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Preface
If	 you	 are	 a	 scientist,	 an	 analyst,	 a	 consultant,	 or	 anybody	 else	 who	 has	 to
prepare	 technical	 documents	 or	 reports,	 one	 of	 the	 most	 important	 skills	 you
need	to	have	 is	 the	ability	 to	make	compelling	data	visualizations,	generally	 in
the	 form	of	 figures.	Figures	will	 typically	carry	 the	weight	of	your	arguments.
They	need	to	be	clear,	attractive,	and	convincing.	The	difference	between	good
and	bad	figures	can	be	the	difference	between	a	highly	influential	or	an	obscure
paper,	a	grant	or	contract	won	or	lost,	a	job	interview	gone	well	or	poorly.	And
yet,	 there	are	surprisingly	few	resources	 to	 teach	you	how	to	make	compelling
data	 visualizations.	Few	colleges	 offer	 courses	 on	 this	 topic,	 and	 there	 are	 not
that	 many	 books	 on	 this	 topic	 either.	 (Some	 exist,	 of	 course.)	 Tutorials	 for
plotting	software	typically	focus	on	how	to	achieve	specific	visual	effects	rather
than	explaining	why	certain	choices	are	preferred	and	others	not.	In	your	day-to-
day	work,	you	are	simply	expected	 to	know	how	 to	make	good	 figures,	and	 if
you're	lucky	you	have	a	patient	adviser	who	teaches	you	a	few	tricks	as	you're
writing	your	first	scientific	papers.

In	the	context	of	writing,	experienced	editors	talk	about	"ear",	the	ability	to	hear
(internally,	as	you	read	a	piece	of	prose)	whether	the	writing	is	any	good.	I	think
that	when	it	comes	to	figures	and	other	visualizations,	we	similarly	need	"eye",
the	 ability	 to	 look	 at	 a	 figure	 and	 see	 whether	 it	 is	 balanced,	 clear,	 and
compelling.	 And	 just	 as	 is	 the	 case	with	writing,	 the	 ability	 to	 see	whether	 a
figure	works	 or	 not	 can	 be	 learned.	Having	 eye	means	 primarily	 that	 you	 are
aware	of	a	larger	collection	of	simple	rules	and	principles	of	good	visualization,
and	that	you	pay	attention	to	little	details	that	other	people	might	not.

In	my	experience,	again	 just	as	 in	writing,	you	don't	develop	eye	by	 reading	a
book	 over	 the	 weekend.	 It	 is	 a	 lifelong	 process,	 and	 concepts	 that	 are	 too
complex	or	too	subtle	for	you	today	may	make	much	more	sense	five	years	from
now.	I	can	say	for	myself	that	I	continue	to	evolve	in	my	understanding	of	figure
preparation.	 I	 routinely	 try	 to	 expose	 myself	 to	 new	 approaches,	 and	 I	 pay
attention	to	the	visual	and	design	choices	others	make	in	their	figures.	I'm	also
open	to	change	my	mind.	I	might	 today	consider	a	given	figure	great,	but	next
month	I	might	find	a	reason	to	criticize	it.	So	with	this	in	mind,	please	don't	take
anything	I	say	as	gospel.	Think	critically	about	my	reasoning	for	certain	choices



and	decide	whether	you	want	to	adopt	them	or	not.

While	 the	 materials	 in	 this	 book	 are	 presented	 in	 a	 logical	 progression,	 most
chapters	can	stand	on	their	own,	and	there	is	no	need	to	read	the	book	cover	to
cover.	 Feel	 free	 to	 skip	 around,	 to	 pick	 out	 a	 specific	 section	 that	 you're
interested	 in	at	 the	moment,	or	one	 that	 covers	 a	 specific	design	choice	you're
pondering.	In	fact,	I	think	you	will	get	the	most	out	of	this	book	if	you	don't	read
it	 all	 at	 once,	 but	 rather	 read	 it	 piecemeal	over	 longer	 stretches	of	 time,	 try	 to
apply	just	a	few	concepts	from	the	book	in	your	figuremaking,	and	come	back	to
read	about	other	concepts	or	 re-read	concepts	you	 learned	about	a	while	back.
You	may	 find	 that	 the	 same	 chapter	 tells	 you	different	 things	 if	 you	 re-read	 it
after	a	few	months	of	time	have	passed.

Even	though	nearly	all	of	the	figures	in	this	book	were	made	with	R	and	ggplot2,
I	do	not	 see	 this	as	an	R	book.	 I	 am	 talking	about	general	principles	of	 figure
preparation.	The	software	used	to	make	the	figures	is	incidental.	You	can	use	any
plotting	 software	 you	want	 to	 generate	 the	 kinds	 of	 figures	 I'm	 showing	 here.
However,	ggplot2	and	similar	packages	make	many	of	the	techniques	I'm	using
much	simpler	than	other	plotting	libraries.	Importantly,	because	this	is	not	an	R
book,	I	do	not	discuss	code	or	programming	techniques	anywhere	in	this	book.	I
want	you	 to	 focus	on	 the	concepts	and	 the	 figures,	not	on	 the	code.	 If	you	are
curious	how	any	of	the	figures	were	made,	you	can	check	out	the	book's	source
code	at	its	GitHub	repository,	https://github.com/clauswilke/dataviz.

Thoughts	on	graphing	software	and	figure-
preparation	pipelines

I	 have	 over	 two	 decades	 of	 experience	 preparing	 figures	 for	 scientific
publications	and	have	made	 thousands	of	 figures.	 If	 there	 is	one	constant	over
these	 two	 decades,	 it's	 the	 change	 in	 figure	 preparation	 pipelines.	 Every	 few
years,	 a	new	plotting	 library	 is	developed	or	 a	new	paradigm	arises,	 and	 large
groups	of	scientists	switch	over	to	the	hot	new	toolkit.	I	have	made	figures	using
gnuplot,	Xfig,	Mathematica,	Matlab,	matplotlib	in	python,	base	R,	ggplot2	in	R,
and	possibly	others	I	can't	currently	remember.	My	current	preferred	approach	is
ggplot2	in	R,	but	I	don't	expect	that	I'll	continue	using	it	until	I	retire.

This	constant	change	 in	 software	platforms	 is	one	of	 the	key	 reasons	why	 this
book	 is	not	a	programming	book	and	why	 I	have	 left	out	all	 code	examples.	 I

https://github.com/clauswilke/dataviz


want	this	book	to	be	useful	to	you	regardless	of	which	software	you	use,	and	I
want	it	to	remain	valuable	even	once	everybody	has	moved	on	from	ggplot2	and
uses	 the	 next	 new	 thing.	 I	 realize	 that	 this	 choice	may	 be	 frustrating	 to	 some
ggplot2	users	who	would	like	to	know	how	I	made	a	given	figure.	To	them	I	say,
read	the	source	code	of	the	book.	It	is	available.	Also,	in	the	future	I	may	release
a	supplementary	document	focused	just	on	the	code.

One	thing	I	have	learned	over	the	years	is	that	automation	is	your	friend.	I	think
figures	 should	 be	 autogenerated	 as	 part	 of	 the	 data	 analysis	 pipeline	 (which
should	also	be	automated),	and	they	should	come	out	of	the	pipeline	ready	to	be
sent	 to	 the	 printer,	 no	 manual	 post-processing	 needed.	 I	 see	 a	 lot	 of	 trainees
autogenerate	rough	drafts	of	their	figures,	which	they	then	import	into	Illustrator
for	 sprucing	 up.	 There	 are	 several	 reasons	 why	 this	 is	 a	 bad	 idea.	 First,	 the
moment	you	manually	edit	a	figure,	your	final	figure	becomes	irreproducible.	A
third	party	 cannot	generate	 the	 exact	 same	 figure	you	did.	While	 this	may	not
matter	much	if	all	you	did	was	change	the	font	of	 the	axis	 labels,	 the	 lines	are
blurry,	and	it's	easy	to	cross	over	into	territory	where	things	are	less	clear	cut.	As
an	 example,	 let's	 say	 you	 want	 to	 manually	 replace	 cryptic	 labels	 with	 more
readable	ones.	A	third	party	may	not	be	able	to	verify	that	the	label	replacement
was	 appropriate.	 Second,	 if	 you	 add	 a	 lot	 of	 manual	 post-processing	 to	 your
figure-preparation	pipeline	then	you	will	be	more	reluctant	to	make	any	changes
or	redo	your	work.	Thus,	you	may	ignore	reasonable	requests	for	change	made
by	 collaborators	 or	 colleagues,	 or	 you	may	be	 tempted	 to	 re-use	 an	old	 figure
even	 though	 you	 actually	 regenerated	 all	 the	 data.	 These	 are	 not	 made-up
examples.	I've	seen	all	of	them	play	out	with	real	people	and	real	papers.	Third,
you	may	yourself	forget	what	exactly	you	did	to	prepare	a	given	figure,	or	you
may	 not	 be	 able	 to	 generate	 a	 future	 figure	 on	 new	 data	 that	 exactly	 visually
matches	your	earlier	figure.

For	 all	 the	 above	 reasons,	 interactive	 plot	 programs	 are	 a	 bad	 idea.	 They
inherently	force	you	to	manually	prepare	your	figures.	In	fact,	it's	probably	better
to	auto-generate	a	figure	draft	and	spruce	it	up	in	Illustrator	than	make	the	entire
figure	by	hand	in	some	interactive	plot	program.	Please	be	aware	that	Excel	is	an
interactive	plot	program	as	well	and	is	not	recommended	for	figure	preparation
(or	data	analysis).

One	 critical	 component	 in	 a	 book	 on	 data	 visualization	 is	 feasibility	 of	 the
proposed	 visualizations.	 It's	 nice	 to	 invent	 some	 elegant	 new	 way	 of
visualization,	but	 if	nobody	can	easily	generate	 figures	using	 this	visualization



then	there	isn't	much	use	to	it.	For	example,	when	Tufte	first	proposed	sparklines
nobody	had	an	easy	way	of	making	them.	While	we	need	visionaries	who	move
the	 world	 foward	 by	 pushing	 the	 envelope	 of	 what's	 possible,	 I	 envision	 this
book	to	be	practical	and	directly	applicable	to	working	data	scientists	preparing
figures	 for	 their	 publications.	 Therefore,	 the	 visualizations	 I	 propose	 in	 the
subsequent	chapters	can	be	generated	with	a	few	lines	of	R	code	via	ggplot2	and
readily	 available	 extension	 packages.	 In	 fact,	 nearly	 every	 figure	 in	 this	 book,
with	 the	 exception	 of	 a	 few	 figures	 in	 Chapters	 26,	 27,	 and	 28,	 was
autogenerated	exactly	as	shown.
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1	Introduction
Data	visualization	is	part	art	and	part	science.	The	challenge	is	to	get	the	art	right
without	getting	the	science	wrong	and	vice	versa.	A	data	visualization	first	and
foremost	has	to	accurately	convey	the	data.	It	must	not	mislead	or	distort.	If	one
number	is	twice	as	large	as	another,	but	in	the	visualization	they	look	to	be	about
the	same,	then	the	visualization	is	wrong.	At	the	same	time,	a	data	visualization
should	be	aesthetically	pleasing.	Good	visual	presentations	tend	to	enhance	the
message	 of	 the	 visualization.	 If	 a	 figure	 contains	 jarring	 colors,	 imbalanced
visual	elements,	or	other	features	that	distract,	then	the	viewer	will	find	it	harder
to	inspect	the	figure	and	interpret	it	correctly.

In	 my	 experience,	 scientists	 frequently	 (though	 not	 always!)	 know	 how	 to
visualize	data	without	being	grossly	misleading.	However,	they	may	not	have	a
well	 developed	 sense	 of	 visual	 aesthetics,	 and	 they	 may	 inadvertantly	 make
visual	 choices	 that	detract	 from	 their	desired	message.	Designers,	 on	 the	other
hand,	may	prepare	visualizations	that	look	beautiful	but	play	fast	and	loose	with
the	data.	It	is	my	goal	to	provide	useful	information	to	both	groups.

The	book	attempts	to	cover	the	key	principles,	methods,	and	concepts	required	to
visualize	 data	 for	 publications,	 reports,	 or	 presentations.	 Because	 data
visualization	is	a	vast	field,	and	in	its	broadest	definition	could	include	topics	as
varied	 as	 schematic	 technical	 drawings,	 3D	 animations,	 and	 user	 interfaces,	 I
necessarily	had	 to	 limit	my	scope	 for	 this	book.	 I	am	specifically	covering	 the
case	of	static	visualizations	presented	in	print,	online,	or	as	slides.	The	book	does
not	cover	interactive	visuals	or	movies,	except	in	one	brief	section	in	the	chapter
on	visualizing	uncertainty.	Therefore,	throughout	this	book,	I	will	use	the	words
"visualization"	and	"figure"	somewhat	interchangeably.	The	book	also	does	not
provide	 any	 instruction	 on	 how	 to	 make	 figures	 with	 existing	 visualization
softwares	or	programming	libraries.	The	annotated	bibliography	at	the	end	of	the
book	includes	pointers	to	appropriate	texts	covering	these	topics.

The	 book	 is	 divided	 into	 three	 parts.	 The	 first,	 "From	 data	 to	 visualization,"
describes	different	types	of	plots	and	charts,	such	as	bar	graphs,	scatter	plots,	or
pie	charts.	Its	primary	emphasis	is	the	science	of	visualization.	In	this	part,	rather
than	 attempting	 to	 provide	 encyclopedic	 coverage	 of	 every	 conceivable
visualization	 approach,	 I	 discuss	 a	 core	 set	 of	 visuals	 that	 you	 will	 likely



encounter	in	publications	and/or	need	in	your	own	work.	In	organizing	this	part,
I	 have	 attempted	 to	 group	 visualizations	 by	 the	 type	 of	message	 they	 convey
rather	 than	by	 the	 type	of	data	being	visualized.	Statistical	 texts	often	describe
data	 analysis	 and	 visualization	 by	 type	 of	 data,	 organizing	 the	 material	 by
number	 and	 type	 of	 variables	 (one	 continuous	 variable,	 one	 discrete	 variable,
two	 continuous	 variables,	 one	 continuous	 and	 one	 discrete	 variable,	 etc.).	 I
believe	 that	 only	 statisticians	 find	 this	 organization	helpful.	Most	 other	 people
think	in	terms	of	a	message,	such	as	how	large	something	is,	how	it	is	composed
of	parts,	how	it	relates	to	something	else,	and	so	on.

The	 second	part,	 "Principles	 of	 figure	 design,"	 discusses	 various	 design	 issues
that	 arise	 when	 assembling	 data	 visualizations.	 Its	 primary	 but	 not	 exclusive
emphasis	is	the	aesthetic	aspect	of	data	visualization.	Once	we	have	chosen	the
correct	type	of	plot	or	chart	that	is	appropriate	for	our	dataset,	we	have	to	make
aesthetic	 choices	 about	 the	 visual	 elements,	 such	 as	 colors,	 symbols,	 and	 font
sizes.	These	choices	can	affect	both	how	clear	a	visualization	is	and	how	elegant
it	looks.	The	chapters	in	this	second	part	address	the	most	common	issues	that	I
have	seen	arise	repeatedly	in	practical	applications.

The	third	part,	"Miscellaneous	topics,"	covers	a	few	remaining	issues	that	didn't
fit	 into	 the	 first	 two	 parts.	 It	 discusses	 file	 formats	 commonly	 used	 to	 store
images	and	plots,	it	provides	thoughts	about	the	choice	of	visualization	software,
and	 it	 explains	 how	 to	 place	 individual	 figures	 into	 the	 context	 of	 a	 larger
document.

