs[symbols[one,	1]]

		prize[two]	<-	payoffs[symbols[two,	2]]

		prize[three]	<-	payoffs[symbols[three,	3]]

		

		##	combos	with	one	wild



		one_wild	<-	diamonds	==	1

		

		###	Treat	as	all	bars	(if	appropriate)

		wild_bars	<-	one_wild	&	(rowSums(bars)	==	2)

		prize[wild_bars]	<-	5

		

		###	Treat	as	three	of	a	kind	(if	appropriate)

		one	<-	one_wild	&	symbols[,	1]	==	symbols[,	2]

		two	<-	one_wild	&	symbols[,	2]	==	symbols[,	3]

		three	<-	one_wild	&	symbols[,	3]	==	symbols[,	1]

		prize[one]	<-	payoffs[symbols[one,	1]]

		prize[two]	<-	payoffs[symbols[two,	2]]

		prize[three]	<-	payoffs[symbols[three,	3]]

	

		#	Step	5:	Double	prize	for	every	diamond	in	combo	------------------

		unname(prize	*	2^diamonds)

		

}

system.time(play_many(10000000))

##			user		system	elapsed	

##	20.942			1.433		22.367

12.4.1	Loops	Versus	Vectorized	Code

In	many	 languages,	for	 loops	 run	very	 fast.	As	a	 result,	programmers	 learn	 to
use	 for	 loops	 whenever	 possible	 when	 they	 code.	 Often	 these	 programmers
continue	to	rely	on	for	loops	when	they	begin	to	program	in	R,	usually	without
taking	 the	 simple	 steps	 needed	 to	 optimize	R's	for	 loops.	These	 programmers
may	become	disillusioned	with	R	when	their	code	does	not	work	as	fast	as	they
would	like.	If	you	think	that	this	may	be	happening	to	you,	examine	how	often
you	are	using	for	loops	and	what	you	are	using	them	to	do.	If	you	find	yourself
using	for	loops	for	every	task,	there	is	a	good	chance	that	you	are	"speaking	R
with	a	C	accent."	The	cure	is	to	learn	to	write	and	use	vectorized	code.

This	doesn't	mean	that	for	loops	have	no	place	in	R.	for	loops	are	a	very	useful
feature;	they	can	do	many	things	that	vectorized	code	cannot	do.	You	also	should
not	become	a	 slave	 to	vectorized	code.	Sometimes	 it	would	 take	more	 time	 to
rewrite	code	in	vectorized	format	than	to	let	a	for	loop	run.	For	example,	would
it	be	faster	to	let	the	slot	simulation	run	for	5.7	minutes	or	to	rewrite	score?



12.5	Summary

Fast	code	is	an	important	component	of	data	science	because	you	can	do	more
with	fast	code	than	you	can	do	with	slow	code.	You	can	work	with	 larger	data
sets	 before	 computational	 constraints	 intervene,	 and	 you	 can	 do	 more
computation	before	time	constraints	intervene.	The	fastest	code	in	R	will	rely	on
the	things	that	R	does	best:	logical	tests,	subsetting,	and	element-wise	execution.
I've	 called	 this	 type	 of	 code	 vectorized	 code	 because	 code	 written	 with	 these
operations	will	take	a	vector	of	values	as	input	and	operate	on	each	element	of
the	 vector	 at	 the	 same	 time.	 The	majority	 of	 the	 code	written	 in	R	 is	 already
vectorized.

If	you	use	 these	operations,	but	your	code	does	not	appear	vectorized,	analyze
the	sequential	steps	and	parallel	cases	in	your	program.	Ensure	that	you've	used
vectorized	 functions	 to	 handle	 the	 steps	 and	 logical	 subsetting	 to	 handle	 the
cases.	Be	aware,	however,	that	some	tasks	cannot	be	vectorized.

12.6	Project	3	Wrap-up

You	 have	 now	 written	 your	 first	 program	 in	 R,	 and	 it	 is	 a	 program	 that	 you
should	 be	 proud	 of.	 play	 is	 not	 a	 simple	 hello	 world	 exercise,	 but	 a	 real
program	that	does	a	real	task	in	a	complicated	way.

Writing	 new	 programs	 in	 R	will	 always	 be	 challenging	 because	 programming
depends	 so	 much	 on	 your	 own	 creativity,	 problem-solving	 ability,	 and
experience	 writing	 similar	 types	 of	 programs.	 However,	 you	 can	 use	 the
suggestions	 in	 this	 chapter	 to	 make	 even	 the	 most	 complicated	 program
manageable:	 divide	 tasks	 into	 simple	 steps	 and	 cases,	 work	 with	 concrete
examples,	and	describe	possible	solutions	in	English.

This	 project	 completes	 the	 education	 you	 began	 in	 The	Very	Basics.	You	 can
now	use	R	to	handle	data,	which	has	augmented	your	ability	to	analyze	data.	You
can:

Load	and	store	data	in	your	computer—not	on	paper	or	in	your	mind
Accurately	 recall	 and	 change	 individual	 values	 without	 relying	 on	 your
memory
Instruct	your	computer	to	do	tedious,	or	complex,	tasks	on	your	behalf



These	skills	solve	an	important	logistical	problem	faced	by	every	data	scientist:
how	can	you	store	and	manipulate	data	without	making	errors?	However,	this	is
not	the	only	problem	that	you	will	face	as	a	data	scientist.	The	next	problem	will
appear	when	you	try	to	understand	the	information	contained	in	your	data.	It	is
nearly	 impossible	 to	 spot	 insights	 or	 to	 discover	 patterns	 in	 raw	 data.	A	 third
problem	will	 appear	when	you	 try	 to	use	your	data	 set	 to	 reason	about	 reality,
which	 includes	 things	 not	 contained	 in	 your	 data	 set.	What	 exactly	 does	 your
data	imply	about	things	outside	of	the	data	set?	How	certain	can	you	be?

I	refer	to	these	problems	as	the	logistical,	tactical,	and	strategic	problems	of	data
science,	 as	 shown	 in	 Figure	 12.4.	You'll	 face	 them	whenever	 you	 try	 to	 learn
from	data:

A	 logistical	 problem:	 -	 How	 can	 you	 store	 and	manipulate	 data	without
making	errors?
A	tactical	problem	 -	How	can	you	discover	 the	 information	contained	 in
your	data?
A	strategic	problem	-	How	can	you	use	the	data	to	draw	conclusions	about
the	world	at	large?



Figure	 12.4:	The	 three	 core	 skill	 sets	 of	 data	 science:	 computer	 programming,
data	comprehension,	and	scientific	reasoning.

A	 well-rounded	 data	 scientist	 will	 need	 to	 be	 able	 to	 solve	 each	 of	 these
problems	 in	many	different	 situations.	By	 learning	 to	 program	 in	R,	 you	have
mastered	 the	 logistical	problem,	which	 is	a	prerequisite	 for	solving	 the	 tactical
and	strategic	problems.

If	 you	 would	 like	 to	 learn	 how	 to	 reason	 with	 data,	 or	 how	 to	 transform,
visualize,	and	explore	your	data	sets	with	R	tools,	I	recommend	the	book	R	for
Data	Science,	the	companion	volume	to	this	book.	R	for	Data	Science	teaches	a
simple	workflow	for	transforming,	visualizing,	and	modeling	data	in	R,	as	well
as	how	to	report	results	with	the	R	Markdown	package.

http://r4ds.had.co.nz/
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13	Installing	R	and	RStudio
To	get	 started	with	R,	you	need	 to	acquire	your	own	copy.	This	appendix	will
show	you	 how	 to	 download	R	 as	well	 as	RStudio,	 a	 software	 application	 that
makes	R	 easier	 to	 use.	You'll	 go	 from	downloading	R	 to	 opening	your	 first	R
session.

Both	R	and	RStudio	are	free	and	easy	to	download.

13.1	How	to	Download	and	Install	R

R	is	maintained	by	an	international	team	of	developers	who	make	the	language
available	through	the	web	page	of	The	Comprehensive	R	Archive	Network.	The
top	of	the	web	page	provides	three	links	for	downloading	R.	Follow	the	link	that
describes	your	operating	system:	Windows,	Mac,	or	Linux.

13.1.1	Windows

To	install	R	on	Windows,	click	the	"Download	R	for	Windows"	link.	Then	click
the	 "base"	 link.	Next,	 click	 the	 first	 link	 at	 the	 top	of	 the	new	page.	This	 link
should	 say	 something	 like	 "Download	R	3.0.3	 for	Windows,"	 except	 the	 3.0.3
will	 be	 replaced	 by	 the	 most	 current	 version	 of	 R.	 The	 link	 downloads	 an
installer	program,	which	installs	the	most	up-to-date	version	of	R	for	Windows.
Run	 this	 program	 and	 step	 through	 the	 installation	 wizard	 that	 appears.	 The
wizard	will	install	R	into	your	program	files	folders	and	place	a	shortcut	in	your
Start	menu.	Note	 that	 you'll	 need	 to	 have	 all	 of	 the	 appropriate	 administration
privileges	to	install	new	software	on	your	machine.

13.1.2	Mac

To	install	R	on	a	Mac,	click	the	"Download	R	for	Mac"	link.	Next,	click	on	the
R-3.0.3	package	link	(or	the	package	link	for	the	most	current	release	of	R).	An
installer	will	 download	 to	 guide	 you	 through	 the	 installation	process,	which	 is
very	easy.	The	installer	lets	you	customize	your	installation,	but	the	defaults	will
be	 suitable	 for	most	 users.	 I've	 never	 found	 a	 reason	 to	 change	 them.	 If	 your
computer	requires	a	password	before	installing	new	progams,	you'll	need	it	here.

http://cran.r-project.org


Binaries	Versus	Source

R	 can	 be	 installed	 from	 precompiled	 binaries	 or	 built	 from	 source	 on	 any
operating	system.	For	Windows	and	Mac	machines,	installing	R	from	binaries	is
extremely	easy.	The	binary	comes	preloaded	in	 its	own	installer.	Although	you
can	 build	 R	 from	 source	 on	 these	 platforms,	 the	 process	 is	 much	 more
complicated	and	won't	provide	much	benefit	for	most	users.	For	Linux	systems,
the	opposite	is	true.	Precompiled	binaries	can	be	found	for	some	systems,	but	it
is	much	more	common	 to	build	R	 from	source	 files	when	 installing	on	Linux.
The	download	pages	on	CRAN's	website	provide	information	about	building	R
from	source	for	the	Windows,	Mac,	and	Linux	platforms.

13.1.3	Linux

R	comes	preinstalled	on	many	Linux	systems,	but	you'll	want	the	newest	version
of	R	if	yours	is	out	of	date.	The	CRAN	website	provides	 files	 to	build	R	from
source	 on	 Debian,	 Redhat,	 SUSE,	 and	 Ubuntu	 systems	 under	 the	 link
"Download	R	for	Linux."	Click	the	link	and	then	follow	the	directory	trail	to	the
version	 of	 Linux	 you	wish	 to	 install	 on.	 The	 exact	 installation	 procedure	will
vary	 depending	 on	 the	 Linux	 system	 you	 use.	 CRAN	 guides	 the	 process	 by
grouping	 each	 set	 of	 source	 files	 with	 documentation	 or	 README	 files	 that
explain	how	to	install	on	your	system.

32-bit	Versus	64-bit

R	 comes	 in	 both	 32-bit	 and	 64-bit	 versions.	Which	 should	 you	 use?	 In	 most
cases,	 it	 won't	 matter.	 Both	 versions	 use	 32-bit	 integers,	 which	 means	 they
compute	numbers	to	the	same	numerical	precision.	The	difference	occurs	in	the
way	each	version	manages	memory.	64-bit	R	uses	64-bit	memory	pointers,	and
32-bit	R	uses	32-bit	memory	pointers.	This	means	64-bit	R	has	a	larger	memory
space	to	use	(and	search	through).

As	a	rule	of	 thumb,	32-bit	builds	of	R	are	faster	 than	64-bit	builds,	 though	not
always.	 On	 the	 other	 hand,	 64-bit	 builds	 can	 handle	 larger	 files	 and	 data	 sets
with	 fewer	 memory	 management	 problems.	 In	 either	 version,	 the	 maximum
allowable	 vector	 size	 tops	 out	 at	 around	 2	 billion	 elements.	 If	 your	 operating
system	doesn't	support	64-bit	programs,	or	your	RAM	is	less	than	4	GB,	32-bit
R	 is	 for	 you.	 The	Windows	 and	Mac	 installers	will	 automatically	 install	 both
versions	if	your	system	supports	64-bit	R.

http://cran.r-project.org
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13.2	Using	R

R	 isn't	 a	 program	 that	 you	 can	 open	 and	 start	 using,	 like	Microsoft	Word	 or
Internet	Explorer.	Instead,	R	is	a	computer	language,	like	C,	C++,	or	UNIX.	You
use	 R	 by	 writing	 commands	 in	 the	 R	 language	 and	 asking	 your	 computer	 to
interpret	them.	In	the	old	days,	people	ran	R	code	in	a	UNIX	terminal	window—
as	if	they	were	hackers	in	a	movie	from	the	1980s.	Now	almost	everyone	uses	R
with	an	application	called	RStudio,	and	I	recommend	that	you	do,	too.

R	and	UNIX

You	can	still	run	R	in	a	UNIX	or	BASH	window	by	typing	the	command:

R

which	 opens	 an	 R	 interpreter.	 You	 can	 then	 do	 your	 work	 and	 close	 the
interpreter	by	running	q()	when	you	are	finished.

13.3	RStudio

RStudio	 is	 an	 application	 like	Microsoft	Word—except	 that	 instead	of	 helping
you	write	in	English,	RStudio	helps	you	write	in	R.	I	use	RStudio	throughout	the
book	because	 it	makes	using	R	much	easier.	Also,	 the	RStudio	 interface	 looks
the	same	for	Windows,	Mac	OS,	and	Linux.	That	will	help	me	match	the	book	to
your	personal	experience.

You	can	download	RStudio	for	 free.	Just	click	 the	"Download	RStudio"	button
and	 follow	 the	 simple	 instructions	 that	 follow.	Once	 you've	 installed	RStudio,
you	can	open	it	like	any	other	program	on	your	computer—usually	by	clicking
an	icon	on	your	desktop.

The	R	GUIs

Windows	and	Mac	users	usually	do	not	program	from	a	terminal	window,	so	the
Windows	and	Mac	downloads	 for	R	come	with	a	simple	program	that	opens	a
terminal-like	window	 for	 you	 to	 run	R	 code	 in.	This	 is	what	 opens	when	 you
click	the	R	icon	on	your	Windows	or	Mac	computer.	These	programs	do	a	little
more	than	the	basic	terminal	window,	but	not	much.	You	may	hear	people	refer
to	them	as	the	Windows	or	Mac	R	GUIs.

http://www.rstudio.com/ide


When	you	open	RStudio,	a	window	appears	with	three	panes	in	it,	as	in	Figure
13.1.	The	largest	pane	is	a	console	window.	This	is	where	you'll	run	your	R	code
and	see	results.	The	console	window	is	exactly	what	you'd	see	if	you	ran	R	from
a	 UNIX	 console	 or	 the	 Windows	 or	 Mac	 GUIs.	 Everything	 else	 you	 see	 is
unique	 to	 RStudio.	 Hidden	 in	 the	 other	 panes	 are	 a	 text	 editor,	 a	 graphics
window,	 a	 debugger,	 a	 file	manager,	 and	much	more.	You'll	 learn	 about	 these
panes	as	they	become	useful	throughout	the	course	of	this	book.



Figure	13.1:	The	RStudio	IDE	for	R.

Do	I	still	need	to	download	R?

Even	 if	 you	 use	 RStudio,	 you'll	 still	 need	 to	 download	 R	 to	 your	 computer.
RStudio	helps	you	use	the	version	of	R	that	lives	on	your	computer,	but	it	doesn't
come	with	a	version	of	R	on	its	own.

13.4	Opening	R

Now	that	you	have	both	R	and	RStudio	on	your	computer,	you	can	begin	using
R	 by	 opening	 the	 RStudio	 program.	 Open	 RStudio	 just	 as	 you	 would	 any
program,	 by	 clicking	 on	 its	 icon	 or	 by	 typing	 "RStudio"	 at	 the	Windows	Run
prompt.



14	R	Packages
Many	of	R's	most	useful	functions	do	not	come	preloaded	when	you	start	R,	but
reside	 in	packages	 that	can	be	 installed	on	 top	of	R.	R	packages	are	similar	 to
libraries	in	C,	C++,	and	Javascript,	packages	in	Python,	and	gems	in	Ruby.	An	R
package	bundles	together	useful	functions,	help	files,	and	data	sets.	You	can	use
these	functions	within	your	own	R	code	once	you	load	the	package	they	live	in.
Usually	 the	 contents	 of	 an	 R	 package	 are	 all	 related	 to	 a	 single	 type	 of	 task,
which	 the	 package	helps	 solve.	R	packages	will	 let	 you	 take	 advantage	of	R's
most	useful	features:	its	large	community	of	package	writers	(many	of	whom	are
active	 data	 scientists)	 and	 its	 prewritten	 routines	 for	 handling	 many	 common
(and	exotic)	data-science	tasks.

Base	R

You	may	hear	R	users	(or	me)	refer	 to	"base	R."	What	 is	base	R?	It	 is	 just	 the
collection	of	R	functions	that	gets	loaded	every	time	you	start	R.	These	functions
provide	the	basics	of	the	language,	and	you	don't	have	to	load	a	package	before
you	can	use	them.

14.1	Installing	Packages

To	use	an	R	package,	you	must	first	install	it	on	your	computer	and	then	load	it
in	your	 current	R	 session.	The	 easiest	way	 to	 install	 an	R	package	 is	with	 the
install.packages	R	function.	Open	R	and	type	the	following	into	the	command
line:

install.packages("<package	name>")

This	will	search	for	the	specified	package	in	the	collection	of	packages	hosted	on
the	CRAN	site.	When	R	 finds	 the	package,	 it	will	 download	 it	 into	 a	 libraries
folder	 on	 your	 computer.	 R	 can	 access	 the	 package	 here	 in	 future	 R	 sessions
without	reinstalling	it.	Anyone	can	write	an	R	package	and	disseminate	it	as	they
like;	however,	almost	all	R	packages	are	published	through	the	CRAN	website.
CRAN	 tests	 each	R	package	before	publishing	 it.	This	doesn't	 eliminate	 every



bug	inside	a	package,	but	it	does	mean	that	you	can	trust	a	package	on	CRAN	to
run	in	the	current	version	of	R	on	your	OS.

You	 can	 install	 multiple	 packages	 at	 once	 by	 linking	 their	 names	 with	 R's
concatenate	function,	c.	For	example,	to	install	the	ggplot2,	reshape2,	and	dplyr
packages,	run:

install.packages(c("ggplot2",	"reshape2",	"dplyr"))

If	 this	 is	 your	 first	 time	 installing	 a	 package,	R	will	 prompt	 you	 to	 choose	 an
online	mirror	of	to	install	from.	Mirrors	are	listed	by	location.	Your	downloads
should	 be	 quickest	 if	 you	 select	 a	mirror	 that	 is	 close	 to	 you.	 If	 you	want	 to
download	a	new	package,	 try	 the	Austria	mirror	 first.	This	 is	 the	main	CRAN
repository,	 and	new	packages	 can	 sometimes	 take	 a	 couple	of	 days	 to	make	 it
around	to	all	of	the	other	mirrors.

14.2	Loading	Packages

Installing	a	package	doesn't	immediately	place	its	functions	at	your	fingertips.	It
just	places	them	on	your	computer.	To	use	an	R	package,	you	next	have	to	load	it
in	your	R	session	with	the	command:

library(<package	name>)

Notice	that	the	quotation	marks	have	disappeared.	You	can	use	them	if	you	like,
but	quotation	marks	are	optional	for	the	library	command.	(This	is	not	true	for
the	install.packages	command).

library	 will	 make	 all	 of	 the	 package's	 functions,	 data	 sets,	 and	 help	 files
available	to	you	until	you	close	your	current	R	session.	The	next	time	you	begin
an	R	session,	you'll	have	to	reload	the	package	with	library	if	you	want	to	use
it,	but	you	won't	have	to	reinstall	it.	You	only	have	to	install	each	package	once.
After	 that,	 a	 copy	 of	 the	 package	 will	 live	 in	 your	 R	 library.	 To	 see	 which
packages	you	currently	have	in	your	R	library,	run:

library()



library()	also	shows	the	path	to	your	actual	R	library,	which	is	the	folder	that
contains	 your	 R	 packages.	 You	 may	 notice	 many	 packages	 that	 you	 don't
remember	installing.	This	is	because	R	automatically	downloads	a	set	of	useful
packages	when	you	first	install	R.