Ugly,	bad,	and	wrong	figures

Throughout	this	book,	I	frequently	show	different	versions	of	the	same	figures,
some	as	examples	of	how	to	make	a	good	visualization	and	some	as	examples	of
how	not	 to.	To	provide	a	simple	visual	guideline	of	which	examples	should	be
emulated	and	which	should	be	avoided,	I	am	clearly	labeling	problematic	figures
as	"ugly",	"bad",	or	"wrong"	(Figure	1.1):

ugly---A	 figure	 that	 has	 aesthetic	 problems	 but	 otherwise	 is	 clear	 and
informative.
bad---A	figure	 that	has	problems	related	 to	perception;	 it	may	be	unclear,
confusing,	overly	complicated,	or	deceiving.
wrong---A	figure	that	has	problems	related	to	mathematics;	it	is	objectively
incorrect.



Figure	1.1:	Examples	of	ugly,	bad,	and	wrong	figures.	(a)	A	bar	plot	showing
three	values	(A	=	3,	B	=	5,	and	C	=	4).	This	is	a	reasonable	visualization	with	no
major	flaws.	(b)	An	ugly	version	of	part	(a).	While	the	plot	is	technically	correct,
it	is	not	aesthetically	pleasing.	The	colors	are	too	bright	and	not	useful.	The
background	grid	is	too	prominent.	The	text	is	displayed	using	three	different
fonts	in	three	different	sizes.	(c)	A	bad	version	of	part	(a).	Each	bar	is	shown
with	its	own	y-axis	scale.	Because	the	scales	don't	align,	this	makes	the	figure
misleading.	One	can	easily	get	the	impression	that	the	three	values	are	closer
together	than	they	actually	are.	(d)	A	wrong	version	of	part	(a).	Without	an

explicit	y	axis	scale,	the	numbers	represented	by	the	bars	cannot	be	ascertained.
The	bars	appear	to	be	of	lengths	1,	3,	and	2,	even	though	the	values	displayed

are	meant	to	be	3,	5,	and	4.

I	am	not	explicitly	labeling	good	figures.	Any	figure	that	isn't	clearly	labeled	as
flawed	 should	 be	 assumed	 to	 be	 at	 least	 acceptable.	 It	 is	 a	 figure	 that	 is
informative,	 looks	 appealing,	 and	 could	 be	 printed	 as	 is.	Note	 that	 among	 the
good	figures,	there	will	still	be	differences	in	quality,	and	some	good	figures	will
be	better	than	others.



I	 generally	 provide	my	 rationale	 for	 specific	 ratings,	 but	 some	 are	 a	matter	 of
taste.	In	general,	the	"ugly"	rating	is	more	subjective	than	the	"bad"	or	"wrong"
rating.	Moreover,	 the	 boundary	 between	 "ugly"	 and	 "bad"	 is	 somewhat	 fluid.
Sometimes	poor	design	choices	can	interfere	with	human	perception	to	the	point
where	 a	 "bad"	 rating	 is	more	 appropriate	 than	 an	 "ugly"	 rating.	 In	 any	 case,	 I
encourage	you	to	develop	your	own	eye	and	to	critically	evaluate	my	choices.

##	Warning:	package	'colorspace'	was	built	under	R	version	3.5.3

##	Warning:	package	'ggplot2'	was	built	under	R	version	3.5.3

##	Warning:	package	'dplyr'	was	built	under	R	version	3.5.3

##	Warning:	package	'forcats'	was	built	under	R	version	3.5.3

##	Warning:	package	'lubridate'	was	built	under	R	version	3.5.3



2	Visualizing	data:	Mapping	data
onto	aesthetics
Whenever	 we	 visualize	 data,	 we	 take	 data	 values	 and	 convert	 them	 in	 a
systematic	 and	 logical	 way	 into	 the	 visual	 elements	 that	 make	 up	 the	 final
graphic.	Even	though	there	are	many	different	 types	of	data	visualizations,	and
on	first	glance	a	scatter	plot,	a	pie	chart,	and	a	heatmap	don't	seem	to	have	much
in	common,	all	 these	visualizations	can	be	described	with	a	common	 language
that	captures	how	data	values	are	 turned	 into	blobs	of	 ink	on	paper	or	colored
pixels	on	 screen.	The	key	 insight	 is	 the	 following:	All	data	visualizations	map
data	values	into	quantifiable	features	of	the	resulting	graphic.	We	refer	to	these
features	as	aesthetics.

2.1	Aesthetics	and	types	of	data

Aesthetics	describe	every	aspect	of	a	given	graphical	element.	A	few	examples
are	provided	in	Figure	2.1.	A	critical	component	of	every	graphical	element	is	of
course	its	position,	which	describes	where	the	element	is	located.	In	standard	2d
graphics,	we	describe	positions	by	an	x	and	y	value,	but	other	coordinate	systems
and	 one-	 or	 three-dimensional	 visualizations	 are	 possible.	 Next,	 all	 graphical
elements	have	a	shape,	a	size,	and	a	color.	Even	if	we	are	preparing	a	black-and-
white	 drawing,	 graphical	 elements	 need	 to	 have	 a	 color	 to	 be	 visible,	 for
example	black	 if	 the	background	 is	white	or	white	 if	 the	background	 is	black.
Finally,	 to	 the	extent	we	are	using	lines	 to	visualize	data,	 these	 lines	may	have
different	widths	or	dash--dot	patterns.	Beyond	the	examples	shown	in	Figure	2.1,
there	 are	many	 other	 aesthetics	we	may	 encounter	 in	 a	 data	 visualization.	 For
example,	 if	we	want	 to	 display	 text,	we	may	have	 to	 specify	 font	 family,	 font
face,	 and	 font	 size,	 and	 if	 graphical	 objects	 overlap,	 we	may	 have	 to	 specify
whether	they	are	partially	transparent.



Figure	2.1:	Commonly	used	aesthetics	in	data	visualization:	position,	shape,	size,
color,	line	width,	line	type.	Some	of	these	aesthetics	can	represent	both

continuous	and	discrete	data	(position,	size,	line	width,	color)	while	others	can
usually	only	represent	discrete	data	(shape,	line	type).

All	aesthetics	 fall	 into	one	of	 two	groups:	Those	 that	can	 represent	continuous
data	 and	 those	 that	 can	 not.	 Continuous	 data	 values	 are	 values	 for	 which
arbitrarily	 fine	 intermediates	 exist.	 For	 example,	 time	duration	 is	 a	 continuous
value.	 Between	 any	 two	 durations,	 say	 50	 seconds	 and	 51	 seconds,	 there	 are
arbitrarily	many	 intermediates,	 such	 as	 50.5	 seconds,	 50.51	 seconds,	 50.50001
seconds,	and	so	on.	By	contrast,	number	of	persons	in	a	room	is	a	discrete	value.
A	 room	can	hold	 5	 persons	 or	 6,	 but	 not	 5.5.	 For	 the	 examples	 in	Figure	 2.1,
position,	size,	color,	and	line	width	can	represent	continuous	data,	but	shape	and
line	type	can	usually	only	represent	discrete	data.

Next	 we'll	 consider	 the	 types	 of	 data	 we	 may	 want	 to	 represent	 in	 our
visualization.	You	may	think	of	data	as	numbers,	but	numerical	values	are	only
two	out	of	several	types	of	data	we	may	encounter.	In	addition	to	continuous	and
discrete	numerical	values,	data	 can	come	 in	 the	 form	of	discrete	 categories,	 in
the	form	of	dates	or	 times,	and	as	 text	(Table	2.1).	When	data	is	numerical	we
also	call	it	quantitative	and	when	it	is	categorical	we	call	it	qualitative.	Variables
holding	qualitative	data	are	factors,	and	the	different	categories	are	called	levels.
The	 levels	of	a	 factor	are	most	commonly	without	order	 (as	 in	 the	example	of
"dog",	"cat",	"fish"	in	Table	2.1),	but	factors	can	also	be	ordered,	when	there	is
an	 intrinsic	order	among	 the	 levels	of	 the	 factor	 (as	 in	 the	example	of	 "good",
"fair",	"poor"	in	Table	2.1).

Table	2.1:	Types	of	variables	encountered	in	typical	data	visualization	scenarios.



Table	2.1:	Types	of	variables	encountered	in	typical	data	visualization	scenarios.

Type	of	variable Examples Appropriate
scale Description

quantitative/numerical
continuous

1.3,	5.7,	83,
1.5x10-2

continuous

Arbitrary	numerical	values.
These	can	be	integers,
rational	numbers,	or	real
numbers.

quantitative/numerical
discrete 1,	2,	3,	4 discrete

Numbers	in	discrete	units.
These	are	most	commonly
but	not	necessarily
integers.	For	example,	the
numbers	0.5,	1.0,	1.5	could
also	be	treated	as	discrete	if
intermediate	values	cannot
exist	in	the	given	dataset.

qualitative/categorical
unordered dog,	cat,	fish discrete

Categories	without	order.
These	are	discrete	and
unique	categories	that	have
no	inherent	order.	These
variables	are	also	called
factors.

qualitative/categorical
ordered

good,	fair,
poor discrete

Categories	with	order.
These	are	discrete	and
unique	categories	with	an
order.	For	example,	"fair"
always	lies	between	"good"
and	"poor".	These	variables
are	also	called	ordered
factors.

date	or	time Jan.	5	2018,
8:03am

continuous	or
discrete

Specific	days	and/or	times.
Also	generic	dates,	such	as
July	4	or	Dec.	25	(without
year).

text

The	quick
brown	fox
jumps	over
the	lazy	dog.

none,	or
discrete

Free-form	text.	Can	be
treated	as	categorical	if
needed.



To	 examine	 a	 concrete	 example	 of	 these	 various	 types	 of	 data,	 take	 a	 look	 at
Table	 2.2.	 It	 shows	 the	 first	 few	 rows	 of	 a	 dataset	 providing	 the	 daily
temperature	 normals	 (average	 daily	 temperatures	 over	 a	 30-year	 window)	 for
four	 U.S.	 locations.	 This	 table	 contains	 five	 variables:	 month,	 day,	 location,
station	ID,	and	temperature	(in	degrees	Fahrenheit).	Month	is	an	ordered	factor,
day	 is	a	discrete	numerical	value,	 location	 is	an	unordered	 factor,	 station	 ID	 is
similarly	an	unordered	factor,	and	temperature	is	a	continuous	numerical	value.

Table	2.2:	First	12	rows	of	a	dataset	listing	daily
temperature	normals	for	four	weather	stations.	Data

source:	NOAA.
Month Day Location Station	ID Temperature
Jan 1 Chicago USW00014819 25.6
Jan 1 San	Diego USW00093107 55.2
Jan 1 Houston USW00012918 53.9
Jan 1 Death	Valley USC00042319 51.0
Jan 2 Chicago USW00014819 25.5
Jan 2 San	Diego USW00093107 55.3
Jan 2 Houston USW00012918 53.8
Jan 2 Death	Valley USC00042319 51.2
Jan 3 Chicago USW00014819 25.3
Jan 3 San	Diego USW00093107 55.3
Jan 3 Death	Valley USC00042319 51.3
Jan 3 Houston USW00012918 53.8

2.2	Scales	map	data	values	onto	aesthetics

To	 map	 data	 values	 onto	 aesthetics,	 we	 need	 to	 specify	 which	 data	 values
correspond	to	which	specific	aesthetics	values.	For	example,	 if	our	graphic	has
an	x	axis,	then	we	need	to	specify	which	data	values	fall	onto	particular	positions
along	 this	 axis.	 Similarly,	 we	 may	 need	 to	 specify	 which	 data	 values	 are
represented	 by	 particular	 shapes	 or	 colors.	 This	mapping	 between	 data	 values
and	 aesthetics	 values	 is	 created	 via	 scales.	 A	 scale	 defines	 a	 unique	mapping
between	data	 and	 aesthetics	 (Figure	 2.2).	 Importantly,	 a	 scale	must	 be	 one-to-
one,	such	that	for	each	specific	data	value	there	 is	exactly	one	aesthetics	value
and	vice	versa.	 If	 a	 scale	 isn't	 one-to-one,	 then	 the	data	 visualization	becomes



ambiguous.

Figure	2.2:	Scales	link	data	values	to	aesthetics.	Here,	the	numbers	1	through	4
have	been	mapped	onto	a	position	scale,	a	shape	scale,	and	a	color	scale.	For
each	scale,	each	number	corresponds	to	a	unique	position,	shape,	or	color	and

vice	versa.

Let's	put	 things	into	practice.	We	can	take	the	dataset	shown	in	Table	2.2,	map
temperature	onto	the	y	axis,	day	of	the	year	onto	the	x	axis,	location	onto	color,
and	visualize	these	aesthetics	with	solid	lines.	The	result	is	a	standard	line	plot
showing	the	temperature	normals	at	the	four	locations	as	they	change	during	the
year	(Figure	2.3).

Figure	2.3:	Daily	temperature	normals	for	four	selected	locations	in	the	U.S.
Temperature	is	mapped	to	the	y	axis,	day	of	the	year	to	the	x	axis,	and	location	to



line	color.	Data	source:	NOAA.

Figure	2.3	is	a	fairly	standard	visualization	for	a	temperature	curve	and	likely	the
visualization	most	data	scientists	would	intuitively	choose	first.	However,	it	is	up
to	 us	 which	 variables	 we	 map	 onto	 which	 scales.	 For	 example,	 instead	 of
mapping	 temperature	 onto	 the	 y	 axis	 and	 location	 onto	 color,	 we	 can	 do	 the
opposite.	 Because	 now	 the	 key	 variable	 of	 interest	 (temperature)	 is	 shown	 as
color,	we	need	 to	show	sufficiently	 large	colored	areas	 for	 the	color	 to	convey
useful	 information	 (Stone,	Albers	 Szafir,	 and	 Setlur	 2014).	 Therefore,	 for	 this
visualization	 I	 have	 chosen	 squares	 instead	 of	 lines,	 one	 for	 each	 month	 and
location,	 and	 I	have	colored	 them	by	 the	average	 temperature	normal	 for	 each
month	(Figure	2.4).

(ref:four-locations-temps-by-month)	 Monthly	 normal	 mean	 temperatures	 for
four	locations	in	the	U.S.	Data	source:	NOAA

Figure	2.4:	(ref:four-locations-temps-by-month)

I	would	like	to	emphasize	that	Figure	2.4	uses	two	position	scales	(month	along
the	x	axis	and	location	along	the	y	axis)	but	neither	is	a	continuous	scale.	Month
is	an	ordered	factor	with	12	levels	and	location	is	an	unordered	factor	with	four
levels.	Therefore,	the	two	position	scales	are	both	discrete.	For	discrete	position
scales,	we	generally	place	 the	different	 levels	of	 the	 factor	at	an	equal	spacing
along	the	axis.	 If	 the	factor	 is	ordered	(as	 is	here	 the	case	for	month),	 then	the
levels	 need	 to	 placed	 in	 the	 appropriate	 order.	 If	 the	 factor	 is	 unordered	 (as	 is
here	 the	 case	 for	 location),	 then	 the	 order	 is	 arbitrary,	 and	we	 can	 choose	 any
order	we	want.	 I	 have	 ordered	 the	 locations	 from	overall	 coldest	 (Chicago)	 to
overall	 hottest	 (Death	 Valley)	 to	 generate	 a	 pleasant	 staggering	 of	 colors.
However,	I	could	have	chosen	any	other	order	and	the	figure	would	have	been
equally	valid.



Both	Figures	2.3	and	2.4	used	three	scales	in	total,	two	position	scales	and	one
color	scale.	This	 is	a	 typical	number	of	scales	for	a	basic	visualization,	but	we
can	use	more	than	three	scales	at	once.	Figure	2.5	uses	five	scales,	two	position
scales,	 one	 color	 scale,	 one	 size	 scale,	 and	 one	 shape	 scale,	 and	 all	 scales
represent	a	different	variable	from	the	dataset.

Figure	2.5:	Fuel	efficiency	versus	displacement,	for	32	cars	(1973--74	models).
This	figure	uses	five	separate	scales	to	represent	data:	(i)	the	x	axis

(displacement);	(ii)	the	y	axis	(fuel	efficiency);	(iii)	the	color	of	the	data	points
(power);	(iv)	the	size	of	the	data	points	(weight);	and	(v)	the	shape	of	the	data

points	(number	of	cylinders).	Four	of	the	five	variables	displayed	(displacement,
fuel	efficiency,	power,	and	weight)	are	numerical	continuous.	The	remaining	one

(number	of	cylinders)	can	be	considered	to	be	either	numerical	discrete	or
qualitative	ordered.	Data	source:	Motor	Trend,	1974.
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3	Coordinate	systems	and	axes
To	make	any	sort	of	data	visualization,	we	need	to	define	position	scales,	which
determine	 where	 in	 a	 graphic	 different	 data	 values	 are	 located.	 We	 cannot
visualize	data	without	placing	different	data	points	at	different	locations,	even	if
we	 just	 arrange	 them	 next	 to	 each	 other	 along	 a	 line.	 For	 regular	 2d
visualizations,	 two	 numbers	 are	 required	 to	 uniquely	 specify	 a	 point,	 and
therefore	 we	 need	 two	 position	 scales.	 These	 two	 scales	 are	 usually	 but	 not
necessarily	 the	 x	 and	 y	 axis	 of	 the	 plot.	We	 also	 have	 to	 specify	 the	 relative
geometric	 arrangement	 of	 these	 scales.	 Conventionally,	 the	 x	 axis	 runs
horizontally	and	 the	y	axis	vertically,	but	we	could	choose	other	arrangements.
For	example,	we	could	have	the	y	axis	run	at	an	acute	angle	relative	to	the	x	axis,
or	 we	 could	 have	 one	 axis	 run	 in	 a	 circle	 and	 the	 other	 run	 radially.	 The
combination	of	a	set	of	position	scales	and	their	relative	geometric	arrangement
is	called	a	coordinate	system.

3.1	Cartesian	coordinates

The	 most	 widely	 used	 coordinate	 system	 for	 data	 visualization	 is	 the	 2d
Cartesian	coordinate	system,	where	each	location	is	uniquely	specified	by	an	x
and	a	y	value.	The	x	and	y	axes	run	orthogonally	to	each	other,	and	data	values
are	 placed	 in	 an	 even	 spacing	 along	 both	 axes	 (Figure	 3.1).	 The	 two	 axes	 are
continuous	position	scales,	and	they	can	represent	both	positive	and	negative	real
numbers.	To	fully	specify	the	coordinate	system,	we	need	to	specify	the	range	of
numbers	each	axis	covers.	In	Figure	3.1,	the	x	axis	runs	from	-2.2	to	3.2	and	the
y	axis	runs	from	-2.2	to	2.2.	Any	data	values	between	these	axis	limits	are	placed
at	the	respective	location	in	the	plot.	Any	data	values	outside	the	axis	limits	are
discarded.

(ref:cartesian-coord)	Standard	cartesian	coordinate	system.	The	horizontal	axis	is
conventionally	called	x	 and	 the	vertical	 axis	y.	The	 two	axes	 form	a	grid	with
equidistant	spacing.	Here,	both	the	x	and	the	y	grid	lines	are	separated	by	units	of
one.	The	point	(2,	1)	is	located	two	x	units	to	the	right	and	one	y	unit	above	the
origin	 (0,	0).	The	point	 (-1,	 -1)	 is	 located	one	x	 unit	 to	 the	 left	 and	one	y	unit
below	the	origin.



Figure	3.1:	(ref:cartesian-coord)

Data	 values	 usually	 aren't	 just	 numbers,	 however.	 They	 come	 with	 units.	 For
example,	if	we're	measuring	temperature,	the	values	may	be	measured	in	degrees
Celsius	or	Fahrenheit.	Similarly,	if	we're	measuring	distance,	the	values	may	be
measured	in	kilometers	or	miles,	and	if	we're	measuring	duration,	the	values	may
be	measured	 in	minutes,	 hours,	 or	 days.	 In	 a	Cartesian	 coordinate	 system,	 the
spacing	between	grid	 lines	along	an	axis	corresponds	 to	discrete	steps	 in	 these
data	units.	In	a	temperature	scale,	for	example,	we	may	have	a	grid	line	every	10
degrees	 Fahrenheit,	 and	 in	 a	 distance	 scale,	 we	may	 have	 a	 grid	 line	 every	 5
kilometers.

A	 Cartesian	 coordinate	 system	 can	 have	 two	 axes	 representing	 two	 different
units.	 This	 situation	 arises	 quite	 commonly	 whenever	 we're	 mapping	 two
different	 types	of	variables	 to	x	 and	y.	 For	 example,	 in	Figure	 2.3,	we	 plotted
temperature	vs.	days	of	the	year.	The	y	axis	of	Figure	2.3	is	measured	in	degrees
Fahrenheit,	with	a	grid	 line	every	at	20	degrees,	and	 the	x	 axis	 is	measured	 in
months,	with	a	grid	line	at	the	first	of	every	third	month.	Whenever	the	two	axes



are	measured	 in	different	units,	we	can	 stretch	or	 compress	one	 relative	 to	 the
other	and	maintain	a	valid	visualization	of	the	data	(Figure	3.2).	Which	version
is	 preferable	may	 depend	 on	 the	 story	 we	want	 to	 convey.	 A	 tall	 and	 narrow
figure	emphasizes	change	along	the	y	axis	and	a	short	and	wide	figure	does	the
opposite.	 Ideally,	 we	 want	 to	 choose	 an	 aspect	 ratio	 that	 ensures	 that	 any
important	differences	in	position	are	noticeable.

Figure	3.2:	Daily	temperature	normals	for	Houston,	TX.	Temperature	is	mapped
to	the	y	axis	and	day	of	the	year	to	the	x	axis.	Parts	(a),	(b),	and	(c)	show	the
same	figure	in	different	aspect	ratios.	All	three	parts	are	valid	visualizations	of

the	temperature	data.	Data	source:	NOAA.

On	the	other	hand,	if	the	x	and	the	y	axes	are	measured	in	the	same	units,	then
the	grid	spacings	for	the	two	axes	should	be	equal,	such	that	the	same	distance
along	 the	 x	 or	 y	 axis	 corresponds	 to	 the	 same	 number	 of	 data	 units.	 As	 an
example,	we	can	plot	the	temperature	in	Houston,	TX	against	the	temperature	in
San	Diego,	CA,	for	every	day	of	the	year	(Figure	3.3a).	Since	the	same	quantity



is	plotted	along	both	axes,	we	need	to	make	sure	that	the	grid	lines	form	perfect
squares,	as	is	the	case	in	Figure	3.3.

Figure	3.3:	Daily	temperature	normals	for	Houston,	TX,	plotted	versus	the
respective	temperature	normals	of	San	Diego,	CA.	The	first	days	of	the	months
January,	April,	July,	and	October	are	highlighted	to	provide	a	temporal	reference.
(a)	Temperatures	are	shown	in	degrees	Fahrenheit.	(b)	Temperatures	are	shown

in	degrees	Celsius.	Data	source:	NOAA.

You	may	wonder	what	happens	 if	you	change	 the	units	of	your	data.	After	all,
units	 are	 arbitrary,	 and	 your	 preferences	 might	 be	 different	 from	 somebody
else's.	A	change	 in	units	 is	a	 linear	 transformation,	where	we	add	or	subtract	a
number	 to	or	 from	all	data	values	and/or	multiply	all	data	values	with	another
number.	 Fortunately,	 Cartesian	 coordinate	 systems	 are	 invariant	 under	 such
linear	transformations.	Therefore,	you	can	change	the	units	of	your	data	and	the
resulting	figure	will	not	change	as	long	as	you	change	the	axes	accordingly.	As
an	 example,	 compare	 Figures	 3.3a	 and	3.3b.	Both	 show	 the	 same	 data,	 but	 in
part	 (a)	 the	 temperature	 units	 are	 degrees	 Fahrenheit	 and	 in	 part	 (b)	 they	 are
degrees	 Celsius.	 Even	 though	 the	 grid	 lines	 are	 in	 different	 locations	 and	 the
numbers	along	the	axes	are	different,	the	two	data	visualizations	look	exactly	the
same.

3.2	Nonlinear	axes



In	a	Cartesian	coordinate	system,	the	grid	lines	along	an	axis	are	spaced	evenly
both	 in	 data	 units	 and	 in	 the	 resulting	 visualization.	We	 refer	 to	 the	 position
scales	 in	 these	 coordinate	 systems	 as	 linear.	 While	 linear	 scales	 generally
provide	 an	 accurate	 representation	 of	 the	 data,	 there	 are	 scenarios	 where
nonlinear	 scales	 are	 preferred.	 In	 a	 nonlinear	 scale,	 even	 spacing	 in	 data	 units
corresponds	 to	uneven	spacing	in	 the	visualization,	or	conversely	even	spacing
in	the	visualization	corresponds	to	uneven	spacing	in	data	units.

The	most	commonly	used	nonlinear	 scale	 is	 the	 logarithmic	scale	or	 log	 scale
for	short.	Log	scales	are	linear	in	multiplication,	such	that	a	unit	step	on	the	scale
corresponds	to	multiplication	with	a	fixed	value.	To	create	a	log	scale,	we	need
to	 log-transform	 the	 data	 values	 while	 exponentiating	 the	 numbers	 that	 are
shown	 along	 the	 axis	 grid	 lines.	 This	 process	 is	 demonstrated	 in	 Figure	 3.4,
which	 shows	 the	 numbers	 1,	 3.16,	 10,	 31.6,	 and	 100	placed	 on	 linear	 and	 log
scales.	The	 numbers	 3.16	 and	 31.6	may	 seem	 a	 strange	 choice,	 but	 they	were
chosen	because	they	are	exactly	half-way	between	1	and	10	and	between	10	and
100	on	 a	 log	 scale.	We	can	 see	 this	 by	observing	 that	
and	equivalently	 .	Similarly,	 .



Figure	3.4:	Relationship	between	linear	and	logarithmic	scales.	The	dots
correspond	to	data	values	1,	3.16,	10,	31.6,	100,	which	are	evenly-spaced

numbers	on	a	logarithmic	scale.	We	can	display	these	data	points	on	a	linear
scale,	we	can	log-transform	them	and	then	show	on	a	linear	scale,	or	we	can
show	them	on	a	logarithmic	scale.	Importantly,	the	correct	axis	title	for	a

logarithmic	scale	is	the	name	of	the	variable	shown,	not	the	logarithm	of	that
variable.

Mathematically,	there	is	no	difference	between	plotting	the	log-transformed	data
on	a	linear	scale	or	plotting	the	original	data	on	a	logarithmic	scale	(Figure	3.4).
The	only	difference	lies	 in	the	labeling	for	 the	individual	axis	 ticks	and	for	 the
axis	as	a	whole.	In	most	cases,	the	labeling	for	a	logarithmic	scale	is	preferable,
because	 it	 places	 less	 mental	 burden	 on	 the	 reader	 to	 interpret	 the	 numbers
shown	as	the	axis	tick	labels.	There	is	also	less	of	a	risk	of	confusion	about	the
base	 of	 the	 logarithm.	 When	 working	 with	 log-transformed	 data,	 we	 can	 get
confused	about	whether	the	data	were	transformed	using	the	natural	logarithm	or
the	logarithm	to	base	10.	And	it's	not	uncommon	for	labeling	to	be	ambiguous,
e.g.	"log(x)",	which	doesn't	specify	a	base	at	all.	I	recommend	that	you	always
verify	 the	 base	 when	 working	 with	 log-transformed	 data.	 When	 plotting	 log-
transformed	data,	always	specify	the	base	in	the	labeling	of	the	axis.

Because	multiplication	on	a	 log	scale	 looks	 like	addition	on	a	 linear	 scale,	 log
scales	 are	 the	 natural	 choice	 for	 any	 data	 that	 have	 been	 obtained	 by
multiplication	or	 division.	 In	particular,	 ratios	 should	generally	be	 shown	on	 a
log	scale.	As	an	example,	I	have	taken	the	number	of	inhabitants	in	each	county
in	 Texas	 and	 have	 divided	 it	 by	 the	 median	 number	 of	 inhabitants	 across	 all
Texas	counties.	The	resulting	ratio	is	a	number	that	can	be	larger	or	smaller	than
1.	 A	 ratio	 of	 exactly	 1	 implies	 that	 the	 corresponding	 county	 has	 the	median
number	of	inhabitants.	When	visualizing	these	ratios	on	a	log	scale,	we	can	see
clearly	 that	 the	 population	 numbers	 in	 Texas	 counties	 are	 symmetrically
distributed	 around	 the	median,	 and	 that	 the	most	 populous	 counties	 have	 over
100	 times	more	 inhabitants	 than	 the	median	while	 the	 least	 populous	 counties
have	 over	 100	 times	 fewer	 inhabitants	 (Figure	 3.5).	 By	 contrast,	 for	 the	 same
data,	 a	 linear	 scale	 obscures	 the	 differences	 between	 a	 county	 with	 median
population	number	 and	 a	 county	with	 a	much	 smaller	 population	number	 than
median	(Figure	3.6).



Figure	3.5:	Population	numbers	of	Texas	counties	relative	to	their	median	value.
Select	counties	are	highlighted	by	name.	The	dashed	line	indicates	a	ratio	of	1,
corresponding	to	a	county	with	median	population	number.	The	most	populous
counties	have	approximately	100	times	more	inhabitants	than	the	median	county,
and	the	least	populous	counties	have	approximately	100	times	fewer	inhabitants

than	the	median	county.	Data	source:	2010	Decennial	U.S.	Census.



1	and	have	obscured	ratios	<	1.	As	a	general	rule,	ratios	should	not	be	displayed
on	a	linear	scale.	Data	source:	2010	Decennial	U.S.	Census."	/>

Figure	3.6:	Population	sizes	of	Texas	counties	relative	to	their	median	value.	By
displaying	a	ratio	on	a	linear	scale,	we	have	overemphasized	ratios	>	1	and	have
obscured	ratios	<	1.	As	a	general	rule,	ratios	should	not	be	displayed	on	a	linear

scale.	Data	source:	2010	Decennial	U.S.	Census.

On	a	 log	scale,	 the	value	1	 is	 the	natural	midpoint,	 similar	 to	 the	value	0	on	a
linear	scale.	We	can	think	of	values	greater	than	1	as	representing	multiplications
and	values	less	than	1	divisions.	For	example,	we	can	write	 	and	

.	The	value	0,	on	the	other	hand,	can	never	appear	on	a	log	scale.	It
lies	infinitely	far	from	1.	One	way	to	see	this	is	to	consider	that	 .
Or,	 alternatively,	 consider	 that	 to	 go	 from	 1	 to	 0,	 it	 takes	 either	 an	 infinite
number	 of	 divisions	 by	 a	 finite	 value	 (e.g.,	

)	 or	 alternatively	 one	 division	 by
infinity	(i.e.,	 ).

Log	 scales	 are	 frequently	 used	 when	 the	 data	 set	 contains	 numbers	 of	 very
different	magnitudes.	For	 the	Texas	counties	shown	in	Figures	3.5	and	3.6,	 the
most	populous	one	(Harris)	had	4,092,459	inhabitants	 in	 the	2010	U.S.	Census
while	 the	 least	 populous	 one	 (Loving)	 had	 82.	 So	 a	 log	 scale	 would	 be



appropriate	even	if	we	hadn't	divided	population	numbers	by	their	median	to	turn
them	into	ratios.	But	what	would	we	do	if	there	was	a	county	with	0	inhabitants?
This	county	could	not	be	shown	on	the	logarithmic	scale,	because	it	would	lie	at
minus	 infinity.	 In	 this	 situation,	 the	 recommendation	 is	 sometimes	 to	 use	 a
square-root	 scale,	 which	 uses	 a	 square	 root	 transformation	 instead	 of	 a	 log
transformation	(Figure	3.7).	Just	like	a	log	scale,	a	square-root	scale	compresses
larger	 numbers	 into	 a	 smaller	 range,	 but	 unlike	 a	 log	 scale,	 it	 allows	 for	 the
presence	of	0.