Install	packages	from	(almost)	anywhere

The	devtools	R	package	makes	it	easy	to	install	packages	from	locations	other
than	 the	 CRAN	 website.	 devtools	 provides	 functions	 like	 install_github,
install_gitorious,	install_bitbucket,	and	install_url.	These	work	similar
to	 install.packages,	 but	 they	 search	 new	 locations	 for	 R	 packages.
install_github	 is	 especially	 useful	 because	 many	 R	 developers	 provide
development	versions	of	their	packages	on	GitHub.	The	development	version	of
a	package	will	contain	a	sneak	peek	of	new	functions	and	patches	but	may	not	be
as	stable	or	as	bug	free	as	the	CRAN	version.

Why	 does	R	make	 you	 bother	with	 installing	 and	 loading	 packages?	You	 can
imagine	 an	R	where	 every	 package	 came	 preloaded,	 but	 this	would	 be	 a	 very
large	 and	 slow	 program.	 As	 of	May	 6,	 2014,	 the	 CRAN	website	 hosts	 5,511
packages.	It	is	simpler	to	only	install	and	load	the	packages	that	you	want	to	use
when	you	want	to	use	them.	This	keeps	your	copy	of	R	fast	because	it	has	fewer
functions	and	help	pages	to	search	through	at	any	one	time.	The	arrangement	has
other	benefits	as	well.	For	example,	 it	 is	possible	 to	update	your	copy	of	an	R
package	without	updating	your	entire	copy	of	R.

What's	the	best	way	to	learn	about	R	packages?

It	is	difficult	to	use	an	R	package	if	you	don't	know	that	it	exists.	You	could	go	to
the	 CRAN	 website	 and	 click	 the	 Packages	 link	 to	 see	 a	 list	 of	 available
packages,	but	you'll	have	to	wade	through	thousands	of	them.	Moreover,	many	R
packages	do	the	same	things.

How	do	you	know	which	package	does	them	best?	The	R-packages	mailing	list
is	a	place	to	start.	It	sends	out	announcements	of	new	packages	and	maintains	an
archive	 of	 old	 announcements.	 Blogs	 that	 aggregate	 posts	 about	 R	 can	 also
provide	 valuable	 leads.	 I	 recommend	 R-bloggers.	 RStudio	 maintains	 a	 list	 of
some	 of	 the	 most	 useful	 R	 packages	 in	 the	 Getting	 Started	 section	 of
http://support.rstudio.com.	 Finally,	 CRAN	 groups	 together	 some	 of	 the	 most

http://stat.ethz.ch/mailman/listinfo/r-packages
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useful—and	 most	 respected—packages	 by	 subject	 area.	 This	 is	 an	 excellent
place	to	learn	about	the	packages	designed	for	your	area	of	work.

http://cran.r-project.org/web/views


15	Updating	R	and	Its	Packages
The	R	Core	Development	Team	continuously	hones	the	R	language	by	catching
bugs,	 improving	performance,	 and	updating	R	 to	work	with	new	 technologies.
As	a	result,	new	versions	of	R	are	released	several	times	a	year.	The	easiest	way
to	stay	current	with	R	is	to	periodically	check	the	CRAN	website.	The	website	is
updated	 for	 each	 new	 release	 and	 makes	 the	 release	 available	 for	 download.
You'll	have	to	install	the	new	release.	The	process	is	the	same	as	when	you	first
installed	R.

Don't	worry	if	you're	not	interested	in	staying	up-to-date	on	R	Core's	doings.	R
changes	 only	 slightly	 between	 releases,	 and	 you're	 not	 likely	 to	 notice	 the
differences.	However,	 updating	 to	 the	 current	 version	 of	R	 is	 a	 good	 place	 to
start	if	you	ever	encounter	a	bug	that	you	can't	explain.

RStudio	 also	 constantly	 improves	 its	 product.	 You	 can	 acquire	 the	 newest
updates	just	by	downloading	them	from	RStudio.

15.1	R	Packages

Package	 authors	 occasionally	 release	 new	 versions	 of	 their	 packages	 to	 add
functions,	 fix	 bugs,	 or	 improve	 performance.	The	update.packages	 command
checks	whether	you	have	the	most	current	version	of	a	package	and	installs	the
most	current	version	if	you	do	not.	The	syntax	for	update.packages	follows	that
of	install.packages.	If	you	already	have	ggplot2,	reshape2,	and	dplyr	on	your
computer,	it'd	be	a	good	idea	to	check	for	updates	before	you	use	them:

update.packages(c("ggplot2",	"reshape2",	"dplyr"))

You	should	start	a	new	R	session	after	updating	packages.	If	you	have	a	package
loaded	when	you	update	it,	you'll	have	to	close	your	R	session	and	open	a	new
one	to	begin	using	the	updated	version	of	the	package.

http://cran.r-project.org
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16	Loading	and	Saving	Data	in	R
This	appendix	will	show	you	how	to	load	and	save	data	into	R	from	plain-text
files,	R	files,	and	Excel	spreadsheets.	It	will	also	show	you	the	R	packages	that
you	can	use	to	load	data	from	databases	and	other	common	programs,	like	SAS
and	MATLAB.

16.1	Data	Sets	in	Base	R

R	comes	with	many	data	sets	preloaded	in	the	datasets	package,	which	comes
with	base	R.	These	data	sets	are	not	very	interesting,	but	they	give	you	a	chance
to	 test	code	or	make	a	point	without	having	 to	 load	a	data	set	 from	outside	R.
You	 can	 see	 a	 list	 of	 R's	 data	 sets	 as	 well	 as	 a	 short	 description	 of	 each	 by
running:

help(package	=	"datasets")

To	use	a	data	set,	 just	 type	its	name.	Each	data	set	 is	already	presaved	as	an	R
object.	For	example:

iris

##			Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species

##	1										5.1									3.5										1.4									0.2		setosa

##	2										4.9									3.0										1.4									0.2		setosa

##	3										4.7									3.2										1.3									0.2		setosa

##	4										4.6									3.1										1.5									0.2		setosa

##	5										5.0									3.6										1.4									0.2		setosa

##	6										5.4									3.9										1.7									0.4		setosa

However,	R's	data	sets	are	no	substitute	for	your	own	data,	which	you	can	load
into	R	from	a	wide	variety	of	file	formats.	But	before	you	load	any	data	files	into
R,	you'll	need	to	determine	where	your	working	directory	is.

16.2	Working	Directory



Each	time	you	open	R,	 it	 links	itself	 to	a	directory	on	your	computer,	which	R
calls	the	working	directory.	This	is	where	R	will	look	for	files	when	you	attempt
to	load	them,	and	it	is	where	R	will	save	files	when	you	save	them.	The	location
of	your	working	directory	will	vary	on	different	computers.	To	determine	which
directory	R	is	using	as	your	working	directory,	run:

getwd()

##	"/Users/garrettgrolemund"

You	can	place	data	files	straight	into	the	folder	that	is	your	working	directory,	or
you	 can	 move	 your	 working	 directory	 to	 where	 your	 data	 files	 are.	 You	 can
move	your	working	directory	to	any	folder	on	your	computer	with	the	function
setwd.	Just	give	setwd	the	file	path	to	your	new	working	directory.	I	prefer	to	set
my	working	directory	to	a	folder	dedicated	to	whichever	project	I	am	currently
working	on.	That	way	I	can	keep	all	of	my	data,	scripts,	graphs,	and	reports	in
the	same	place.	For	example:

setwd("~/Users/garrettgrolemund/Documents/Book_Project")

If	 the	 file	 path	 does	 not	 begin	with	 your	 root	 directory,	 R	will	 assume	 that	 it
begins	at	your	current	working	directory.

You	 can	 also	 change	 your	 working	 directory	 by	 clicking	 on	 Session	 >	 Set
Working	Directory	>	Choose	Directory	in	the	RStudio	menu	bar.	The	Windows
and	Mac	GUIs	have	similar	options.	If	you	start	R	from	a	UNIX	command	line
(as	on	Linux	machines),	the	working	directory	will	be	whichever	directory	you
were	in	when	you	called	R.

You	can	see	what	files	are	in	your	working	directory	with	list.files().	If	you
see	the	file	that	you	would	like	to	open	in	your	working	directory,	then	you	are
ready	to	proceed.	How	you	open	files	in	your	working	directory	will	depend	on
which	type	of	file	you	would	like	to	open.

16.3	Plain-text	Files

Plain-text	 files	 are	one	of	 the	most	 common	ways	 to	 save	data.	They	are	very
simple	 and	can	be	 read	by	many	different	 computer	programs—even	 the	most



basic	text	editors.	For	this	reason,	public	data	often	comes	as	plain-text	files.	For
example,	the	Census	Bureau,	the	Social	Security	Administration,	and	the	Bureau
of	Labor	Statistics	all	make	their	data	available	as	plain-text	files.

Here's	how	the	royal	flush	data	set	from	R	Objects	would	appear	as	a	plain-text
file	(I've	added	a	value	column):

"card",	"suit",	"value"

"ace",	"spades",	14

"king",	"spades",	13

"queen",	"spades",	12

"jack",	"spades",	11

"ten",	"spades",	10

A	plain-text	file	stores	a	table	of	data	in	a	text	document.	Each	row	of	the	table	is
saved	 on	 its	 own	 line,	 and	 a	 simple	 convention	 is	 used	 to	 separate	 the	 cells
within	 a	 row.	 Often	 cells	 are	 separated	 by	 a	 comma,	 but	 they	 can	 also	 be
separated	by	 a	 tab,	 a	 pipe	delimiter	 (i.e.,	|	 ),	 or	 any	 other	 character.	Each	 file
only	 uses	 one	method	 of	 separating	 cells,	 which	minimizes	 confusion.	Within
each	cell,	data	appears	as	you'd	expect	to	see	it,	as	words	and	numbers.

All	plain-text	files	can	be	saved	with	the	extension	.txt	(for	text),	but	sometimes
a	 file	will	 receive	a	 special	 extension	 that	 advertises	how	 it	 separates	data-cell
entries.	 Since	 entries	 in	 the	 data	 set	 mentioned	 earlier	 are	 separated	 with	 a
comma,	this	file	would	be	a	comma-separated-values	file	and	would	usually	be
saved	with	the	extension	.csv.

16.3.1	read.table

To	 load	 a	 plain-text	 file,	 use	 read.table.	 The	 first	 argument	 of	 read.table
should	be	 the	name	of	your	 file	 (if	 it	 is	 in	your	working	directory),	or	 the	 file
path	to	your	file	(if	it	is	not	in	your	working	directory).	If	the	file	path	does	not
begin	with	your	root	directory,	R	will	append	it	 to	 the	end	of	 the	file	path	 that
leads	 to	 your	 working	 directory.You	 can	 give	 read.table	 other	 arguments	 as
well.	The	two	most	important	are	sep	and	header.