(ref:sqrt-scales)	 Relationship	 between	 linear	 and	 square-root	 scales.	 The	 dots
correspond	 to	 data	 values	 0,	 1,	 4,	 9,	 16,	 25,	 36,	 49,	which	 are	 evenly-spaced
numbers	on	a	square-root	scale,	since	they	are	the	squares	of	the	integers	from	0
to	 7.	We	 can	 display	 these	 data	 points	 on	 a	 linear	 scale,	 we	 can	 square-root-
transform	 them	 and	 then	 show	 on	 a	 linear	 scale,	 or	 we	 can	 show	 them	 on	 a
square-root	scale.

Figure	3.7:	(ref:sqrt-scales)

I	see	two	problems	with	square-root	scales.	First,	while	on	a	linear	scale	one	unit
step	corresponds	to	addition	or	subtraction	of	a	constant	value	and	on	a	log	scale
it	corresponds	to	multiplication	with	or	division	by	a	constant	value,	no	such	rule
exists	for	a	square-root	scale.	The	meaning	of	a	unit	step	on	a	square-root	scale
depends	on	the	scale	value	at	which	we're	starting.	Second,	it	is	unclear	how	to
best	place	 axis	 ticks	on	a	 square-root	 scale.	To	obtain	 evenly	 spaced	 ticks,	we



would	have	to	place	them	at	squares,	but	axis	ticks	at,	for	example,	positions	0,
4,	25,	49,	81	 (every	second	square)	would	be	highly	unintuitive.	Alternatively,
we	could	place	them	at	linear	intervals	(10,	20,	30,	etc),	but	this	would	result	in
either	too	few	axis	ticks	near	the	low	end	of	the	scale	or	too	many	near	the	high
end.	In	Figure	3.7,	I	have	placed	the	axis	ticks	at	positions	0,	1,	5,	10,	20,	30,	40,
and	 50	 on	 the	 square-root	 scale.	 These	 values	 are	 arbitrary	 but	 provide	 a
reasonable	covering	of	the	data	range.

Despite	 these	 problems	 with	 square-root	 scales,	 they	 are	 valid	 position	 scales
and	I	do	not	discount	the	possibility	that	they	have	appropriate	applications.	For
example,	just	like	a	log	scale	is	the	natural	scale	for	ratios,	one	could	argue	that
the	 square-root	 scale	 is	 the	 natural	 scale	 for	 data	 that	 come	 in	 squares.	 One
scenario	 in	 which	 data	 are	 naturally	 squares	 are	 in	 the	 context	 of	 geographic
regions.	If	we	show	the	areas	of	geographic	regions	on	a	square-root	scale,	we
are	highlighting	the	regions'	 linear	extent	from	East	to	West	or	North	to	South.
These	extents	could	be	relevant,	 for	example,	 if	we	are	wondering	how	long	 it
might	 take	 to	drive	across	a	region.	Figure	3.8	shows	 the	areas	of	states	 in	 the
U.S.	Northeast	on	both	a	linear	and	a	square-root	scale.	Even	though	the	areas	of
these	states	are	quite	different	(Figure	3.8a),	the	time	it	will	take	to	drive	across
each	state	will	more	closely	resemble	the	figure	on	the	square-root	scale	(Figure
3.8b)	than	the	figure	on	the	linear	scale	(Figure	3.8a).

(ref:northeast-state-areas)	Areas	of	Northeastern	U.S.	states.	(a)	Areas	shown	on
a	linear	scale.	(b)	Areas	shown	on	a	square-root	scale.	Data	source:	Google.

Figure	3.8:	(ref:northeast-state-areas)



3.3	Coordinate	systems	with	curved	axes

All	 coordinate	 systems	 we	 have	 encountered	 so	 far	 used	 two	 straight	 axes
positioned	at	a	right	angle	to	each	other,	even	if	the	axes	themselves	established
a	non-linear	mapping	from	data	values	 to	positions.	There	are	other	coordinate
systems,	 however,	 where	 the	 axes	 themselves	 are	 curved.	 In	 particular,	 in	 the
polar	coordinate	system,	we	specify	positions	via	an	angle	and	a	radial	distance
from	the	origin,	and	therefore	the	angle	axis	is	circular	(Figure	3.9).

(ref:polar-coord)	 Relationship	 between	 Cartesian	 and	 polar	 coordinates.	 (a)
Three	data	points	 shown	 in	a	Cartesian	coordinate	 system.	 (b)	The	 same	 three
data	points	shown	in	a	polar	coordinate	system.	We	have	taken	the	x	coordinates
from	part	 (a)	and	used	 them	as	angular	coordinates	and	the	y	coordinates	 from
part	(a)	and	used	them	as	radial	coordinates.	The	circular	axis	runs	from	0	to	4	in
this	 example,	 and	 therefore	 x	 =	 0	 and	 x	 =	 4	 are	 the	 same	 locations	 in	 this
coordinate	system.

Figure	3.9:	(ref:polar-coord)

Polar	 coordinates	 can	 be	 useful	 for	 data	 of	 a	 periodic	 nature,	 such	 that	 data
values	at	one	end	of	the	scale	can	be	logically	joined	to	data	values	at	the	other
end.	For	example,	consider	the	days	in	a	year.	December	31st	is	the	last	day	of
the	year,	but	it	is	also	one	day	before	the	first	day	of	the	year.	If	we	want	to	show
how	 some	 quantity	 varies	 over	 the	 year,	 it	 can	 be	 appropriate	 to	 use	 polar



coordinates	 with	 the	 angle	 coordinate	 specifying	 each	 day.	 Let's	 apply	 this
concept	to	the	temperature	normals	of	Figure	2.3.	Because	temperature	normals
are	average	temperatures	that	are	not	tied	to	any	specific	year,	Dec.	31st	can	be
thought	of	as	366	days	later	than	Jan.	1st	(temperature	normals	include	Feb.	29)
and	 also	 one	 day	 earlier.	 By	 plotting	 the	 temperature	 normals	 in	 a	 polar
coordinate	system,	we	emphasize	this	cyclical	property	they	have	(Figure	3.10).
In	 comparison	 to	 Figure	 2.3,	 the	 polar	 version	 highlights	 how	 similar	 the
temperatures	are	in	Death	Valley,	Houston,	and	San	Diego	from	late	fall	to	early
spring.	 In	 the	 Cartesian	 coordinate	 system,	 this	 fact	 is	 obscured	 because	 the
temperature	values	in	late	December	and	in	early	January	are	shown	in	opposite
parts	of	the	figure	and	therefore	don't	form	a	single	visual	unit.

Figure	3.10:	Daily	temperature	normals	for	four	selected	locations	in	the	U.S.,
shown	in	polar	coordinates.	The	radial	distance	from	the	center	point	indicates
the	daily	temperature	in	Fahrenheit,	and	the	days	of	the	year	are	arranged

counter-clockwise	starting	with	Jan.	1st	at	the	6:00	position.

A	 second	 setting	 in	 which	 we	 encounter	 curved	 axes	 is	 in	 the	 context	 of
geospatial	 data,	 i.e.,	 maps.	 Locations	 on	 the	 globe	 are	 specified	 by	 their
longitude	 and	 latitude.	But	 because	 the	 earth	 is	 a	 sphere,	 drawing	 latitude	 and
longitude	as	Cartesian	axes	 is	misleading	and	not	 recommended	 (Figure	3.11).
Instead,	we	use	various	types	of	non-linear	projections	that	attempt	to	minimize
artifacts	 and	 that	 strike	 different	 balances	 between	 conserving	 areas	 or	 angles



relative	to	the	true	shape	lines	on	the	globe	(Figure	3.11).

Figure	3.11:	Map	of	the	world,	shown	in	four	different	projections.	The
Cartesian	longitude	and	latitude	system	maps	the	longitude	and	latitude	of	each

location	onto	a	regular	Cartesian	coordinate	system.	This	mapping	causes
substantial	distortions	in	both	areas	and	angles	relative	to	their	true	values	on	the
3D	globe.	The	interrupted	Goode	homolosine	projection	perfectly	represents	true
surface	areas,	at	the	cost	of	dividing	some	land	masses	into	separate	pieces,	most
notably	Greenland	and	Antarctica.	The	Robinson	projection	and	the	Winkel

tripel	projection	both	strike	a	balance	between	angular	and	area	distortions,	and
they	are	commonly	used	for	maps	of	the	entire	globe.



4	Color	scales
There	are	three	fundamental	use	cases	for	color	in	data	visualizations:	(i)	we	can
use	color	to	distinguish	groups	of	data	from	each	other;	(ii)	we	can	use	color	to
represent	data	values;	and	(iii)	we	can	use	color	to	highlight.	The	types	of	colors
we	 use	 and	 the	way	 in	which	we	 use	 them	 are	 quite	 different	 for	 these	 three
cases.

4.1	Color	as	a	tool	to	distinguish

We	frequently	use	color	as	a	means	to	distinguish	discrete	items	or	groups	that
do	not	have	an	intrinsic	order,	such	as	different	countries	on	a	map	or	different
manufacturers	of	a	certain	product.	In	this	case,	we	use	a	qualitative	color	scale.
Such	a	scale	contains	a	finite	set	of	specific	colors	that	are	chosen	to	look	clearly
distinct	 from	each	other	while	also	being	equivalent	 to	each	other.	The	second
condition	requires	that	no	one	color	should	stand	out	relative	to	the	others.	And,
the	colors	should	not	create	the	impression	of	an	order,	as	would	be	the	case	with
a	sequence	of	colors	 that	get	 successively	 lighter.	Such	colors	would	create	an
apparent	 order	 among	 the	 items	 being	 colored,	 which	 by	 definition	 have	 no
order.

Many	appropriate	qualitative	color	scales	are	readily	available.	Figure	4.1	shows
three	representative	examples.	In	particular,	the	ColorBrewer	project	provides	a
nice	 selection	 of	 qualitative	 color	 scales,	 including	 both	 fairly	 light	 and	 fairly
dark	colors	(Brewer	2017).



Figure	4.1:	Example	qualitative	color	scales.	The	Okabe	Ito	scale	is	the	default
scale	used	throughout	this	book	(Okabe	and	Ito	2008).	The	ColorBrewer	Dark2
scale	is	provided	by	the	ColorBrewer	project	(Brewer	2017).	The	ggplot2	hue

scale	is	the	default	qualitative	scale	in	the	widely	used	plotting	software	ggplot2.

As	 an	 example	 of	 how	we	 use	 qualitative	 color	 scales,	 consider	 Figure	 4.2.	 It
shows	 the	percent	population	growth	 from	2000	 to	2010	 in	U.S.	 states.	 I	have
arranged	the	states	in	order	of	their	population	growth,	and	I	have	colored	them
by	 geographic	 region.	 This	 coloring	 highlights	 that	 states	 in	 the	 same	 regions
have	experienced	similar	population	growth.	In	particular,	states	in	the	West	and
the	 South	 have	 seen	 the	 largest	 population	 increases	 whereas	 states	 in	 the
Midwest	and	the	Northeast	have	grown	much	less.



Figure	4.2:	Population	growth	in	the	U.S.	from	2000	to	2010.	States	in	the	West
and	South	have	seen	the	largest	increases,	whereas	states	in	the	Midwest	and
Northeast	have	seen	much	smaller	increases	or	even,	in	the	case	of	Michigan,	a

decrease.	Data	source:	U.S.	Census	Bureau

4.2	Color	to	represent	data	values



Color	can	also	be	used	to	represent	data	values,	such	as	income,	temperature,	or
speed.	 In	 this	 case,	 we	 use	 a	 sequential	 color	 scale.	 Such	 a	 scale	 contains	 a
sequence	 of	 colors	 that	 clearly	 indicate	 (i)	 which	 values	 are	 larger	 or	 smaller
than	which	 other	 ones	 and	 (ii)	 how	 distant	 two	 specific	 values	 are	 from	 each
other.	The	second	point	implies	that	the	color	scale	needs	to	be	perceived	to	vary
uniformly	across	its	entire	range.

Sequential	scales	can	be	based	on	a	single	hue	(e.g.,	from	dark	blue	to	light	blue)
or	on	multiple	hues	(e.g.,	from	dark	red	to	light	yellow)	(Figure	4.3).	Multi-hue
scales	tend	to	follow	color	gradients	that	can	be	seen	in	the	natural	world,	such
as	 dark	 red,	 green,	 or	 blue	 to	 light	 yellow,	 or	 dark	 purple	 to	 light	 green.	 The
reverse,	e.g.	dark	yellow	to	light	blue,	looks	unnatural	and	doesn't	make	a	useful
sequential	scale.

(ref:sequential-scales)	Example	sequential	color	scales.	The	ColorBrewer	Blues
scale	is	a	monochromatic	scale	that	varies	from	dark	to	light	blue.	The	Heat	and
Viridis	 scales	 are	multi-hue	 scales	 that	 vary	 from	dark	 red	 to	 light	 yellow	and
from	dark	blue	via	green	to	light	yellow,	respectively.

Figure	4.3:	(ref:sequential-scales)

Representing	data	values	as	colors	is	particularly	useful	when	we	want	to	show
how	the	data	values	vary	across	geographic	regions.	In	this	case,	we	can	draw	a
map	of	the	geographic	regions	and	color	them	by	the	data	values.	Such	maps	are
called	choropleths.	Figure	4.4	 shows	an	example	where	 I	have	mapped	annual
median	income	within	each	county	in	Texas	onto	a	map	of	those	counties.



Figure	4.4:	Median	annual	income	in	Texas	counties.	The	highest	median
incomes	are	seen	in	major	Texas	metropolitan	areas,	in	particular	near	Houston
and	Dallas.	No	median	income	estimate	is	available	for	Loving	County	in	West
Texas	and	therefore	that	county	is	shown	in	gray.	Data	source:	2015	Five-Year

American	Community	Survey

In	some	cases,	we	need	 to	visualize	 the	deviation	of	data	values	 in	one	of	 two
directions	 relative	 to	 a	 neutral	 midpoint.	 One	 straightforward	 example	 is	 a
dataset	 containing	both	 positive	 and	negative	 numbers.	We	may	want	 to	 show
those	with	different	colors,	so	that	it	is	immediately	obvious	whether	a	value	is
positive	or	negative	as	well	as	how	far	in	either	direction	it	deviates	from	zero.
The	appropriate	 color	 scale	 in	 this	 situation	 is	 a	diverging	 color	 scale.	We	can
think	of	a	diverging	scale	as	two	sequential	scales	stiched	together	at	a	common
midpoint,	which	usually	 is	 represented	by	a	 light	color	 (Figure	4.5).	Diverging
scales	need	to	be	balanced,	so	that	the	progression	from	light	colors	in	the	center
to	 dark	 colors	 on	 the	 outside	 is	 approximately	 the	 same	 in	 either	 direction.
Otherwise,	the	perceived	magnitude	of	a	data	value	would	depend	on	whether	it
fell	above	or	below	the	midpoint	value.



Figure	4.5:	Example	diverging	color	scales.	Diverging	scales	can	be	thought	of
as	two	sequential	scales	stiched	together	at	a	common	midpoint	color.	Common

color	choices	for	diverging	scales	include	brown	to	greenish	blue,	pink	to
yellow-green,	and	blue	to	red.

As	an	example	application	of	a	diverging	color	scale,	consider	Figure	4.6,	which
shows	 the	 percentage	 of	 people	 identifying	 as	 white	 in	 Texas	 counties.	 Even
though	 percentage	 is	 always	 a	 positive	 number,	 a	 diverging	 scale	 is	 justified
here,	because	50%	is	a	meaningful	midpoint	value.	Numbers	above	50%	indicate
that	whites	 are	 in	 the	majority	 and	 numbers	 below	50%	 indicate	 the	 opposite.
The	visualization	clearly	shows	in	which	counties	whites	are	in	the	majority,	in
which	 they	 are	 in	 the	minority,	 and	 in	 which	whites	 and	 non-whites	 occur	 in
approximately	equal	proportions.