If	the	royal	flush	data	set	was	saved	as	a	file	named	poker.csv	 in	your	working
directory,	you	could	load	it	with:

poker	<-	read.table("poker.csv",	sep	=	",",	header	=	TRUE)



16.3.1.1	sep

Use	sep	to	tell	read.table	what	character	your	file	uses	to	separate	data	entries.
To	find	this	out,	you	might	have	to	open	your	file	in	a	text	editor	and	look	at	it.	If
you	don't	specify	a	sep	argument,	read.table	will	try	to	separate	cells	whenever
it	 comes	 to	white	 space,	 such	as	 a	 tab	or	 space.	R	won't	 be	 able	 to	 tell	 you	 if
read.table	does	this	correctly	or	not,	so	rely	on	it	at	your	own	risk.

16.3.1.2	header

Use	header	to	tell	read.table	whether	the	first	line	of	the	file	contains	variable
names	instead	of	values.	If	the	first	line	of	the	file	is	a	set	of	variable	names,	you
should	set	header	=	TRUE.

16.3.1.3	na.strings

Oftentimes	data	sets	will	use	special	symbols	to	represent	missing	information.
If	you	know	 that	your	data	uses	 a	 certain	 symbol	 to	 represent	missing	entries,
you	can	tell	read.table	(and	the	preceding	functions)	what	the	symbol	is	with
the	na.strings	argument.	read.table	will	convert	all	 instances	of	the	missing
information	symbol	to	NA,	which	is	R's	missing	information	symbol	(see	Missing
Information).

For	 example,	 your	 poker	 data	 set	 contained	missing	 values	 stored	 as	 a	.,	 like
this:

##	"card","suit","value"

##	"ace","	spades","	14"

##	"king","	spades","	13"

##	"queen",".","."

##	"jack",".","."

##	"ten",".","."

You	could	read	the	data	set	 into	R	and	convert	 the	missing	values	 into	NAs	as
you	go	with	the	command:



poker	<-	read.table("poker.csv",	sep	=	",",	header	=	TRUE,	na.string	=

R	would	save	a	version	of	poker	that	looks	like	this:

##		card				suit	value

##			ace		spades				14

##		king		spades				13

##	queen				<NA>				NA

##		jack				<NA>				NA

##			ten				<NA>				NA

16.3.1.4	skip	and	nrow

Sometimes	a	plain-text	 file	will	come	with	 introductory	 text	 that	 is	not	part	of
the	data	set.	Or,	you	may	decide	that	you	only	wish	to	read	in	part	of	a	data	set.
You	can	do	these	things	with	the	skip	and	nrow	arguments.	Use	skip	to	tell	R	to
skip	 a	 specific	number	of	 lines	before	 it	 starts	 reading	 in	values	 from	 the	 file.
Use	nrow	to	tell	R	to	stop	reading	in	values	after	it	has	read	in	a	certain	number
of	lines.

For	example,	imagine	that	the	complete	royal	flush	file	looks	like	this:

This	data	was	collected	by	the	National	Poker	Institute.	

We	accidentally	repeated	the	last	row	of	data.

"card",	"suit",	"value"

"ace",	"spades",	14

"king",	"spades",	13

"queen",	"spades",	12

"jack",	"spades",	11

"ten",	"spades",	10

"ten",	"spades",	10

You	can	read	just	the	six	lines	that	you	want	(five	rows	plus	a	header)	with:

read.table("poker.csv",	sep	=	",",	header	=	TRUE,	skip	=	3,	nrow	=	5

##				card				suit	value



##	1			ace		spades				14

##	2		king		spades				13

##	3	queen		spades				12

##	4		jack		spades				11

##	5			ten		spades				10

Notice	that	the	header	row	doesn't	count	towards	the	total	rows	allowed	by	nrow.

16.3.1.5	stringsAsFactors

R	 reads	 in	 numbers	 just	 as	 you'd	 expect,	 but	 when	 R	 comes	 across	 character
strings	 (e.g.,	 letters	 and	 words)	 it	 begins	 to	 act	 strangely.	 R	 wants	 to	 convert
every	character	string	into	a	factor.	This	is	R's	default	behavior,	but	I	think	it	is	a
mistake.	Sometimes	factors	are	useful.	At	other	times,	they're	clearly	the	wrong
data	 type	 for	 the	 job.	Also	 factors	 cause	weird	 behavior,	 especially	when	 you
want	to	display	data.	This	behavior	can	be	surprising	if	you	didn't	realize	that	R
converted	your	data	to	factors.	In	general,	you'll	have	a	smoother	R	experience	if
you	don't	let	R	make	factors	until	you	ask	for	them.	Thankfully,	it	is	easy	to	do
this.

Setting	 the	argument	stringsAsFactors	 to	FALSE	will	 ensure	 that	R	saves	any
character	 strings	 in	 your	 data	 set	 as	 character	 strings,	 not	 factors.	 To	 use
stringsAsFactors,	you'd	write:

read.table("poker.csv",	sep	=	",",	header	=	TRUE,	stringsAsFactors	=

If	 you	 will	 be	 loading	 more	 than	 one	 data	 file,	 you	 can	 change	 the	 default
factoring	behavior	at	the	global	level	with:

options(stringsAsFactors	=	FALSE)

This	will	ensure	that	all	strings	will	be	read	as	strings,	not	as	factors,	until	you
end	your	R	session,	or	rechange	the	global	default	by	running:

options(stringsAsFactors	=	TRUE)



16.3.2	The	read	Family

R	also	comes	with	some	prepackaged	short	cuts	for	read.table,	shown	in	Table
16.1.

Table	16.1:	R's	read	functions.
You	can	overwrite	any	of	the
default	arguments	as	necessary.
Function Defaults Use

read.table

sep	=	"
",	header
=
FALSE

General-
purpose
read
function

read.csv

sep	=
",",
header	=
TRUE

Comma-
separated-
variable
(CSV)
files

read.delim

sep	=	"",
header	=
TRUE

Tab-
delimited
files

read.csv2

sep	=
";",
header	=
TRUE,
dec	=	","

CSV	files
with
European
decimal
format

read.delim2

sep	=	"",
header	=
TRUE,
dec	=	","

Tab-
delimited
files	with
European
decimal
format

The	first	shortcut,	read.csv,	behaves	just	like	read.table	but	automatically	sets
sep	=	","	and	header	=	TRUE,	which	can	save	you	some	typing:



poker	<-	read.csv("poker.csv")

read.delim	automatically	sets	sep	to	the	tab	character,	which	is	very	handy	for
reading	tab	delimited	files.	These	are	files	where	each	cell	is	separated	by	a	tab.
read.delim	also	sets	header	=	TRUE	by	default.

read.delim2	and	read.csv2	exist	for	European	R	users.	These	functions	tell	R
that	 the	 data	 uses	 a	 comma	 instead	 of	 a	 period	 to	 denote	 decimal	 places.	 (If
you're	wondering	how	 this	works	with	CSV	 files,	CSV2	 files	 usually	 separate
cells	with	a	semicolon,	not	a	comma.)

Import	Dataset

You	 can	 also	 load	 plain	 text	 files	 with	 RStudio's	 Import	 Dataset	 button,	 as
described	 in	 Loading	 Data.	 Import	 Dataset	 provides	 a	 GUI	 version	 of
read.table.

16.3.3	read.fwf

One	type	of	plain-text	file	defies	the	pattern	by	using	its	layout	to	separate	data
cells.	Each	row	is	placed	in	its	own	line	(as	with	other	plain-text	files),	and	then
each	column	begins	at	a	specific	number	of	characters	from	the	lefthand	side	of
the	document.	To	achieve	this,	an	arbitrary	number	of	character	spaces	is	added
to	the	end	of	each	entry	to	correctly	position	the	next	entry.	These	documents	are
known	as	fixed-width	files	and	usually	end	with	the	extension	.fwf.

Here's	one	way	the	royal	flush	data	set	could	look	as	a	fixed-width	file.	In	each
row,	 the	 suit	 entry	 begins	 exactly	 10	 characters	 from	 the	 start	 of	 the	 line.	 It
doesn't	matter	how	many	characters	appeared	in	the	first	cell	of	each	row:

card						suit							value

ace							spades					14

king						spades					13		

queen					spades					12		

jack						spades					11		

10								spades					10

Fixed-width	 files	 look	 nice	 to	 human	 eyes	 (but	 no	 better	 than	 a	 tab-delimited



file);	 however,	 they	 can	 be	 difficult	 to	work	with.	 Perhaps	 because	 of	 this,	 R
comes	with	a	 function	for	 reading	fixed-width	files,	but	no	function	for	saving
them.	Unfortunately,	US	government	agencies	seem	to	like	fixed-width	files,	and
you'll	likely	encounter	one	or	more	during	your	career.

You	can	read	fixed-width	files	into	R	with	the	function	read.fwf.	The	function
takes	 the	 same	 arguments	 as	read.table	 but	 requires	 an	 additional	 argument,
widths,	which	 should	be	 a	vector	of	numbers.	Each	_i_th	 entry	of	 the	widths
vector	should	state	the	width	(in	characters)	of	the	_i_th	column	of	the	data	set.

If	the	aforementioned	fixed-width	royal	flush	data	was	saved	as	poker.fwf	in	your
working	directory,	you	could	read	it	with:

poker	<-	read.fwf("poker.fwf",	widths	=	c(10,	7,	6),	header	=	TRUE)

16.3.4	HTML	Links

Many	data	files	are	made	available	on	the	Internet	at	their	own	web	address.	If
you	are	connected	to	the	Internet,	you	can	open	these	files	straight	 into	R	with
read.table,	 read.csv,	 etc.	 You	 can	 pass	 a	 web	 address	 into	 the	 file	 name
argument	for	any	of	R's	data-reading	functions.	As	a	result,	you	could	read	in	the
poker	data	set	from	a	web	address	like	http://.../poker.csv	with:

poker	<-	read.csv("http://.../poker.csv")

That's	 obviously	 not	 a	 real	 address,	 but	 here's	 something	 that	would	work---if
you	can	manage	to	type	it!

deck	<-	read.csv("https://gist.githubusercontent.com/garrettgman/9629323/raw/ee5dfc039fd581cb467cc69c226ea2524913c3d8/deck.csv"

Just	make	sure	 that	 the	web	address	 links	directly	 to	 the	 file	and	not	 to	a	web
page	that	links	to	the	file.	Usually,	when	you	visit	a	data	file's	web	address,	the
file	will	begin	to	download	or	the	raw	data	will	appear	in	your	browser	window.

Note	that	websites	that	begin	with	_https://_	are	secure	websites,	which	means	R

http://
https://_


may	not	be	able	to	access	the	data	provided	at	these	links.

16.3.5	Saving	Plain-Text	Files

Once	 your	 data	 is	 in	R,	 you	 can	 save	 it	 to	 any	 file	 format	 that	R	 supports.	 If
you'd	 like	 to	 save	 it	 as	 a	 plain-text	 file,	 you	 can	 use	 the	 +write+	 family	 of
functions.	The	three	basic	write	functions	appear	in	Table	16.2.	Use	write.csv
to	 save	 your	 data	 as	 a	 .csv	 file	 and	 write.table	 to	 save	 your	 data	 as	 a	 tab
delimited	document	or	a	document	with	more	exotic	separators.

Table	16.2:	R	saves	data	sets	to
plain-text	files	with	the	write	family

of	functions
File

format Function	and	syntax

.csv
write.csv(r_object,

file	=	filepath,

row.names	=	FALSE)

.csv	(with
European
decimal
notation)

write.csv2(r_object,

file	=	filepath,

row.names	=	FALSE)

tab
delimited

write.table(r_object,

file	=	filepath,	sep

=	"\t",

row.names=FALSE)

The	first	argument	of	each	function	 is	 the	R	object	 that	contains	your	data	set.
The	file	argument	is	the	file	name	(including	extension)	that	you	wish	to	give
the	saved	data.	By	default,	each	function	will	save	your	data	into	your	working
directory.	However,	you	can	supply	a	file	path	to	the	file	argument.	R	will	oblige
by	saving	the	file	at	the	end	of	the	file	path.	If	the	file	path	does	not	begin	with
your	root	directory,	R	will	append	it	to	the	end	of	the	file	path	that	leads	to	your
working	directory.

For	example,	you	can	save	the	(hypothetical)	poker	data	frame	to	a	subdirectory
named	data	within	your	working	directory	with	the	command:

write.csv(poker,	"data/poker.csv",	row.names	=	FALSE)



Keep	in	mind	that	write.csv	and	write.table	cannot	create	new	directories	on
your	computer.	Each	folder	 in	 the	file	path	must	exist	before	you	 try	 to	save	a
file	with	it.

The	row.names	argument	prevents	R	from	saving	the	data	frame's	row	names	as
a	 column	 in	 the	 plain-text	 file.	 You	 might	 have	 noticed	 that	 R	 automatically
names	each	 row	 in	a	data	 frame	with	a	number.	For	example,	each	 row	 in	our
poker	data	frame	appears	with	a	number	next	to	it:

poker

##				card			suit	value

##	1			ace	spades				14

##	2		king	spades				13

##	3	queen	spades				12

##	4		jack	spades				11

##	5				10	spades				10

These	row	numbers	are	helpful,	but	can	quickly	accumulate	 if	you	start	saving
them.	R	will	 add	a	new	set	of	numbers	by	default	 each	 time	you	 read	 the	 file
back	 in.	 Avoid	 this	 by	 always	 setting	 row.names	 =	 FALSE	 when	 you	 use	 a
function	in	the	write	family.

16.3.6	Compressing	Files

To	 compress	 a	 plain-text	 file,	 surround	 the	 file	 name	 or	 file	 path	 with	 the
function	bzfile,	gzfile,	or	xzfile.	For	example:

write.csv(poker,	file	=	bzfile("data/poker.csv.bz2"),	row.names	=	FALSE

Each	 of	 these	 functions	 will	 compress	 the	 output	 with	 a	 different	 type	 of
compression	format,	shown	in	Table	16.3.

Table	16.3:	R	comes	with
three	helper	functions	for

compressing	files
Function Compression	type



bzfile bzip2
gzfile gnu	zip	(gzip)
xzfile xz	compression

It	 is	 a	 good	 idea	 to	 adjust	 your	 file's	 extension	 to	 reflect	 the	 compression.	R's
read	functions	will	open	plain-text	files	compressed	in	any	of	these	formats.	For
example,	you	could	read	a	compressed	file	named	poker.csv.bz2	with:

read.csv("poker.csv.bz2")

or:

read.csv("data/poker.csv.bz2")

depending	on	where	the	file	is	saved.

16.4	R	Files

R	provides	two	file	formats	of	its	own	for	storing	data,	.RDS	and	 .RData.	RDS
files	can	store	a	single	R	object,	and	RData	files	can	store	multiple	R	objects.

You	can	open	a	RDS	file	with	readRDS.	For	example,	if	the	royal	flush	data	was
saved	as	poker.RDS,	you	could	open	it	with:

poker	<-	readRDS("poker.RDS")

Opening	RData	files	is	even	easier.	Simply	run	the	function	load	with	the	file:

load("file.RData")

There's	no	need	to	assign	the	output	to	an	object.	The	R	objects	in	your	RData
file	will	be	loaded	into	your	R	session	with	their	original	names.	RData	files	can
contain	multiple	R	objects,	 so	 loading	 one	may	 read	 in	multiple	 objects.	load
doesn't	tell	you	how	many	objects	it	is	reading	in,	nor	what	their	names	are,	so	it



pays	to	know	a	little	about	the	RData	file	before	you	load	it.

If	 worse	 comes	 to	 worst,	 you	 can	 keep	 an	 eye	 on	 the	 environment	 pane	 in
RStudio	as	you	 load	an	RData	 file.	 It	displays	all	of	 the	objects	 that	you	have
created	 or	 loaded	 during	 your	 R	 session.	 Another	 useful	 trick	 is	 to	 put
parentheses	around	your	 load	command	 like	so,	(load("poker.RData")).	This
will	cause	R	to	print	out	the	names	of	each	object	it	loads	from	the	file.

Both	readRDS	and	load	take	a	file	path	as	their	first	argument,	just	like	R's	other
read	and	write	functions.	If	your	file	 is	 in	your	working	directory,	 the	file	path
will	be	the	file	name.

16.4.1	Saving	R	Files

You	can	save	an	R	object	 like	a	data	 frame	as	either	an	RData	 file	or	an	RDS
file.	RData	files	can	store	multiple	R	objects	at	once,	but	RDS	files	are	the	better
choice	because	they	foster	reproducible	code.

To	save	data	as	an	RData	object,	use	the	save	function.	To	save	data	as	a	RDS
object,	use	the	saveRDS	function.	In	each	case,	the	first	argument	should	be	the
name	of	the	R	object	you	wish	to	save.	You	should	then	include	a	file	argument
that	has	the	file	name	or	file	path	you	want	to	save	the	data	set	to.

For	example,	if	you	have	three	R	objects,	a,	b,	and	c,	you	could	save	them	all	in
the	same	RData	file	and	then	reload	them	in	another	R	session:

a	<-	1

b	<-	2

c	<-	3

save(a,	b,	c,	file	=	"stuff.RData")

load("stuff.RData")

However,	 if	you	forget	 the	names	of	your	objects	or	give	your	file	 to	someone
else	to	use,	it	will	be	difficult	to	determine	what	was	in	the	file—even	after	you
(or	they)	load	it.	The	user	 interface	for	RDS	files	 is	much	more	clear.	You	can
save	only	one	object	per	file,	and	whoever	loads	it	can	decide	what	they	want	to
call	their	new	data.	As	a	bonus,	you	don't	have	to	worry	about	load	overwriting
any	 R	 objects	 that	 happened	 to	 have	 the	 same	 name	 as	 the	 objects	 you	 are
loading:



saveRDS(a,	file	=	"stuff.RDS")	

a	<-	readRDS("stuff.RDS")

Saving	your	data	as	an	R	file	offers	some	advantages	over	saving	your	data	as	a
plain-text	 file.	 R	 automatically	 compresses	 the	 file	 and	 will	 also	 save	 any	 R-
related	 metadata	 associated	 with	 your	 object.	 This	 can	 be	 handy	 if	 your	 data
contains	factors,	dates	and	times,	or	class	attributes.	You	won't	have	 to	reparse
this	information	into	R	the	way	you	would	if	you	converted	everything	to	a	text
file.

On	the	other	hand,	R	files	cannot	be	read	by	many	other	programs,	which	makes
them	 inefficient	 for	 sharing.	 They	 may	 also	 create	 a	 problem	 for	 long-term
storage	if	you	don't	think	you'll	have	a	copy	of	R	when	you	reopen	the	files.

16.5	Excel	Spreadsheets

Microsoft	 Excel	 is	 a	 popular	 spreadsheet	 program	 that	 has	 become	 almost
industry	 standard	 in	 the	 business	world.	 There	 is	 a	 good	 chance	 that	 you	will
need	 to	work	with	an	Excel	 spreadsheet	 in	R	at	 least	once	 in	your	career.	You
can	read	spreadsheets	into	R	and	also	save	R	data	as	a	spreadsheet	in	a	variety	of
ways.

16.5.1	Export	from	Excel

The	best	method	for	moving	data	 from	Excel	 to	R	 is	 to	export	 the	spreadsheet
from	Excel	as	a	.csv	or	.txt	file.	Not	only	will	R	be	able	to	read	the	text	file,	so
will	 any	 other	 data	 analysis	 software.	 Text	 files	 are	 the	 lingua	 franca	 of	 data
storage.

Exporting	 the	 data	 solves	 another	 difficulty	 as	 well.	 Excel	 uses	 proprietary
formats	and	metadata	that	will	not	easily	transfer	into	R.	For	example,	a	single
Excel	 file	can	 include	multiple	spreadsheets,	each	with	 their	own	columns	and
macros.	When	Excel	exports	the	file	as	a	.csv	or	.txt,	it	makes	sure	this	format	is
transferred	into	a	plain-text	file	in	the	most	appropriate	way.	R	may	not	be	able
to	manage	the	conversion	as	efficiently.

To	export	data	from	Excel,	open	the	Excel	spreadsheet	and	then	go	to	Save	As	in



the	Microsoft	Office	Button	menu.	Then	 choose	CSV	 in	 the	Save	 as	 type	box
that	 appears	 and	 save	 the	 files.	 You	 can	 then	 read	 the	 file	 into	 R	 with	 the
read.csv	function.

16.5.2	Copy	and	Paste

You	can	also	copy	portions	of	an	Excel	spreadsheet	and	paste	them	into	R.	To	do
this,	 open	 the	 spreadsheet	 and	 select	 the	 cells	 you	wish	 to	 read	 into	 R.	 Then
select	Edit	>	Copy	 in	 the	menu	bar—or	use	 a	keyboard	 shortcut—to	copy	 the
cells	to	your	clipboard.