Figure	4.6:	Percentage	of	people	identifying	as	white	in	Texas	counties.	Whites
are	in	the	majority	in	North	and	East	Texas	but	not	in	South	or	West	Texas.	Data

source:	2010	Decennial	U.S.	Census

4.3	Color	as	a	tool	to	highlight

Color	 can	 also	 be	 an	 effective	 tool	 to	 highlight	 specific	 elements	 in	 the	 data.
There	 may	 be	 specific	 categories	 or	 values	 in	 the	 dataset	 that	 carry	 key
information	about	the	story	we	want	to	tell,	and	we	can	strengthen	the	story	by
emphasizing	the	relevant	figure	elements	to	the	reader.	An	easy	way	to	achieve
this	 emphasis	 is	 to	 color	 these	 figure	 elements	 in	 a	 color	 or	 set	 of	 colors	 that
vividly	stand	out	against	the	rest	of	the	figure.	This	effect	can	be	achieved	with
accent	 color	 scales,	which	 are	 color	 scales	 that	 contain	 both	 a	 set	 of	 subdued
colors	 and	 a	 matching	 set	 of	 stronger,	 darker,	 and/or	 more	 saturated	 colors
(Figure	4.7).



Figure	4.7:	Example	accent	color	scales,	each	with	four	base	colors	and	three
accent	colors.	Accent	color	scales	can	be	derived	in	several	different	ways:	(top)
we	can	take	an	existing	color	scale	(e.g.,	the	Okabe	Ito	scale,	Fig	4.1)	and	lighten
and/or	partially	desaturate	some	colors	while	darkening	others;	(middle)	we	can
take	gray	values	and	pair	them	with	colors;	(bottom)	we	can	use	an	existing

accent	color	scale,	e.g.	the	one	from	the	ColorBrewer	project.

As	an	example	of	how	the	same	data	can	support	differing	stories	with	different
coloring	approaches,	I	have	created	a	variant	of	Figure	4.2	where	now	I	highlight
two	 specific	 states,	 Texas	 and	 Louisiana	 (Figure	 4.8).	 Both	 states	 are	 in	 the
South,	 they	 are	 immediate	 neighbors,	 and	 yet	 one	 state	 (Texas)	was	 the	 fifth-
fastest	 growing	 state	 within	 the	 U.S.	 whereas	 the	 other	 was	 the	 third	 slowest
growing	from	2000	to	2010.



Figure	4.8:	From	2000	to	2010,	the	two	neighboring	southern	states	Texas	and
Louisiana	have	experienced	among	the	highest	and	lowest	population	growth

across	the	U.S.	Data	source:	U.S.	Census	Bureau

When	working	with	 accent	 colors,	 it	 is	 critical	 that	 the	 baseline	 colors	 do	 not
compete	 for	attention.	Notice	how	drab	 the	baseline	colors	are	 in	 (Figure	4.8).
Yet	they	work	well	to	support	the	accent	color.	It	is	easy	to	make	the	mistake	of
using	baseline	colors	that	are	too	colorful,	so	that	they	end	up	competing	for	the



reader's	 attention	 against	 the	 accent	 colors.	There	 is	 an	 easy	 remedy,	 however.
Just	remove	all	color	from	all	elements	in	the	figure	except	the	highlighted	data
categories	or	points.	An	example	of	this	strategy	is	provided	in	Figure	4.9.

Figure	4.9:	Track	athletes	are	among	the	shortest	and	leanest	of	male
professional	athletes	participating	in	popular	sports.	Data	source:	Telford	and

Cunningham	(1991)
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5	Directory	of	visualizations
This	chapter	provides	a	quick	visual	overview	of	the	various	plots	and	charts	that
are	 commonly	 used	 to	 visualize	 data.	 It	 is	 meant	 both	 to	 serve	 as	 a	 table	 of
contents,	in	case	you	are	looking	for	a	particular	visualization	whose	name	you
may	not	know,	and	as	a	source	of	inspiration,	if	you	need	to	find	alternatives	to
the	figures	you	routinely	make.

5.1	Amounts

The	 most	 common	 approach	 to	 visualizing	 amounts	 (i.e.,	 numerical	 values
shown	for	some	set	of	categories)	is	using	bars,	either	vertically	or	horizontally
arranged	(Chapter	6).	However,	instead	of	using	bars,	we	can	also	place	dots	at
the	location	where	the	corresponding	bar	would	end	(Chapter	6).



If	there	are	two	or	more	sets	of	categories	for	which	we	want	to	show	amounts,
we	can	group	or	stack	the	bars	(Chapter	6).	We	can	also	map	the	categories	onto
the	x	and	y	axis	and	show	amounts	by	color,	via	a	heatmap	(Chapter	6).

5.2	Distributions

Histograms	 and	 density	 plots	 (Chapter	 7)	 provide	 the	 most	 intuitive
visualizations	of	a	distribution,	but	both	require	arbitrary	parameter	choices	and
can	 be	 misleading.	 Cumulative	 densities	 and	 quantile-quantile	 (q-q)	 plots
(Chapter	 8)	 always	 represent	 the	 data	 faithfully	 but	 can	 be	 more	 difficult	 to
interpret.



Boxplots,	 violins,	 strip	 charts,	 and	 sina	 plots	 are	 useful	 when	 we	 want	 to
visualize	 many	 distributions	 at	 once	 and/or	 if	 we	 are	 primarily	 interested	 in
overall	 shifts	 among	 the	 distributions	 (Chapter	 9.1).	 Stacked	 histograms	 and
overlapping	densities	allow	a	more	in-depth	comparison	of	a	smaller	number	of
distributions,	though	stacked	histograms	can	be	difficult	to	interpret	and	are	best
avoided	(Chapter	7.2).	Ridgeline	plots	can	be	a	useful	alternative	to	violin	plots
and	 are	 often	 useful	 when	 visualizing	 very	 large	 numbers	 of	 distributions	 or
changes	in	distributions	over	time	(Chapter	9.2).

5.3	Proportions

Proportions	 can	 be	 visualized	 as	 pie	 charts,	 side-by-side	 bars,	 or	 stacked	 bars
(Chapter	 10),	 and	 as	 in	 the	 case	 for	 amounts,	 bars	 can	 be	 arranged	 either
vertically	or	horizontally.	Pie	charts	emphasize	that	the	individual	parts	add	up	to
a	whole	and	highlight	simple	fractions.	However,	the	individual	pieces	are	more



easily	compared	in	side-by-side	bars.	Stacked	bars	look	awkward	for	a	single	set
of	proportions,	but	 can	be	useful	when	comparing	multiple	 sets	of	proportions
(see	below).

When	visualizing	multiple	sets	of	proportions	or	changes	 in	proportions	across
conditions,	 pie	 charts	 tend	 to	 be	 space-inefficient	 and	 often	 obscure
relationships.	 Grouped	 bars	 work	 well	 as	 long	 as	 the	 number	 of	 conditions
compared	 is	 moderate,	 and	 stacked	 bars	 can	 work	 for	 large	 numbers	 of
conditions.	Stacked	densities	(Chapter	10)	are	appropriate	when	the	proportions
change	along	a	continuous	variable.

When	proportions	 are	 specified	 according	 to	multiple	 grouping	variables,	 then
mosaic	 plots,	 treemaps,	 or	 parallel	 sets	 are	 useful	 visualization	 approaches
(Chapter	11).	Mosaic	plots	assume	that	every	level	of	one	grouping	variable	can
be	combined	with	every	level	of	another	grouping	variable,	whereas	treemaps	do
not	make	such	an	assumption.	Treemaps	work	well	even	 if	 the	subdivisions	of
one	 group	 are	 entirely	 distinct	 from	 the	 subdivisions	 of	 another.	 Parallel	 sets
work	better	than	either	mosaic	plots	or	treemaps	when	there	are	more	than	two
grouping	variables.

5.4	x--y	relationships



Scatterplots	represent	the	archetypical	visualization	when	we	want	to	show	one
quantitative	 variable	 relative	 to	 another	 (Chapter	 12.1).	 If	 we	 have	 three
quantitative	variables,	we	can	map	one	onto	the	dot	size,	creating	a	variant	of	the
scatterplot	called	bubble	chart.	For	paired	data,	where	the	variables	along	the	x
and	the	y	axes	are	measured	in	the	same	units,	it	is	generally	helpful	to	add	a	line
indicating	x	=	y	(Chapter	12.4).	Paired	data	can	also	be	shown	as	a	slope	graph
of	paired	points	connected	by	straight	lines	(Chapter	12.4).

For	large	numbers	of	points,	regular	scatterplots	can	become	uninformative	due
to	overplotting.	In	this	case,	contour	lines,	2D	bins,	or	hex	bins	may	provide	an
alternative	(Chapter	18).	When	we	want	 to	visualize	more	 than	 two	quantities,
on	the	other	hand,	we	may	choose	to	plot	correlation	coefficients	in	the	form	of	a
correlogram	instead	of	the	underlying	raw	data	(Chapter	12.2).

When	 the	 x	 axis	 represents	 time	 or	 a	 strictly	 increasing	 quantity	 such	 as	 a



treatment	 dose,	 we	 commonly	 draw	 line	 graphs	 (Chapter	 13).	 If	 we	 have	 a
temporal	 sequence	 of	 two	 response	 variables,	 we	 can	 draw	 a	 connected
scatterplot	 where	we	 first	 plot	 the	 two	 response	 variables	 in	 a	 scatterplot	 and
then	connect	dots	corresponding	to	adjacent	time	points	(Chapter	13.3).	We	can
use	smooth	lines	to	represent	trends	in	a	larger	dataset	(Chapter	14).

5.5	Geospatial	data

The	primary	mode	of	showing	geospatial	data	is	in	the	form	of	a	map	(Chapter
15).	A	map	takes	coordinates	on	the	globe	and	projects	them	onto	a	flat	surface,
such	 that	 shapes	 and	 distances	 on	 the	 globe	 are	 approximately	 represented	 by
shapes	 and	 distances	 in	 the	 2D	 representation.	 In	 addition,	 we	 can	 show	 data
values	in	different	regions	by	coloring	those	regions	in	the	map	according	to	the
data.	Such	a	map	is	called	a	choropleth	(Chapter	15.3).	In	some	cases,	it	may	be
helpful	 to	 distort	 the	 different	 regions	 according	 to	 some	 other	 quantity	 (e.g.,
population	 number)	 or	 simplify	 each	 region	 into	 a	 square.	 Such	 visualizations
are	called	cartograms.

5.6	Uncertainty

Error	bars	are	meant	to	indicate	the	range	of	likely	values	for	some	estimate	or
measurement.	 They	 extend	 horizontally	 and/or	 vertically	 from	 some	 reference



point	 representing	 the	estimate	or	measurement	 (Chapter	16).	Reference	points
can	 be	 shown	 in	 various	ways,	 such	 as	 by	 dots	 or	 by	 bars.	Graded	 error	 bars
show	 multiple	 ranges	 at	 the	 same	 time,	 where	 each	 range	 corresponds	 to	 a
different	 degree	 of	 confidence.	 They	 are	 in	 effect	 multiple	 error	 bars	 with
different	line	thicknesses	plotted	on	top	of	each	other.

To	 achieve	 a	 more	 detailed	 visualization	 than	 is	 possible	 with	 error	 bars	 or
graded	 error	 bars,	 we	 can	 visualize	 the	 actual	 confidence	 or	 posterior
distributions	 (Chapter	 16).	 Confidence	 strips	 provide	 a	 clear	 visual	 sense	 of
uncertainty	but	are	difficult	to	read	accurately.	Eyes	and	half-eyes	combine	error
bars	 with	 approaches	 to	 visualize	 distributions	 (violins	 and	 ridgelines,
respectively),	and	thus	show	both	precise	ranges	for	some	confidence	levels	and
the	 overall	 uncertainty	 distribution.	 A	 quantile	 dot	 plot	 can	 serve	 as	 an
alternative	 visualization	 of	 an	 uncertainty	 distribution	 (Chapter	 16.1).	 By
showing	the	distribution	in	discrete	units,	the	quantile	dot	plot	is	not	as	precise
but	can	be	easier	 to	 read	 than	 the	continuous	distribution	shown	by	a	violin	or
ridgeline	plot.

For	 smooth	 line	 graphs,	 the	 equivalent	 of	 an	 error	 bar	 is	 a	 confidence	 band
(Chapter	16.3).	It	shows	a	range	of	values	the	line	might	pass	through	at	a	given
confidence	 level.	As	 in	 the	case	of	error	bars,	we	can	draw	graded	confidence
bands	that	show	multiple	confidence	levels	at	once.	We	can	also	show	individual
fitted	draws	in	lieu	of	or	in	addition	to	the	confidence	bands.
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6	Visualizing	amounts
In	many	scenarios,	we	are	interested	in	the	magnitude	of	some	set	of	numbers.
For	 example,	 we	 might	 want	 to	 visualize	 the	 total	 sales	 volume	 of	 different
brands	of	cars,	or	the	total	number	of	people	living	in	different	cities,	or	the	age
of	 olympians	 performing	 different	 sports.	 In	 all	 these	 cases,	 we	 have	 a	 set	 of
categories	(e.g.,	brands	of	cars,	cities,	or	sports)	and	a	quantitative	value	for	each
category.	 I	 refer	 to	 these	 cases	 as	 visualizing	 amounts,	 because	 the	 main
emphasis	 in	 these	 visualizations	 will	 be	 on	 the	 magnitude	 of	 the	 quantitative
values.	The	standard	visualization	in	this	scenario	is	the	bar	plot,	which	comes	in
several	 variations,	 including	 simple	 bars	 as	well	 as	 grouped	 and	 stacked	 bars.
Alternatives	to	the	bar	plot	are	the	dot	plot	and	the	heatmap.

6.1	Bar	plots

To	motivate	the	concept	of	a	bar	plot,	consider	the	total	ticket	sales	for	the	most
popular	movies	on	a	given	weekend.	Table	6.1	shows	the	top-five	weekend	gross
ticket	sales	on	the	Christmas	weekend	of	2017.	The	movie	"Star	Wars:	The	Last
Jedi"	was	by	far	the	most	popular	movie	on	that	weekend,	outselling	the	fourth-
and	fifth-ranked	movies	"The	Greatest	Showman"	and	"Ferdinand"	by	almost	a
factor	of	10.

Table	6.1:	Highest	grossing	movies	for	the	weekend	of
December	22-24,	2017.	Data	source:	Box	Office	Mojo
(http://www.boxofficemojo.com/).	Used	with	permission
Rank Title Weekend	gross
1 Star	Wars:	The	Last	Jedi $71,565,498
2 Jumanji:	Welcome	to	the	Jungle $36,169,328
3 Pitch	Perfect	3 $19,928,525
4 The	Greatest	Showman $8,805,843
5 Ferdinand $7,316,746

This	kind	of	data	is	commonly	visualized	with	vertical	bars.	For	each	movie,	we
draw	a	bar	that	starts	at	zero	and	extends	all	the	way	to	the	dollar	value	for	that
movie's	weekend	gross	(Figure	6.1).	This	visualization	is	called	a	bar	plot	or	bar

http://www.boxofficemojo.com/


chart.