On	most	operating	systems,	you	can	read	the	data	stored	in	your	clipboard	into	R
with:

read.table("clipboard")

On	Macs	you	will	need	to	use:

read.table(pipe("pbpaste"))

If	the	cells	contain	values	with	spaces	in	them,	this	will	disrupt	read.table.	You
can	 try	 another	 read	 function	 (or	 just	 formally	 export	 the	 data	 from	 Excel)
before	reading	it	into	R.

16.5.3	XLConnect

Many	packages	have	been	written	 to	help	you	 read	Excel	 files	directly	 into	R.
Unfortunately,	many	 of	 these	 packages	 do	 not	work	 on	 all	 operating	 systems.
Others	 have	 been	made	 out	 of	 date	 by	 the	 .xlsx	 file	 format.	One	 package	 that
does	 work	 on	 all	 file	 systems	 (and	 gets	 good	 reviews)	 is	 the	 XLConnect
package.	To	use	it,	you'll	need	to	install	and	load	the	package:

install.packages("XLConnect")

library(XLConnect)

XLConnect	 relies	on	Java	 to	be	platform	 independent.	So	when	you	 first	open



XLConnect,	RStudio	may	ask	to	download	a	Java	Runtime	Environment	if	you
do	not	already	have	one.

16.5.4	Reading	Spreadsheets

You	can	use	XLConnect	to	read	in	an	Excel	spreadsheet	with	either	a	one-	or	a
two-step	 process.	 I'll	 start	 with	 the	 two-step	 process.	 First,	 load	 an	 Excel
workbook	with	loadWorkbook.	loadWorkbook	can	load	both	.xls	and	.xlsx	files.	It
takes	one	argument:	the	file	path	to	your	Excel	workbook	(this	will	be	the	name
of	the	workbook	if	it	is	saved	in	your	working	directory):

wb	<-	loadWorkbook("file.xlsx")

Next,	 read	a	spreadsheet	 from	the	workbook	with	readWorksheet,	which	 takes
several	arguments.	The	first	argument	should	be	a	workbook	object	created	with
loadWorkbook.	The	next	argument,	sheet,	should	be	the	name	of	the	spreadsheet
in	the	workbook	that	you	would	like	to	read	into	R.	This	will	be	the	name	that
appears	on	the	bottom	tab	of	the	spreadsheet.	You	can	also	give	sheet	a	number,
which	specifies	the	sheet	that	you	want	to	read	in	(one	for	the	first	sheet,	two	for
the	second,	and	so	on).

readWorksheet	then	takes	four	arguments	that	specify	a	bounding	box	of	cells	to
read	in:	startRow,	startCol,	endRow,	and	endCol.	Use	startRow	and	startCol
to	describe	 the	cell	 in	 the	 top-left	corner	of	 the	bounding	box	of	cells	 that	you
wish	 to	 read	 in.	Use	endRow	and	endCol	 to	 specify	 the	cell	 in	 the	bottom-right
corner	of	the	bounding	box.	Each	of	these	arguments	takes	a	number.	If	you	do
not	 supply	 bounding	 arguments,	 readWorksheet	 will	 read	 in	 the	 rectangular
region	of	 cells	 in	 the	 spreadsheet	 that	 appears	 to	 contain	 data.	readWorksheet
will	assume	that	this	region	contains	a	header	row,	but	you	can	tell	it	otherwise
with	header	=	FALSE.

So	to	read	in	the	first	worksheet	from	wb,	you	could	use:

sheet1	<-	readWorksheet(wb,	sheet	=	1,	startRow	=	0,	startCol	=	0,	

		endRow	=	100,	endCol	=	3)

R	will	 save	 the	output	 as	 a	data	 frame.	All	of	 the	 arguments	 in	readWorkbook



except	the	first	are	vectorized,	so	you	can	use	it	to	read	in	multiple	sheets	from
the	same	workbook	at	once	(or	multiple	cell	regions	from	a	single	worksheet).	In
this	case,	readWorksheet	will	return	a	list	of	data	frames.

You	can	combine	these	two	steps	with	readWorksheetFromFile.	It	takes	the	file
argument	 from	 loadWorkbook	 and	 combines	 it	 with	 the	 arguments	 from
readWorksheet.	You	can	use	it	to	read	one	or	more	sheets	straight	from	an	Excel
file:

sheet1	<-	readWorksheetFromFile("file.xlsx",	sheet	=	1,	startRow	=	0

		startCol	=	0,	endRow	=	100,	endCol	=	3)

16.5.5	Writing	Spreadsheets

Writing	to	an	Excel	spreadsheet	is	a	four-step	process.	First,	you	need	to	set	up	a
workbook	object	with	loadWorkbook.	 This	works	 just	 as	 before,	 except	 if	 you
are	 not	 using	 an	 existing	 Excel	 file,	 you	 should	 add	 the	 argument	 create	 =
TRUE.	XLConnect	will	create	a	blank	workbook.	When	you	save	it,	XLConnect
will	write	it	to	the	file	location	that	you	specified	here	with	loadWorkbook:

wb	<-	loadWorkbook("file.xlsx",	create	=	TRUE)

Next,	 you	 need	 to	 create	 a	 worksheet	 inside	 your	 workbook	 object	 with
createSheet.	Tell	createSheet	which	workbook	to	place	the	sheet	in	and	which
to	use	for	the	sheet.

createSheet(wb,	"Sheet	1")

Then	you	can	save	your	data	frame	or	matrix	to	the	sheet	with	writeWorksheet.
The	 first	 argument	 of	 writeWorksheet,	 object,	 is	 the	 workbook	 to	 write	 the
data	 to.	 The	 second	 argument,	 data,	 is	 the	 data	 to	write.	 The	 third	 argument,
sheet,	is	the	name	of	the	sheet	to	write	it	to.	The	next	two	arguments,	startRow
and	startCol,	tell	R	where	in	the	spreadsheet	to	place	the	upper-left	cell	of	the
new	data.	These	arguments	each	default	to	1.	Finally,	you	can	use	header	to	tell
R	whether	your	column	names	should	be	written	with	the	data:



writeWorksheet(wb,	data	=	poker,	sheet	=	"Sheet	1")

Once	you	have	finished	adding	sheets	and	data	to	your	workbook,	you	can	save
it	by	running	saveWorkbook	on	the	workbook	object.	R	will	save	the	workbook
to	 the	 file	 name	 or	 path	 you	 provided	 in	 loadWorkbook.	 If	 this	 leads	 to	 an
existing	Excel	file,	R	will	overwrite	it.	If	it	leads	to	a	new	file,	R	will	create	it.

You	can	also	collapse	these	steps	into	a	single	call	with	writeWorksheetToFile,
like	this:

writeWorksheetToFile("file.xlsx",	data	=	poker,	sheet	=	"Sheet	1",	

		startRow	=	1,	startCol	=	1)

The	 XLConnect	 package	 also	 lets	 you	 do	 more	 advanced	 things	 with	 Excel
spreadsheets,	such	as	writing	to	a	named	region	in	a	spreadsheet,	working	with
formulas,	 and	 assigning	 styles	 to	 cells.	 You	 can	 read	 about	 these	 features	 in
XLConnect's	 vignette,	 which	 is	 accessible	 by	 loading	 XLConnect	 and	 then
running:

vignette("XLConnect")

16.6	Loading	Files	from	Other	Programs

You	should	follow	the	same	advice	I	gave	you	for	Excel	files	whenever	you	wish
to	work	with	file	formats	native	to	other	programs:	open	the	file	in	the	original
program	and	export	the	data	as	a	plain-text	file,	usually	a	CSV.	This	will	ensure
the	most	faithful	transcription	of	the	data	in	the	file,	and	it	will	usually	give	you
the	most	options	for	customizing	how	the	data	is	transcribed.

Sometimes,	however,	you	may	acquire	a	file	but	not	the	program	it	came	from.
As	a	result,	you	won't	be	able	to	open	the	file	in	its	native	program	and	export	it
as	a	text	file.	In	this	case,	you	can	use	one	of	the	functions	in	Table	16.4	to	open
the	file.	These	functions	mostly	come	in	R's	foreign	package.	Each	attempts	to
read	in	a	different	file	format	with	as	few	hiccups	as	possible.

Table	16.4:	A	number	of	functions	will	attempt	to
read	the	file	types	of	other	data-analysis	programs



read	the	file	types	of	other	data-analysis	programs
File	format Function Library

ERSI	ArcGIS read.shapefile shapefiles
Matlab readMat R.matlab
minitab read.mtp foreign
SAS	(permanent	data	set) read.ssd foreign
SAS	(XPORT	format) read.xport foreign
SPSS read.spss foreign
Stata read.dta foreign
Systat read.systat foreign

16.6.1	Connecting	to	Databases

You	can	also	use	R	to	connect	to	a	database	and	read	in	data.

Use	the	RODBC	package	to	connect	to	databases	through	an	ODBC	connection.

Use	 the	DBI	 package	 to	 connect	 to	 databases	 through	 individual	 drivers.	 The
DBI	package	provides	 a	 common	 syntax	 for	working	with	different	databases.
You	will	 have	 to	 download	 a	 database-specific	 package	 to	 use	 in	 conjunction
with	 DBI.	 These	 packages	 provide	 the	 API	 for	 the	 native	 drivers	 of	 different
database	 programs.	 For	 MySQL	 use	 RMySQL,	 for	 SQLite	 use	 RSQLite,	 for
Oracle	 use	ROracle,	 for	PostgreSQL	use	RPostgreSQL,	 and	 for	 databases	 that
use	drivers	based	on	 the	Java	Database	Connectivity	 (JDBC)	API	use	RJDBC.
Once	 you	 have	 loaded	 the	 appropriate	 driver	 package,	 you	 can	 use	 the
commands	provided	by	DBI	to	access	your	database.



17	Debugging	R	Code
This	 appendix	 refers	 to	 environments,	 the	 topic	 of	 Environments,	 and	 uses
examples	from	Programs	and	S3.	You	should	read	through	these	chapters	first	to
get	the	most	out	of	this	appendix.

R	comes	with	a	simple	set	of	debugging	 tools	 that	RStudio	amplifies.	You	can
use	 these	 tools	 to	 better	 understand	 code	 that	 produces	 an	 error	 or	 returns	 an
unexpected	result.	Usually	this	will	be	your	own	code,	but	you	can	also	examine
the	functions	in	R	or	one	of	its	packages.