Figure	6.1:	Highest	grossing	movies	for	the	weekend	of	December	22-24,	2017,
displayed	as	a	bar	plot.	Data	source:	Box	Office	Mojo

(http://www.boxofficemojo.com/).	Used	with	permission

One	 problem	 we	 commonly	 encounter	 with	 vertical	 bars	 is	 that	 the	 labels
identifying	 each	 bar	 take	 up	 a	 lot	 of	 horizontal	 space.	 In	 fact,	 I	 had	 to	make
Figure	6.1	 fairly	wide	 and	 space	 out	 the	 bars	 so	 that	 I	 could	 place	 the	movie
titles	 underneath.	 To	 save	 horizontal	 space,	 we	 could	 place	 the	 bars	 closer
together	and	rotate	the	labels	(Figure	6.2).	However,	I	am	not	a	big	proponent	of
rotated	 labels.	 I	 find	 the	 resulting	plots	awkward	and	difficult	 to	 read.	And,	 in
my	experience,	whenever	the	labels	are	too	long	to	place	horizontally	they	also
don't	look	good	rotated.

http://www.boxofficemojo.com/


Figure	6.2:	Highest	grossing	movies	for	the	weekend	of	December	22-24,	2017,
displayed	as	a	bar	plot	with	rotated	axis	tick	labels.	Rotated	axis	tick	labels	tend
to	be	difficult	to	read	and	require	awkward	space	use	undearneath	the	plot.	For
these	reasons,	I	generally	consider	plots	with	rotated	tick	labels	to	be	ugly.	Data

source:	Box	Office	Mojo	(http://www.boxofficemojo.com/).	Used	with
permission

The	better	solution	for	long	labels	is	usually	to	swap	the	x	and	the	y	axis,	so	that
the	 bars	 run	 horizontally	 (Figure	 6.3).	 After	 swapping	 the	 axes,	 we	 obtain	 a
compact	figure	in	which	all	visual	elements,	 including	all	 text,	are	horizontally
oriented.	As	a	 result,	 the	 figure	 is	much	easier	 to	 read	 than	Figure	6.2	or	even
Figure	6.1.

http://www.boxofficemojo.com/


Figure	6.3:	Highest	grossing	movies	for	the	weekend	of	December	22-24,	2017,
displayed	as	a	horizontal	bar	plot.	Data	source:	Box	Office	Mojo

(http://www.boxofficemojo.com/).	Used	with	permission

Regardless	of	whether	we	place	bars	vertically	or	horizontally,	we	need	 to	pay
attention	to	the	order	in	which	the	bars	are	arranged.	I	often	see	bar	plots	where
the	bars	are	arranged	arbitrarily	or	by	some	criterion	that	is	not	meaningful	in	the
context	 of	 the	 figure.	 Some	 plotting	 programs	 arrange	 bars	 by	 default	 in
alphabetic	 order	 of	 the	 labels,	 and	 other,	 similarly	 arbitrary	 arrangements	 are
possible	 (Figure	6.4).	 In	 general,	 the	 resulting	 figures	 are	more	 confusing	 and
less	intuitive	than	figures	where	bars	are	arranged	in	order	of	their	size.

http://www.boxofficemojo.com/


Figure	6.4:	Highest	grossing	movies	for	the	weekend	of	December	22-24,	2017,
displayed	as	a	horizontal	bar	plot.	Here,	the	bars	have	been	placed	in	descending
order	of	the	lengths	of	the	movie	titles.	This	arrangement	of	bars	is	arbitrary,	it
doesn't	serve	a	meaningful	purpose,	and	it	makes	the	resulting	figure	much	less

intuitive	than	Figure	6.3.	Data	source:	Box	Office	Mojo
(http://www.boxofficemojo.com/).	Used	with	permission

We	should	only	rearrange	bars,	however,	when	there	is	no	natural	ordering	to	the
categories	 the	 bars	 represent.	Whenever	 there	 is	 a	 natural	 ordering	 (i.e.,	when
our	 categorical	 variable	 is	 an	ordered	 factor)	we	 should	 retain	 that	 ordering	 in
the	visualization.	For	example,	Figure	6.5	shows	 the	median	annual	 income	 in
the	U.S.	 by	 age	 groups.	 In	 this	 case,	 the	 bars	 should	 be	 arranged	 in	 order	 of
increasing	age.	Sorting	by	bar	height	while	 shuffling	 the	age	groups	makes	no
sense	(Figure	6.6).

http://www.boxofficemojo.com/


Figure	6.5:	2016	median	U.S.	annual	household	income	versus	age	group.	The
45--54	year	age	group	has	the	highest	median	income.	Data	source:	United

States	Census	Bureau

Figure	6.6:	2016	median	U.S.	annual	household	income	versus	age	group,	sorted
by	income.	While	this	order	of	bars	looks	visually	appealing,	the	order	of	the	age



groups	is	now	confusing.	Data	source:	United	States	Census	Bureau

Pay	attention	 to	 the	bar	order.	 If	 the	bars	 represent	unordered	categories,	order
them	by	ascending	or	descending	data	values.

6.2	Grouped	and	stacked	bars

All	 examples	 from	 the	previous	 subsection	 showed	how	a	quantitative	amount
varied	 with	 respect	 to	 one	 categorical	 variable.	 Frequently,	 however,	 we	 are
interested	 in	 two	categorical	variables	at	 the	same	 time.	For	example,	 the	U.S.
Census	 Bureau	 provides	median	 income	 levels	 broken	 down	 by	 both	 age	 and
race.	We	 can	 visualize	 this	 dataset	with	 a	 grouped	 bar	 plot	 (Figure	 6.7).	 In	 a
grouped	 bar	 plot,	 we	 draw	 a	 group	 of	 bars	 at	 each	 position	 along	 the	 x	 axis,
determined	 by	 one	 categorical	 variable,	 and	 then	 we	 draw	 bars	 within	 each
group	according	to	the	other	categorical	variable.

Figure	6.7:	2016	median	U.S.	annual	household	income	versus	age	group	and
race.	Age	groups	are	shown	along	the	x	axis,	and	for	each	age	group	there	are
four	bars,	corresponding	to	the	median	income	of	Asian,	white,	Hispanic,	and

black	people,	respectively.	Data	source:	United	States	Census	Bureau

Grouped	bar	plots	show	a	lot	of	information	at	once	and	they	can	be	confusing.
In	 fact,	 even	 though	 I	 have	 not	 labeled	 Figure	 6.7	 as	 bad	 or	 ugly,	 I	 find	 it
difficult	 to	 read.	 In	particular,	 it	 is	difficult	 to	compare	median	 incomes	across



age	groups	for	a	given	racial	group.	So	this	figure	is	only	appropriate	if	we	are
primarily	 interested	 in	 the	 differences	 in	 income	 levels	 among	 racial	 groups,
separately	for	specific	age	groups.	If	we	care	more	about	the	overall	pattern	of
income	levels	among	racial	groups,	it	may	be	preferable	to	show	race	along	the	x
axis	and	show	ages	as	distinct	bars	within	each	racial	group	(Figure	6.8).

Figure	6.8:	2016	median	U.S.	annual	household	income	versus	age	group	and
race.	In	contrast	to	Figure	6.7,	now	race	is	shown	along	the	x	axis,	and	for	each
race	we	show	seven	bars	according	to	the	seven	age	groups.	Data	source:	United

States	Census	Bureau

Both	Figures	6.7	and	6.8	encode	one	categorical	variable	by	position	along	the	x
axis	and	 the	other	by	bar	color.	And	in	both	cases,	 the	encoding	by	position	 is
easy	to	read	while	the	encoding	by	bar	color	requires	more	mental	effort,	as	we
have	to	mentally	match	the	colors	of	the	bars	against	the	colors	in	the	legend.	We
can	 avoid	 this	 added	mental	 effort	 by	 showing	 four	 separate	 regular	 bar	 plots
rather	than	one	grouped	bar	plot	(Figure	6.9).	Which	of	these	various	options	we
choose	is	ultimately	a	matter	of	taste.	I	would	likely	choose	Figure	6.9,	because
it	circumvents	the	need	for	different	bar	colors.



Figure	6.9:	2016	median	U.S.	annual	household	income	versus	age	group	and
race.	Instead	of	displaying	this	data	as	a	grouped	bar	plot,	as	in	Figures	6.7	and
6.8,	we	now	show	the	data	as	four	separate	regular	bar	plots.	This	choice	has	the
advantage	that	we	don't	need	to	encode	either	categorical	variable	by	bar	color.

Data	source:	United	States	Census	Bureau

Instead	 of	 drawing	 groups	 of	 bars	 side-by-side,	 it	 is	 sometimes	 preferable	 to
stack	bars	on	top	of	each	other.	Stacking	is	useful	when	the	sum	of	the	amounts
represented	by	the	individual	stacked	bars	is	in	itself	a	meaningful	amount.	So,
while	it	would	not	make	sense	to	stack	the	median	income	values	of	Figure	6.7
(the	sum	of	two	median	income	values	is	not	a	meaningful	value),	it	might	make
sense	to	stack	the	weekend	gross	values	of	Figure	6.1	(the	sum	of	the	weekend
gross	 values	 of	 two	 movies	 is	 the	 total	 gross	 for	 the	 two	movies	 combined).
Stacking	 is	 also	 appropriate	 when	 the	 individual	 bars	 represent	 counts.	 For
example,	in	a	dataset	of	people,	we	can	either	count	men	and	women	separately
or	we	can	count	them	together.	If	we	stack	a	bar	representing	a	count	of	women
on	 top	 of	 a	 bar	 representing	 a	 count	 of	 men,	 then	 the	 combined	 bar	 height
represents	the	total	count	of	people	regardless	of	gender.

I	 will	 demonstrate	 this	 principle	 using	 a	 dataset	 about	 the	 passengers	 of	 the
transatlantic	ocean	liner	Titanic,	which	sank	on	April	15,	1912.	On	board	were



approximately	 1300	 passengers,	 not	 counting	 crew.	 The	 passengers	 were
traveling	in	one	of	three	classes	(1st,	2nd,	or	3rd),	and	there	were	almost	twice	as
many	 male	 as	 female	 passengers	 on	 the	 ship.	 To	 visualize	 the	 breakdown	 of
passengers	 by	 class	 and	 gender,	we	 can	 draw	 separate	 bars	 for	 each	 class	 and
gender	 and	 stack	 the	 bars	 representing	women	on	 top	 of	 the	 bars	 representing
men,	 separately	 for	 each	 class	 (Figure	6.10).	 The	 combined	 bars	 represent	 the
total	number	of	passengers	in	each	class.

Figure	6.10:	Numbers	of	female	and	male	passengers	on	the	Titanic	traveling	in
1st,	2nd,	and	3rd	class.

Figure	6.10	differs	from	the	previous	bar	plots	I	have	shown	in	that	there	is	no
explicit	y	 axis.	 I	 have	 instead	 shown	 the	actual	numerical	values	 that	 each	bar
represents.	Whenever	a	plot	is	meant	to	display	only	a	small	number	of	different
values,	 it	makes	sense	 to	add	 the	actual	numbers	 to	 the	plot.	This	substantially
increases	the	amount	of	information	conveyed	by	the	plot	without	adding	much
visual	noise,	and	it	removes	the	need	for	an	explicit	y	axis.

6.3	Dot	plots	and	heatmaps

Bars	are	not	the	only	option	for	visualizing	amounts.	One	important	limitation	of
bars	is	that	they	need	to	start	at	zero,	so	that	the	bar	length	is	proportional	to	the
amount	 shown.	For	 some	datasets,	 this	 can	be	 impractical	or	may	obscure	key



features.	In	this	case,	we	can	indicate	amounts	by	placing	dots	at	the	appropriate
locations	along	the	x	or	y	axis.

Figure	 6.11	 demonstrates	 this	 visualization	 approach	 for	 a	 dataset	 of	 life
expectancies	 in	 25	 countries	 in	 the	 Americas.	 The	 citizens	 of	 these	 countries
have	 life	 expectancies	 between	 60	 and	 81	 years,	 and	 each	 individual	 life
expectancy	value	is	shown	with	a	blue	dot	at	the	appropriate	location	along	the	x
axis.	By	 limiting	 the	axis	 range	 to	 the	 interval	 from	60	 to	81	years,	 the	 figure
highlights	the	key	features	of	this	dataset:	Canada	has	the	highest	life	expectancy
among	 all	 listed	 countries,	 and	 Bolivia	 and	 Haiti	 have	 much	 lower	 life
expectancies	than	all	other	countries.	If	we	had	used	bars	instead	of	dots	(Figure
6.12),	we'd	have	made	a	much	 less	compelling	 figure.	Because	 the	bars	are	so
long	in	this	figure,	and	they	all	have	nearly	the	same	length,	the	eye	is	drawn	to
the	 middle	 of	 the	 bars	 rather	 than	 to	 their	 end	 points,	 and	 the	 figure	 fails	 to
convey	its	message.



Figure	6.11:	Life	expectancies	of	countries	in	the	Americas,	for	the	year	2007.
Data	source:	Gapminder	project

Figure	6.12:	Life	expectancies	of	countries	in	the	Americas,	for	the	year	2007,
shown	as	bars.	This	dataset	is	not	suitable	for	being	visualized	with	bars.	The
bars	are	too	long	and	they	draw	attention	away	from	the	key	feature	of	the	data,
the	differences	in	life	expectancy	among	the	different	countries.	Data	source:

Gapminder	project

Regardless	of	whether	we	use	bars	or	dots,	however,	we	need	to	pay	attention	to
the	 ordering	 of	 the	 data	 values.	 In	 Figures	 6.11	 and	 6.12,	 the	 countries	 are
ordered	 in	 descending	 order	 of	 life	 expectancy.	 If	 we	 instead	 ordered	 them
alphabetically,	we'd	end	up	with	a	disordered	cloud	of	points	 that	 is	 confusing
and	fails	to	convey	a	clear	message	(Figure	6.13).



Figure	6.13:	Life	expectancies	of	countries	in	the	Americas,	for	the	year	2007.
Here,	the	countries	are	ordered	alphabetically,	which	causes	a	dots	to	form	a

disordered	cloud	of	points.	This	makes	the	figure	difficult	to	read,	and	therefore
it	deserves	to	be	labeled	as	"bad."	Data	source:	Gapminder	project

All	examples	so	far	have	represented	amounts	by	location	along	a	position	scale,
either	 through	 the	end	point	of	a	bar	or	 the	placement	of	a	dot.	For	very	 large
datasets,	 neither	 of	 these	 options	 may	 be	 appropriate,	 because	 the	 resulting
figure	would	become	too	busy.	We	had	already	seen	in	Figure	6.7	that	just	seven
groups	of	four	data	values	can	result	in	a	figure	that	is	complex	and	not	that	easy
to	read.	If	we	had	20	groups	of	20	data	values,	a	similar	figure	would	likely	be
highly	confusing.

As	an	alternative	to	mapping	data	values	onto	positions	via	bars	or	dots,	we	can
map	data	values	onto	colors.	Such	a	figure	is	called	a	heatmap.	Figure	6.14	uses
this	approach	to	show	the	percentage	of	internet	users	over	time	in	20	countries



and	for	23	years,	from	1994	to	2016.	While	this	visualization	makes	it	harder	to
determine	 the	 exact	 data	 values	 shown	 (e.g.,	 what's	 the	 exact	 percentage	 of
internet	 users	 in	 the	 United	 States	 in	 2015?),	 it	 does	 an	 excellent	 job	 of
highlighting	broader	 trends.	We	can	see	clearly	 in	which	countries	 internet	use
began	early	 and	which	 it	 did	not,	 and	we	can	also	 see	 clearly	which	countries
have	high	internet	penetration	in	the	final	year	covered	by	the	dataset	(2016).