Debugging	code	can	take	as	much	creativity	and	insight	as	writing	code.	There	is
no	guarantee	that	you	will	find	a	bug	or	be	able	to	fix	it	when	you	do.	However,
you	 can	 help	 yourself	 by	 using	 R's	 debugging	 tools.	 These	 include	 the
traceback,	browser,	debug,	debugonce,	trace,	and	recover	functions.

Using	these	tools	is	usually	a	two-step	process.	First,	you	locate	where	an	error
occurred.	Then	you	 try	 to	determine	why	 it	occurred.	You	can	do	 the	 first	 step
with	R's	traceback	function.

17.1	traceback

The	 traceback	 tool	 pinpoints	 the	 location	 of	 an	 error.	Many	R	 functions	 call
other	R	functions,	which	call	other	functions,	and	so	on.	When	an	error	occurs,	it
may	 not	 be	 clear	 which	 of	 these	 functions	 went	 wrong.	 Let's	 consider	 an
example.	The	following	functions	call	one	another,	and	the	last	function	creates
an	error	(you'll	see	why	in	a	second):

first	<-	function()	second()

second	<-	function()	third()

third	<-	function()	fourth()

fourth	<-	function()	fifth()

fifth	<-	function()	bug()

When	you	run	first,	it	will	call	second,	which	will	call	third,	which	will	call
fourth,	which	will	call	fifth,	which	will	call	bug,	a	function	that	does	not	exist.



Here's	what	that	will	look	like	at	the	command	line:

first()

##		Error	in	fifth()	:	could	not	find	function	"bug"	

The	error	report	tells	us	that	the	error	occurred	when	R	tried	to	run	fifth.	It	also
tells	 us	 the	 nature	 of	 the	 error	 (there	 is	 no	 function	 called	 bug).	 Here,	 it	 is
obvious	why	R	calls	fifth,	but	it	might	not	be	so	obvious	why	R	calls	a	function
when	an	error	occurs	in	the	wild.

You	can	see	 the	path	of	functions	 that	R	called	before	 it	hit	an	error	by	 typing
traceback()	at	 the	command	 line.	traceback	will	 return	a	call	 stack,	a	 list	of
the	functions	that	R	called	in	the	order	that	it	called	them.	The	bottom	function
will	 be	 the	 command	 that	 you	 entered	 in	 the	 command	 line.	The	 top	 function
will	be	the	function	that	caused	the	error:

traceback()

##	5:	fifth()	at	#1

##	4:	fourth()	at	#1

##	3:	third()	at	#1

##	2:	second()	at	#1

##	1:	first()

traceback	will	always	refer	to	the	last	error	you	encountered.	If	you	would	like
to	 look	 at	 a	 less	 recent	 error,	 you	 will	 need	 to	 recreate	 it	 before	 running
traceback.

How	can	this	help	you?	First,	traceback	returns	a	list	of	suspects.	One	of	these
functions	caused	 the	error,	 and	each	 function	 is	more	 suspicious	 than	 the	ones
below	 it.	 Chances	 are	 that	 our	 bug	 came	 from	 fifth	 (it	 did),	 but	 it	 is	 also
possible	 that	 an	 earlier	 function	 did	 something	 odd—like	 call	 fifth	 when	 it
shouldn't	have.

Second,	traceback	can	show	you	if	R	stepped	off	the	path	that	you	expected	it
to	take.	If	this	happened,	look	at	the	last	function	before	things	went	wrong.

Third,	traceback	 can	 reveal	 the	 frightening	 extent	 of	 infinite	 recursion	 errors.
For	example,	if	you	change	fifth	so	that	it	calls	second,	the	functions	will	make



a	 loop:	second	will	 call	third,	which	will	 call	fourth,	which	will	 call	fifth,
which	will	call	second	and	start	the	loop	over	again.	It	is	easier	to	do	this	sort	of
thing	in	practice	than	you	might	think:

fifth	<-	function()	second()

When	you	call	first(),	R	will	 start	 to	 run	 the	 functions.	After	 awhile,	 it	will
notice	that	it	is	repeating	itself	and	will	return	an	error.	traceback	will	show	just
what	R	was	doing:

first()

##	Error:	evaluation	nested	too	deeply:	infinite	recursion/options(expressions=)?

traceback()

##	5000:	fourth()	at	#1

##	4999:	third()	at	#1

##	4998:	second()	at	#1

##	4997:	fifth()	at	#1

##	4996:	fourth()	at	#1

##	4995:	third()	at	#1

##	4994:	second()	at	#1

##	4993:	fifth()	at	#1

##	...

Notice	 that	 there	 are	 5,000	 lines	 of	 output	 in	 this	traceback.	 If	 you	 are	 using
RStudio,	 you	will	 not	 get	 to	 see	 the	 traceback	of	 an	 infinite	 recursion	 error	 (I
used	the	Mac	GUI	to	get	this	output).	RStudio	represses	the	traceback	for	infinite
recursion	 errors	 to	 prevent	 the	 large	 call	 stacks	 from	 pushing	 your	 console
history	out	of	R's	memory	buffer.	With	RStudio,	you	will	have	to	recognize	the
infinite	 recursion	 error	 by	 its	 error	 message.	 However,	 you	 can	 still	 see	 the
imposing	traceback	by	running	things	in	a	UNIX	shell	or	the	Windows	or	Mac
GUIs.

RStudio	makes	it	very	easy	to	use	traceback.	You	do	not	even	need	to	type	in
the	function	name.	Whenever	an	error	occurs,	RStudio	will	display	it	 in	a	gray
box	with	two	options.	The	first	is	Show	Traceback,	shown	in	Figure	17.1.



Figure	17.1:	RStudio's	Show	Traceback	option.

If	you	click	Show	Traceback,	RStudio	will	expand	the	gray	box	and	display	the
traceback	call	stack,	as	in	Figure	17.2.	The	Show	Traceback	option	will	persist
beside	an	error	message	in	your	console,	even	as	you	write	new	commands.	This
means	that	you	can	go	back	and	look	at	the	call	stacks	for	all	errors—not	just	the
most	recent	error.

Imagine	that	you've	used	traceback	to	pinpoint	a	function	that	you	think	might
cause	 a	bug.	Now	what	 should	you	do?	You	 should	 try	 to	 figure	out	what	 the
function	did	to	cause	an	error	while	it	ran	(if	it	did	anything).	You	can	examine
how	the	function	runs	with	browser.

Figure	17.2:	RStudio's	Traceback	display.

17.2	browser

You	can	ask	R	to	pause	in	the	middle	of	running	a	function	and	give	control	back
to	 you	with	browser.	 This	will	 let	 you	 enter	 new	 commands	 at	 the	 command
line.	 The	 active	 environment	 for	 these	 commands	 will	 not	 be	 the	 global



environment	 (as	usual);	 it	will	be	 the	runtime	environment	of	 the	function	 that
you	 have	 paused.	As	 a	 result,	 you	 can	 look	 at	 the	 objects	 that	 the	 function	 is
using,	look	up	their	values	with	the	same	scoping	rules	that	the	function	would
use,	and	 run	code	under	 the	 same	conditions	 that	 the	 function	would	 run	 it	 in.
This	arrangement	provides	 the	best	chance	for	spotting	 the	source	of	bugs	 in	a
function.

To	use	browser,	add	the	call	browser()	to	the	body	of	a	function	and	then	resave
the	 function.	 For	 example,	 if	 I	 wanted	 to	 pause	 in	 the	 middle	 of	 the	 score
function	from	Programs,	I	could	add	browser()	 to	 the	body	of	score	and	 then
rerun	the	following	code,	which	defines	score:

score	<-	function	(symbols)	{

		#	identify	case

		same	<-	symbols[1]	==	symbols[2]	&&	symbols[2]	==	symbols[3]

		bars	<-	symbols	%in%	c("B",	"BB",	"BBB")

		

		#	get	prize

		if	(same)	{

				payouts	<-	c("DD"	=	100,	"7"	=	80,	"BBB"	=	40,	"BB"	=	25,	

						"B"	=	10,	"C"	=	10,	"0"	=	0)

				prize	<-	unname(payouts[symbols[1]])

		}	else	if	(all(bars))	{

				prize	<-	5

		}	else	{

				cherries	<-	sum(symbols	==	"C")

				prize	<-	c(0,	2,	5)[cherries	+	1]

		}

		

		browser()

		#	adjust	for	diamonds

		diamonds	<-	sum(symbols	==	"DD")

		prize	*	2	^	diamonds

}

Now	whenever	R	runs	score,	 it	will	 come	 to	 the	call	browser().	You	can	 see
this	with	 the	play	 function	 from	Programs.	 If	you	don't	have	play	 handy,	 you
can	access	it	by	running	this	code:

get_symbols	<-	function()	{



		wheel	<-	c("DD",	"7",	"BBB",	"BB",	"B",	"C",	"0")

		sample(wheel,	size	=	3,	replace	=	TRUE,	

				prob	=	c(0.03,	0.03,	0.06,	0.1,	0.25,	0.01,	0.52))

}

play	<-	function()	{

		symbols	<-	get_symbols()

		structure(score(symbols),	symbols	=	symbols,	class	=	"slots")

}

When	you	 run	play,	play	will	 call	get_symbols	 and	 then	score.	As	R	works
through	score,	it	will	come	across	the	call	to	browser	and	run	it.	When	R	runs
this	call,	several	things	will	happen,	as	in	Figure	17.3.	First,	R	will	stop	running
score.	 Second,	 the	 command	 prompt	will	 change	 to	 browser[1]>	 and	 R	 will
give	me	back	control;	 I	 can	now	 type	new	commands	 in	at	 the	new	command
prompt.	Third,	three	buttons	will	appear	above	the	console	pane:	Next,	Continue,
and	Stop.	Fourth,	RStudio	will	display	the	source	code	for	score	 in	 the	scripts
pane,	 and	 it	 will	 highlight	 the	 line	 that	 contains	 browser().	 Fifth,	 the
environments	tab	will	change.	Instead	of	revealing	the	objects	that	are	saved	in
the	global	 environment,	 it	will	 reveal	 the	objects	 that	 are	 saved	 in	 the	 runtime
environment	of	score	(see	Environments	for	an	explanation	of	R's	environment
system).	Sixth,	RStudio	will	open	a	new	Traceback	pane,	which	shows	the	call
stack	RStudio	took	to	get	to	browser.	The	most	recent	function,	score,	will	be
highlighted.

I'm	now	in	a	new	R	mode,	called	browser	mode.	Browser	mode	 is	designed	 to
help	you	uncover	bugs,	and	the	new	display	in	RStudio	is	designed	to	help	you
navigate	this	mode.