Figure	6.14:	Internet	adoption	over	time,	for	select	countries.	Color	represents
the	percent	of	internet	users	for	the	respective	country	and	year.	Countries	were

ordered	by	percent	internet	users	in	2016.	Data	source:	World	Bank

As	is	 the	case	with	all	other	visualization	approaches	discussed	in	 this	chapter,
we	 need	 to	 pay	 attention	 to	 the	 ordering	 of	 the	 categorical	 data	 values	 when
making	 heatmaps.	 In	 Figure	 6.14,	 countries	 are	 ordered	 by	 the	 percentage	 of
internet	users	in	2016.	This	ordering	places	the	United	Kingdom,	Japan,	Canada,
and	Germany	above	 the	United	States,	because	all	 these	countries	have	higher
internet	penetration	in	2016	than	the	United	States	does,	even	though	the	United
States	 saw	 significant	 internet	 use	 at	 an	 earlier	 time.	 Alternatively,	 we	 could
order	 countries	 by	 how	 early	 they	 started	 to	 see	 significant	 internet	 usage.	 In
Figure	6.15,	countries	are	ordered	by	the	year	in	which	internet	usage	first	rose
to	above	20%.	In	this	figure,	the	United	States	falls	into	the	third	position	from



the	 top,	 and	 it	 stands	 out	 for	 having	 relatively	 low	 internet	 usage	 in	 2016
compared	to	how	early	internet	usage	started	there.	A	similar	pattern	can	be	seen
for	Italy.	Israel	and	France,	by	contrast,	started	relatively	late	but	gained	ground
rapidly.

Figure	6.15:	Internet	adoption	over	time,	for	select	countries.	Countries	were
ordered	by	the	year	in	which	their	internet	usage	first	exceeded	20%.	Data

source:	World	Bank

Both	Figures	6.14	and	6.15	are	valid	 representations	of	 the	data.	Which	one	 is
prefered	depends	on	the	story	we	want	 to	convey.	If	our	story	is	about	 internet
usage	in	2016,	then	Figures	6.14	is	probably	the	better	choice.	If,	however,	our
story	 is	 about	 how	 early	 or	 late	 adoption	 of	 the	 internet	 relates	 to	 current-day
usage,	then	Figure	6.15	is	preferable.
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7	Visualizing	distributions:
Histograms	and	density	plots
We	frequently	encounter	the	situation	where	we	would	like	to	understand	how	a
particular	variable	is	distributed	in	a	dataset.	To	give	a	concrete	example,	we	will
consider	 the	 passengers	 of	 the	 Titanic,	 a	 data	 set	 we	 encountered	 already	 in
Chapter	 6.	 There	 were	 approximately	 1300	 passengers	 on	 the	 Titanic	 (not
counting	crew),	and	we	have	reported	ages	for	756	of	them.	We	might	want	to
know	how	many	 passengers	 of	what	 ages	 there	were	 on	 the	Titanic,	 i.e.,	 how
many	children,	young	adults,	middle-aged	people,	seniors,	and	so	on.	We	call	the
relative	proportions	of	different	ages	among	the	passengers	the	age	distribution
of	the	passengers.

7.1	Visualizing	a	single	distribution

We	can	obtain	a	sense	of	the	age	distribution	among	the	passengers	by	grouping
all	passengers	into	bins	with	comparable	ages	and	then	counting	the	number	of
passengers	in	each	bin.	This	procedure	results	in	a	table	such	as	Table	7.1.

Table	7.1:	Numbers	of	passenger	with	known	age	on	the
Titanic.

Age	range Count
0--5 36
6--10 19
11--15 18
16--20 99
21--25 139
26--30 121

Age	range Count
31--35 76
36--40 74
41--45 54
46--50 50
51--55 26
56--60 22

Age	range Count
61--65 16
66--70 3
71--75 3

We	 can	 visualize	 this	 table	 by	 drawing	 filled	 rectangles	 whose	 heights
correspond	 to	 the	counts	and	whose	widths	correspond	 to	 the	width	of	 the	age
bins	(Figure	7.1).	Such	a	visualization	is	called	a	histogram.	(Note	that	all	bins
must	have	the	same	width	for	the	visualization	to	be	a	valid	histogram.)



Figure	7.1:	Histogram	of	the	ages	of	Titanic	passengers.

Because	 histograms	 are	 generated	 by	 binning	 the	 data,	 their	 exact	 visual
appearance	depends	on	the	choice	of	the	bin	width.	Most	visualization	programs
that	generate	histograms	will	choose	a	bin	width	by	default,	but	chances	are	that
bin	width	 is	 not	 the	most	 appropriate	 one	 for	 any	histogram	you	may	want	 to
make.	It	is	therefore	critical	to	always	try	different	bin	widths	to	verify	that	the
resulting	histogram	reflects	the	underlying	data	accurately.	In	general,	if	the	bin
width	is	too	small,	then	the	histogram	becomes	overly	peaky	and	visually	busy
and	the	main	trends	in	the	data	may	be	obscured.	On	the	other	hand,	if	 the	bin
width	is	too	large,	then	smaller	features	in	the	distribution	of	the	data,	such	as	the
dip	around	age	10,	may	disappear.

For	the	age	distribution	of	Titanic	passengers,	we	can	see	that	a	bin	width	of	one
year	is	too	small	and	a	bin	width	of	fifteen	years	is	too	large,	whereas	bin	widths
between	three	to	five	years	work	fine	(Figure	7.2).



Figure	7.2:	Histograms	depend	on	the	chosen	bin	width.	Here,	the	same	age
distribution	of	Titanic	passengers	is	shown	with	four	different	bin	widths:	(a)	one

year;	(b)	three	years;	(c)	five	years;	(d)	fifteen	years.

When	making	a	histogram,	always	explore	multiple	bin	widths.

Histograms	 have	 been	 a	 popular	 visualization	 option	 since	 at	 least	 the	 18th
century,	 in	 part	 because	 they	 are	 easily	 generated	 by	 hand.	More	 recently,	 as
extensive	 computing	power	has	 become	available	 in	 everyday	devices	 such	 as
laptops	 and	 cell	 phones,	 we	 see	 them	 increasingly	 being	 replaced	 by	 density
plots.	 In	 a	 density	 plot,	 we	 attempt	 to	 visualize	 the	 underlying	 probability
distribution	of	the	data	by	drawing	an	appropriate	continuous	curve	(Figure	7.3).
This	 curve	needs	 to	be	 estimated	 from	 the	data,	 and	 the	most	 commonly	used
method	 for	 this	 estimation	 procedure	 is	 called	 kernel	 density	 estimation.	 In
kernel	density	estimation,	we	draw	a	continuous	curve	(the	kernel)	with	a	small
width	(controlled	by	a	parameter	called	bandwidth)	at	the	location	of	each	data
point,	and	 then	we	add	up	all	 these	curves	 to	obtain	 the	 final	density	estimate.
The	most	widely	used	kernel	 is	a	Gaussian	kernel	(i.e.,	a	Gaussian	bell	curve),
but	there	are	many	other	choices.



Figure	7.3:	Kernel	density	estimate	of	the	age	distribution	of	passengers	on	the
Titanic.	The	height	of	the	curve	is	scaled	such	that	the	area	under	the	curve
equals	one.	The	density	estimate	was	performed	with	a	Gaussian	kernel	and	a

bandwidth	of	2.

Just	as	is	the	case	with	histograms,	the	exact	visual	appearance	of	a	density	plot
depends	 on	 the	 kernel	 and	 bandwidth	 choices	 (Figure	 7.4).	 The	 bandwidth
parameter	behaves	similarly	to	the	bin	width	in	histograms.	If	the	bandwidth	is
too	small,	then	the	density	estimate	can	become	overly	peaky	and	visually	busy
and	 the	 main	 trends	 in	 the	 data	 may	 be	 obscured.	 On	 the	 other	 hand,	 if	 the
bandwidth	is	too	large,	then	smaller	features	in	the	distribution	of	the	data	may
disappear.	 In	addition,	 the	choice	of	 the	kernel	affects	 the	shape	of	 the	density
curve.	For	example,	a	Gaussian	kernel	will	have	a	tendency	to	produce	density
estimates	that	look	Gaussian-like,	with	smooth	features	and	tails.	By	contrast,	a
rectangular	 kernel	 can	 generate	 the	 appearance	 of	 steps	 in	 the	 density	 curve
(Figure	7.4d).	In	general,	the	more	data	points	there	are	in	the	data	set,	the	less
the	choice	of	the	kernel	matters.	Therefore,	density	plots	tend	to	be	quite	reliable
and	informative	for	large	data	sets	but	can	be	misleading	for	data	sets	of	only	a
few	points.



Figure	7.4:	Kernel	density	estimates	depend	on	the	chosen	kernel	and
bandwidth.	Here,	the	same	age	distribution	of	Titanic	passengers	is	shown	for
four	different	combinations	of	these	parameters:	(a)	Gaussian	kernel,	bandwidth
=	0.5;	(b)	Gaussian	kernel,	bandwidth	=	2;	(c)	Gaussian	kernel,	bandwidth	=	5;

(d)	Rectangular	kernel,	bandwidth	=	2.

Density	curves	are	usually	scaled	such	that	the	area	under	the	curve	equals	one.
This	convention	can	make	the	y	axis	scale	confusing,	because	it	depends	on	the
units	of	the	x	axis.	For	example,	in	the	case	of	the	age	distribution,	the	data	range
on	the	x	axis	goes	from	0	to	approximately	75.	Therefore,	we	expect	 the	mean
height	of	the	density	curve	to	be	1/75	=	0.013.	Indeed,	when	looking	at	the	age
density	 curves	 (e.g.,	 Figure	 7.4),	 we	 see	 that	 the	 y	 values	 range	 from	 0	 to
approximately	0.04,	with	an	average	of	somewhere	close	to	0.01.

Kernel	density	estimates	have	one	pitfall	that	we	need	to	be	aware	of:	They	have
a	tendency	to	produce	the	appearance	of	data	where	none	exists,	in	particular	in
the	tails.	As	a	consequence,	careless	use	of	density	estimates	can	easily	lead	to
figures	that	make	nonsensical	statements.	For	example,	if	we	don't	pay	attention,
we	might	generate	 a	visualization	of	 an	age	distribution	 that	 includes	negative
ages	(Figure	7.5).



Figure	7.5:	Kernel	density	estimates	can	extend	the	tails	of	the	distribution	into
areas	where	no	data	exist	and	no	data	are	even	possible.	Here,	the	density

estimate	has	been	allowed	to	extend	into	the	negative	age	range.	This	is	clearly
nonsensical	and	should	be	avoided.

Always	 verify	 that	 your	 density	 estimate	 does	 not	 predict	 the	 existence	 of
nonsensical	data	values.

So	 should	 you	 use	 a	 histogram	 or	 a	 density	 plot	 to	 visualize	 a	 distribution?
Heated	 discussions	 can	 be	 had	 on	 this	 topic.	 Some	 people	 are	 vehemently
against	density	plots	and	believe	 that	 they	are	arbitrary	and	misleading.	Others
realize	that	histograms	can	be	just	as	arbitrary	and	misleading.	I	think	the	choice
is	 largely	 a	matter	 of	 taste,	 but	 sometimes	 one	 or	 the	 other	 option	may	more
accurately	 reflect	 the	 specific	 features	 of	 interest	 in	 the	 data	 at	 hand.	There	 is
also	 the	possibility	of	using	neither	and	 instead	choosing	empirical	cumulative
density	 functions	 or	 q-q	 plots	 (Chapter	 8).	 Finally,	 I	 believe	 that	 density
estimates	 have	 an	 inherent	 advantage	 over	 histograms	 as	 soon	 as	 we	 want	 to
visualize	more	than	one	distribution	at	a	time	(see	next	section).

7.2	Visualizing	multiple	distributions	at	the	same	time

In	 many	 scenarios	 we	 have	 multiple	 distributions	 we	 would	 like	 to	 visualize



simultaneously.	For	example,	 let's	say	we'd	 like	 to	see	how	the	ages	of	Titanic
passengers	 are	 distributed	 between	 men	 and	 women.	 Were	 men	 and	 women
passengers	generally	of	the	same	age,	or	was	there	an	age	difference	between	the
genders?	 One	 commonly	 employed	 visualization	 strategy	 in	 this	 case	 is	 a
stacked	histogram,	where	we	draw	the	histogram	bars	for	women	on	top	of	the
bars	for	men,	in	a	different	color	(Figure	7.6).

Figure	7.6:	Histogram	of	the	ages	of	Titanic	passengers	stratified	by	gender.	This
figure	has	been	labeled	as	"bad"	because	stacked	histograms	are	easily	confused
with	overlapping	histograms	(see	also	Figure	7.7).	In	addition,	the	heights	of	the
bars	representing	female	passengers	cannot	easily	be	compared	to	each	other.

In	my	opinion,	 this	 type	of	visualization	should	be	avoided.	There	are	 two	key
problems	 here:	 First,	 from	 just	 looking	 at	 the	 figure,	 it	 is	 never	 entirely	 clear
where	exactly	the	bars	begin.	Do	they	start	where	the	color	changes	or	are	they
meant	to	start	at	zero?	In	other	words,	are	there	about	25	females	of	age	18--20
or	are	there	almost	80?	(The	former	is	the	case.)	Second,	the	bar	heights	for	the
female	 counts	 cannot	 be	 directly	 compared	 to	 each	 other,	 because	 the	 bars	 all
start	at	a	different	height.	For	example,	the	men	were	on	average	older	than	the
women,	and	this	fact	is	not	at	all	visible	in	Figure	7.6.

We	 could	 try	 to	 address	 these	 problems	 by	 having	 all	 bars	 start	 at	 zero	 and
making	the	bars	partially	transparent	(Figure	7.7).



Figure	7.7:	Age	distributions	of	male	and	female	Titanic	passengers,	shown	as
two	overlapping	histograms.	This	figure	has	been	labeled	as	"bad"	because	there

is	no	clear	visual	indication	that	all	blue	bars	start	at	a	count	of	0.

However,	 this	approach	generates	new	problems.	Now	it	appears	 that	 there	are
actually	 three	 different	 groups,	 not	 just	 two,	 and	 we're	 still	 not	 entirely	 sure
where	each	bar	starts	and	ends.	Overlapping	histograms	don't	work	well	because
a	 semi-transparent	 bar	 drawn	 on	 top	 of	 another	 tends	 to	 not	 look	 like	 a	 semi-
transparent	bar	but	instead	like	a	bar	drawn	in	a	different	color.

Overlapping	 density	 plots	 don't	 typically	 have	 the	 problem	 that	 overlapping
histograms	 have,	 because	 the	 continuous	 density	 lines	 help	 the	 eye	 keep	 the
distributions	separate.	However,	for	this	particular	dataset,	 the	age	distributions
for	male	and	female	passengers	are	nearly	identical	up	to	around	age	17	and	then
diverge,	so	that	the	resulting	visualization	is	still	not	ideal	(Figure	7.8).



Figure	7.8:	Density	estimates	of	the	ages	of	male	and	female	Titanic	passengers.
To	highlight	that	there	were	more	male	than	female	passengers,	the	density

curves	were	scaled	such	that	the	area	under	each	curve	corresponds	to	the	total
number	of	male	and	female	passengers	with	known	age	(468	and	288,

respectively).

A	 solution	 that	works	well	 for	 this	 dataset	 is	 to	 show	 the	 age	 distributions	 of
male	and	female	passengers	separately,	each	as	a	proportion	of	 the	overall	age
distribution	 (Figure	 7.9).	 This	 visualization	 shows	 intuitively	 and	 clearly	 that
there	were	many	 fewer	women	 than	men	 in	 the	 20--50-year	 age	 range	 on	 the
Titanic.



Figure	7.9:	Age	distributions	of	male	and	female	Titanic	passengers,	shown	as
proportion	of	the	passenger	total.	The	colored	areas	show	the	density	estimates
of	the	ages	of	male	and	female	passengers,	respectively,	and	the	gray	areas	show

the	overall	passenger	age	distribution.

Finally,	when	we	want	to	visualize	exactly	two	distributions,	we	can	also	make
two	 separate	 histograms,	 rotate	 them	 by	 90	 degrees,	 and	 have	 the	 bars	 in	 one
histogram	point	into	the	opposite	direction	of	the	other.	This	trick	is	commonly
employed	when	 visualizing	 age	 distributions,	 and	 the	 resulting	 plot	 is	 usually
called	an	age	pyramid	(Figure	7.10).



Figure	7.10:	The	age	distributions	of	male	and	female	Titanic	passengers
visualized	as	an	age	pyramid.