Any	command	that	you	run	in	browser	mode	will	be	evaluated	in	the	context	of
the	 runtime	 environment	 of	 the	 function	 that	 called	browser.	 This	will	 be	 the
function	 that	 is	 highlighted	 in	 the	 new	Traceback	 pane.	Here,	 that	 function	 is
score.	So	while	we	are	in	browser	mode,	the	active	environment	will	be	score's
runtime	environment.	This	lets	you	do	two	things.



Figure	17.3:	RStudio	updates	 its	display	whenever	you	enter	browser	mode	 to
help	you	navigate	the	mode.

First,	 you	 can	 inspect	 the	 objects	 that	 score	 uses.	 The	 updated	 Environments
pane	shows	you	which	objects	score	has	saved	in	its	local	environment.	You	can
inspect	any	of	them	by	typing	their	name	at	the	browser	prompt.	This	gives	you
a	way	to	see	the	values	of	runtime	variables	that	you	normally	would	not	be	able
to	access.	If	a	value	looks	clearly	wrong,	you	may	be	close	to	finding	a	bug:

Browse[1]>	symbols

##	[1]	"B"	"B"	"0"

Browse[1]>	same

##	[1]	FALSE

Second,	 you	 can	 run	 code	 and	 see	 the	 same	 results	 that	score	would	 see.	For
example,	you	could	run	the	remaining	lines	of	the	score	function	and	see	if	they
do	anything	unusual.	You	could	run	these	lines	by	typing	them	into	the	command
prompt,	or	you	could	use	the	three	navigation	buttons	that	now	appear	above	the
prompt,	as	in	Figure	17.4.

The	first	button,	Next,	will	run	the	next	line	of	code	in	score.	The	highlighted
line	in	the	scripts	pane	will	advance	by	one	line	to	show	you	your	new	location
in	the	score	function.	If	the	next	line	begins	a	code	chunk,	like	a	for	loop	or	an
if	 tree,	R	will	 run	 the	whole	chunk	and	will	highlight	 the	whole	chunk	 in	 the



script	window.

The	 second	button,	Continue,	will	 run	 all	 of	 the	 remaining	 lines	 of	score	and
then	exit	the	browser	mode.

The	third	button,	Stop,	will	exit	browser	mode	without	running	any	more	lines	of
score.

Figure	17.4:	You	can	navigate	browser	mode	with	the	three	buttons	at	the	top	of
the	console	pane.

You	can	do	the	same	things	by	typing	the	commands	n,	c,	and	Q	into	the	browser
prompt.	This	creates	an	annoyance:	what	if	you	want	to	look	up	an	object	named
n,	 c,	 or	 Q?	 Typing	 in	 the	 object	 name	 will	 not	 work,	 R	 will	 either	 advance,
continue,	or	quit	the	browser	mode.	Instead	you	will	have	to	look	these	objects
up	with	the	commands	get("n"),	get("c"),	and	get("Q").	cont	 is	a	synonym
for	c	in	browser	mode	and	where	prints	the	call	stack,	so	you'll	have	to	look	up
these	objects	with	get	as	well.

Browser	mode	can	help	you	see	 things	from	the	perspective	of	your	 functions,
but	it	cannot	show	you	where	the	bug	lies.	However,	browser	mode	can	help	you
test	hypotheses	and	investigate	function	behavior.	This	is	usually	all	you	need	to
spot	and	fix	a	bug.	The	browser	mode	is	the	basic	debugging	tool	of	R.	Each	of
the	following	functions	just	provides	an	alternate	way	to	enter	the	browser	mode.

Once	you	fix	 the	bug,	you	should	resave	your	 function	a	 third	 time—this	 time
without	the	browser()	call.	As	long	as	the	browser	call	is	in	there,	R	will	pause



each	time	you,	or	another	function,	calls	score.

17.3	Break	Points

RStudio's	break	points	provide	a	graphical	way	to	add	a	browser	statement	to	a
function.	 To	 use	 them,	 open	 the	 script	where	 you've	 defined	 a	 function.	 Then
click	to	the	left	of	the	line	number	of	the	line	of	code	in	the	function	body	where
you'd	 like	 to	add	 the	browser	statement.	A	hollow	red	dot	will	appear	 to	show
you	where	the	break	point	will	occur.	Then	run	the	script	by	clicking	the	Source
button	at	the	top	of	the	Scripts	pane.	The	hollow	dot	will	turn	into	a	solid	red	dot
to	show	that	the	function	has	a	break	point	(see	Figure	17.5).

R	will	treat	the	break	point	like	a	browser	statement,	going	into	browser	mode
when	it	encounters	it.	You	can	remove	a	break	point	by	clicking	on	the	red	dot.
The	dot	will	disappear,	and	the	break	point	will	be	removed.

Figure	 17.5:	 Break	 points	 provide	 the	 graphical	 equivalent	 of	 a	 browser
statement.

Break	points	and	browser	provide	a	great	way	to	debug	functions	that	you	have
defined.	But	what	if	you	want	to	debug	a	function	that	already	exists	in	R?	You
can	do	that	with	the	debug	function.

17.4	debug

You	 can	 "add"	 a	 browser	 call	 to	 the	 very	 start	 of	 a	 preexisting	 function	 with



debug.	To	do	this,	run	debug	on	the	function.	For	example,	you	can	run	debug	on
sample	with:

debug(sample)

Afterward,	R	will	act	as	if	there	is	a	browser()	statement	in	the	first	line	of	the
function.	Whenever	R	runs	the	function,	it	will	immediately	enter	browser	mode,
allowing	you	to	step	through	the	function	one	line	at	a	time.	R	will	continue	to
behave	this	way	until	you	"remove"	the	browser	statement	with	undebug:

undebug(sample)

You	 can	 check	 whether	 a	 function	 is	 in	 "debugging"	mode	 with	 isdebugged.
This	will	 return	TRUE	 if	 you've	 ran	debug	 on	 the	 function	 but	 have	 yet	 to	 run
undebug:

isdebugged(sample)

##	FALSE

If	 this	 is	 all	 too	much	 of	 a	 hassle,	 you	 can	 do	what	 I	 do	 and	 use	 debugonce
instead	 of	 debug.	 R	 will	 enter	 browser	 mode	 the	 very	 next	 time	 it	 runs	 the
function	but	will	 automatically	undebug	 the	 function	afterward.	 If	you	need	 to
browse	 through	 the	 function	again,	you	can	 just	 run	debugonce	 on	 it	 a	 second
time.

You	can	recreate	debugonce	 in	RStudio	whenever	an	error	occurs.	"Rerun	with
debug"	will	appear	in	the	grey	error	box	beneath	Show	Traceback	(Figure	17.1).
If	you	click	this	option,	RStudio	will	rerun	the	command	as	if	you	had	first	run
debugonce	on	it.	R	will	immediately	go	into	browser	mode,	allowing	you	to	step
through	the	code.	The	browser	behavior	will	only	occur	on	this	run	of	the	code.
You	do	not	need	to	worry	about	calling	undebug	when	you	are	done.

17.5	trace

You	can	add	the	browser	statement	further	into	the	function,	and	not	at	the	very
start,	with	trace.	trace	 takes	 the	name	of	a	 function	as	a	character	 string	and



then	 an	 R	 expression	 to	 insert	 into	 the	 function.	 You	 can	 also	 provide	 an	 at
argument	that	tells	trace	at	which	 line	of	 the	function	 to	place	 the	expression.
So	to	insert	a	browser	call	at	the	fourth	line	of	sample,	you	would	run:

trace("sample",	browser,	at	=	4)

You	can	use	trace	to	insert	other	R	functions	(not	just	browser)	into	a	function,
but	 you	may	 need	 to	 think	 of	 a	 clever	 reason	 for	 doing	 so.	You	 can	 also	 run
trace	on	a	 function	without	 inserting	any	new	code.	R	will	prints	trace:<the
function>	at	 the	command	line	every	time	R	runs	the	function.	This	is	a	great
way	 to	 test	 a	 claim	 I	 made	 in	 S3,	 that	 R	 calls	 print	 every	 time	 it	 displays
something	at	the	command	line:

trace(print)

first

##	trace:	print(function	()	second())

##	function()	second()

head(deck)

##	trace:	print

##				face			suit	value

##	1		king	spades				13

##	2	queen	spades				12

##	3		jack	spades				11

##	4			ten	spades				10

##	5		nine	spades					9

##	6	eight	spades					8

You	can	revert	a	function	to	normal	after	calling	trace	on	it	with	untrace:

untrace(sample)

untrace(print)

17.6	recover

The	recover	function	provides	one	final	option	for	debugging.	It	combines	the
call	stack	of	traceback	with	the	browser	mode	of	browser.	You	can	use	recover



just	 like	 browser,	 by	 inserting	 it	 directly	 into	 a	 function's	 body.	 Let's
demonstrate	recover	with	the	fifth	function:

fifth	<-	function()	recover()

When	R	runs	recover,	it	will	pause	and	display	the	call	stack,	but	that's	not	all.
R	gives	you	the	option	of	opening	a	browser	mode	in	any	of	 the	functions	that
appear	in	the	call	stack.	Annoyingly,	the	call	stack	will	be	displayed	upside	down
compared	to	traceback.	The	most	recent	function	will	be	on	the	bottom,	and	the
original	function	will	be	on	the	top:

first()

##	

##	Enter	a	frame	number,	or	0	to	exit			

##	

##	1:	first()

##	2:	#1:	second()

##	3:	#1:	third()

##	4:	#1:	fourth()

##	5:	#1:	fifth()

To	 enter	 a	 browser	 mode,	 type	 in	 the	 number	 next	 to	 the	 function	 in	 whose
runtime	 environment	 you	would	 like	 to	 browse.	 If	 you	do	not	wish	 to	 browse
any	of	the	functions,	type	0:

3

##	Selection:	3

##	Called	from:	fourth()

##	Browse[1]>	

You	can	then	proceed	as	normal.	recover	gives	you	a	chance	to	inspect	variables
up	 and	 down	 your	 call	 stack	 and	 is	 a	 powerful	 tool	 for	 uncovering	 bugs.
However,	 adding	 recover	 to	 the	 body	 of	 an	 R	 function	 can	 be	 cumbersome.
Most	R	users	use	it	as	a	global	option	for	handling	errors.

If	you	run	the	following	code,	R	will	automatically	call	recover()	whenever	an
error	occurs:



options(error	=	recover)

This	behavior	will	last	until	you	close	your	R	session,	or	reverse	the	behavior	by
calling:

options(error	=	NULL)
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