Importantly,	this	trick	does	not	work	when	there	are	more	than	two	distributions
we	 want	 to	 visualize	 at	 the	 same	 time.	 For	 multiple	 distributions,	 histograms
tend	to	become	highly	confusing,	whereas	density	plots	work	well	as	long	as	the
distributions	are	somewhat	distinct	and	contiguous.	For	example,	to	visualize	the
distribution	of	butterfat	percentage	among	cows	from	four	different	cattle	breeds,
density	plots	are	fine	(Figure	7.11).



Figure	7.11:	Density	estimates	of	the	butterfat	percentage	in	the	milk	of	four
cattle	breeds.	Data	Source:	Canadian	Record	of	Performance	for	Purebred	Dairy

Cattle

To	 visualize	 several	 distributions	 at	 once,	 kernel	 density	 plots	 will	 generally
work	better	than	histograms.
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8	Visualizing	distributions:	Empirical
cumulative	distribution	functions	and
q-q	plots
In	Chapter	7,	I	described	how	we	can	visualize	distributions	with	histograms	or
density	 plots.	 Both	 of	 these	 approaches	 are	 highly	 intuitive	 and	 visually
appealing.	However,	as	discussed	in	that	chapter,	they	both	share	the	limitation
that	 the	resulting	figure	depends	 to	a	substantial	degree	on	parameters	 the	user
has	 to	 choose,	 such	 as	 the	 bin	 width	 for	 histograms	 and	 the	 bandwidth	 for
density	plots.	As	a	result,	both	have	to	be	considered	as	an	interpretation	of	the
data	rather	than	a	direct	visualization	of	the	data	itself.

As	an	alternative	to	using	histograms	or	density	plots,	we	could	simply	show	all
the	data	points	 individually,	as	a	point	cloud.	However,	 this	approach	becomes
unwieldy	 for	 very	 large	 datasets,	 and	 in	 any	 case	 there	 is	 value	 in	 aggregate
methods	 that	 highlight	 properties	 of	 the	 distribution	 rather	 than	 the	 individual
data	 points.	 To	 solve	 this	 problem,	 statisticians	 have	 invented	 empirical
cumulative	 distribution	 functions	 (ecdfs)	 and	 quantile--quantile	 (q-q)	 plots.
These	 types	 of	 visualizations	 require	 no	 arbitrary	 parameter	 choices,	 and	 they
show	all	of	the	data	at	once.	Unfortunately,	they	are	a	little	less	intuitive	than	a
histogram	or	 a	density	plot	 is,	 and	 I	don't	 see	 them	used	 frequently	outside	of
highly	 technical	 publications.	 They	 are	 quite	 popular	 among	 statisticians,
though,	and	 I	 think	anybody	 interested	 in	data	visualization	should	be	 familiar
with	these	techniques.

8.1	Empirical	cumulative	distribution	functions

To	 illustrate	 cumulative	 empirical	 distribution	 functions,	 I	 will	 begin	 with	 a
hypothetical	example	that	is	closely	modeled	after	something	I	deal	with	a	lot	as
a	 professor	 in	 the	 classroom:	 a	 dataset	 of	 student	 grades.	 Assume	 our
hypothetical	class	has	50	students,	and	the	students	 just	completed	an	exam	on
which	they	could	score	between	0	and	100	points.	How	can	we	best	visualize	the
class	performance,	for	example	to	determine	appropriate	grade	boundaries?



We	 can	 plot	 the	 total	 number	 of	 students	 that	 have	 received	 at	most	 a	 certain
number	of	points	versus	all	possible	point	scores.	This	plot	will	be	an	ascending
function,	starting	at	0	 for	0	points	and	ending	at	50	for	100	points.	A	different
way	 of	 thinking	 about	 this	 visualization	 is	 the	 following:	 We	 can	 rank	 all
students	 by	 the	 number	 of	 points	 they	 obtained,	 in	 ascending	 order	 (so	 the
student	with	the	fewest	points	receives	the	lowest	rank	and	the	student	with	the
most	points	the	highest),	and	then	plot	the	rank	versus	the	actual	points	obtained.
The	 result	 is	 an	 empirical	 cumulative	 distribution	 function	 (ecdf)	 or	 simply
cumulative	distribution.	Each	dot	represents	one	student,	and	the	lines	visualize
the	highest	student	rank	observed	for	any	possible	point	value	(Figure	8.1).

Figure	8.1:	Empirical	cumulative	distribution	function	of	student	grades	for	a
hypothetical	class	of	50	students.

You	may	wonder	what	happens	if	we	rank	the	students	the	other	way	round,	in
descending	order.	This	ranking	simply	flips	the	function	on	its	head.	The	result	is
still	 an	 empirical	 cumulative	 distribution	 function,	 but	 the	 lines	 now	 represent
the	lowest	student	rank	observed	for	any	possible	point	value	(Figure	8.2).



Figure	8.2:	Distribution	of	student	grades	plotted	as	a	descending	ecdf.

Ascending	cumulative	distribution	 functions	are	more	widely	known	and	more
commonly	 used	 than	 descending	 ones,	 but	 both	 have	 important	 applications.
Descending	 cumulative	 distribution	 functions	 are	 critical	 when	 we	 want	 to
visualize	highly	skewed	distributions	(see	Section	8.2).

In	 practical	 applications,	 it	 is	 quite	 common	 to	 draw	 the	 ecdf	 without
highlighting	 the	 individual	points	 and	 to	normalize	 the	 ranks	by	 the	maximum
rank,	so	that	the	y	axis	represents	the	cumulative	frequency	(Figure	8.3).



Figure	8.3:	Ecdf	of	student	grades.	The	student	ranks	have	been	normalized	to
the	total	number	of	students,	such	that	the	y	values	plotted	correspond	to	the

fraction	of	students	in	the	class	with	at	most	that	many	points.

We	can	directly	read	off	key	properties	of	the	student	grade	distribution	from	this
plot.	For	example,	approximately	a	quarter	of	 the	students	 (25%)	received	 less
than	 75	 points.	 The	 median	 point	 value	 (corresponding	 to	 a	 cumulative
frequency	of	0.5)	is	81.	Approximately	20%	of	the	students	received	90	points	or
more.

I	 find	ecdfs	handy	for	assigning	grade	boundaries	because	 they	help	me	 locate
the	 exact	 cutoffs	 that	 minimize	 student	 unhappiness.	 For	 example,	 in	 this
example,	there's	a	fairly	long	horizontal	line	right	below	80	points,	followed	by	a
steep	rise	right	at	80.	This	feature	is	caused	by	three	students	receiving	80	points
on	their	exam	while	the	next	poorer	performing	student	received	only	76.	In	this
scenario,	I	might	decide	that	everybody	with	a	point	score	of	80	or	more	receives
a	 B	 and	 everybody	 with	 79	 or	 less	 receives	 a	 C.	 The	 three	 students	 with	 80
points	are	happy	 that	 they	 just	made	a	B,	and	 the	student	with	76	 realizes	 that
they	would	have	had	to	perform	much	better	to	not	receive	a	C.	If	I	had	set	the
cutoff	at	77,	the	distribution	of	letter	grades	would	have	been	exactly	the	same,
but	I	might	find	the	student	with	76	points	visiting	my	office	hoping	to	negotiate
their	grade	up.	Likewise,	 if	 I	had	set	 the	cutoff	at	81,	 I	would	 likely	have	had
three	students	in	my	office	trying	to	negotiate	their	grade.



8.2	Highly	skewed	distributions

Many	empirical	datasets	display	highly	skewed	distributions,	 in	particular	with
heavy	 tails	 to	 the	right,	and	 these	distributions	can	be	challenging	 to	visualize.
Examples	of	such	distributions	include	the	number	of	people	living	in	different
cities	or	counties,	the	number	of	contacts	in	a	social	network,	the	frequency	with
which	individual	words	appear	in	a	book,	the	number	of	academic	papers	written
by	different	authors,	the	net	worth	of	individuals,	and	the	number	of	interaction
partners	of	individual	proteins	in	protein--protein	interaction	networks	(Clauset,
Shalizi,	and	Newman	(2009)).	All	these	distributions	have	in	common	that	their
right	tail	decays	slower	than	an	exponential	function.	In	practice,	this	means	that
very	large	values	are	not	that	rare,	even	if	the	mean	of	the	distribution	is	small.
An	important	class	of	such	distributions	are	power-law	distributions,	where	the
likelihood	 to	 observe	 a	 value	 that	 is	 x	 times	 larger	 than	 some	 reference	 point
declines	as	a	power	of	x.	To	give	a	concrete	example,	consider	net	worth	in	the
US,	which	is	distributed	according	to	a	power	law	with	exponent	2.	At	any	given
level	of	net	worth	(say,	$1	million),	people	with	half	that	net	worth	are	four	times
as	 frequent,	 and	 people	 with	 twice	 that	 net	 worth	 are	 one-fourth	 as	 frequent.
Importantly,	the	same	relationship	holds	if	we	use	$10,000	as	reference	point	or
if	we	use	$100	million.	For	this	reason,	power-law	distributions	are	also	called
scale-free	distributions.

Here,	 I	will	 first	 discuss	 the	 number	 of	 people	 living	 in	 different	US	 counties
according	 to	 the	2010	US	Census.	This	distribution	has	 a	very	 long	 tail	 to	 the
right.	Even	 though	most	 counties	 have	 relatively	 small	 numbers	 of	 inhabitants
(the	 median	 is	 25,857),	 a	 few	 counties	 have	 extremely	 large	 numbers	 of
inhabitants	(e.g.,	Los	Angeles	County,	with	9,818,605	inhabitants).	If	we	try	to
visualize	the	distribution	of	population	counts	as	either	a	density	plot	or	an	ecdf,
we	obtain	figures	that	are	essentially	useless	(Figure	8.4).



Figure	8.4:	Distribution	of	the	number	of	inhabitants	in	US	counties,	according
to	the	2010	US	Census.	(a)	Density	plot.	(b)	Empirical	cumulative	distribution

function.

The	 density	 plot	 (Figure	 8.4a)	 shows	 a	 sharp	 peak	 right	 at	 0	 and	 virtually	 no
details	of	 the	distribution	are	visible.	Similarly,	 the	ecdf	 (Figure	8.4b)	shows	a
rapid	 rise	 near	 0	 and	 again	 no	 details	 of	 the	 distribution	 are	 visible.	 For	 this
particular	dataset,	we	can	log-transform	the	data	and	visualize	the	distribution	of
the	 log-transformed	 values.	 This	 transformation	 works	 here	 because	 the
population	numbers	in	counties	is	not	actually	a	power	law,	but	instead	follow	a
nearly	perfect	log-normal	distribution	(see	Section	8.3).	Indeed,	the	density	plot
of	the	log-transformed	values	shows	a	nice	bell	curve	and	the	corresponding	ecdf



shows	a	nice	sigmoidal	shape	(Figure	8.5).

Figure	8.5:	Distribution	of	the	logarithm	of	the	number	of	inhabitants	in	US
counties.	(a)	Density	plot.	(b)	Empirical	cumulative	distribution	function.

To	see	that	this	distribution	is	not	a	power	law,	we	plot	it	as	a	descending	ecdf
with	 logarithmic	x	 and	y	 axes.	 In	 this	 visualization,	 a	 power	 law	 appears	 as	 a
perfect	 straight	 line.	For	 the	population	counts	 in	 counties,	 the	 right	 tail	 forms
almost	but	not	quite	a	straight	 line	on	 the	descending	 log-log	ecdf	plot	 (Figure
8.6).



Figure	8.6:	Relative	frequency	of	counties	with	at	least	that	many	inhabitants
versus	the	number	of	county	inhabitants.

As	 a	 second	 example,	 I	 will	 use	 the	 distribution	 of	 word	 frequencies	 for	 all
words	 that	 appear	 in	 the	novel	Moby	Dick.	This	distribution	 follows	a	perfect
power	 law.	When	 plotted	 as	 descending	 ecdf	with	 logarithmic	 axes,	 we	 see	 a
nearly	perfect	straight	line	(Figure	8.7).



Figure	8.7:	Distribution	of	word	counts	in	the	novel	Moby	Dick.	Shown	is	the
relative	frequency	of	words	that	occur	at	least	that	many	times	in	the	novel

versus	the	number	of	times	words	are	used.

8.3	Quantile--quantile	plots

Quantile--quantile	 (q-q)	 plots	 are	 a	 useful	 visualization	 when	 we	 want	 to
determine	 to	what	extent	 the	observed	data	points	do	or	do	not	 follow	a	given
distribution.	 Just	 like	 ecdfs,	 q-q	 plots	 are	 also	 based	 on	 ranking	 the	 data	 and
visualizing	 the	 relationship	 between	 ranks	 and	 actual	 values.	 However,	 in	 q-q
plots	we	don't	plot	the	ranks	directly,	we	use	them	to	predict	where	a	given	data
point	should	fall	 if	 the	data	were	distributed	according	 to	a	specified	reference
distribution.	 Most	 commonly,	 q-q	 plots	 are	 constructed	 using	 a	 normal
distribution	as	the	reference.	To	give	a	concrete	example,	assume	the	actual	data
values	 have	 a	 mean	 of	 10	 and	 a	 standard	 deviation	 of	 3.	 Then,	 assuming	 a
normal	distribution,	we	would	expect	a	data	point	ranked	at	the	50th	percentile
to	 lie	 at	 position	 10	 (the	 mean),	 a	 data	 point	 at	 the	 84th	 percentile	 to	 lie	 at
position	13	(one	standard	deviation	above	from	the	mean),	and	a	data	point	at	the
2.3rd	percentile	 to	 lie	 at	 position	4	 (two	 standard	deviations	below	 the	mean).
We	can	carry	out	 this	calculation	 for	all	points	 in	 the	dataset	and	 then	plot	 the
observed	 values	 (i.e.,	 values	 in	 the	 dataset)	 against	 the	 theoretical	 values	 (i.e.,
values	 expected	 given	 each	 data	 point's	 rank	 and	 the	 assumed	 reference



distribution).

When	 we	 perform	 this	 procedure	 for	 the	 student	 grades	 distribution	 from	 the
beginning	of	this	chapter,	we	obtain	Figure	8.8.

Figure	8.8:	q-q	plot	of	student	grades.

The	solid	line	here	is	not	a	regression	line	but	indicates	the	points	where	x	equals
y,	 i.e.,	where	 the	observed	values	equal	 the	 theoretical	ones.	To	 the	extent	 that
points	fall	onto	that	line,	the	data	follow	the	assumed	distribution	(here,	normal).
We	see	 that	 the	student	grades	follow	mostly	a	normal	distribution,	with	a	few
deviations	 at	 the	 bottom	 and	 at	 the	 top	 (a	 few	 students	 performed	worse	 than
expected	on	either	end).	The	deviations	from	the	distribution	at	the	top	end	are
caused	by	the	maximum	point	value	of	100	in	the	hypothetical	exam;	regardless
of	how	good	the	best	student	is,	he	or	she	could	at	most	obtain	100	points.

We	can	also	use	a	q-q	plot	to	test	my	assertion	from	earlier	in	this	chapter	that
the	population	counts	 in	US	counties	 follow	a	 log-normal	distribution.	 If	 these



counts	 are	 log-normally	 distributed,	 then	 their	 log-transformed	 values	 are
normally	 distributed	 and	 hence	 should	 fall	 right	 onto	 the	 x	 =	 y	 line.	 When
making	 this	 plot,	 we	 see	 that	 the	 agreement	 between	 the	 observed	 and	 the
theoretical	 values	 is	 exceptional	 (Figure	 8.9).	 This	 demonstrates	 that	 the
distribution	of	population	counts	among	counties	is	indeed	log-normal.

Figure	8.9:	q-q	plot	of	the	logarithm	of	the	number	of	inhabitants	in	US	counties.
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9	Visualizing	many	distributions	at
once
There	are	many	scenarios	in	which	we	want	to	visualize	multiple	distributions	at
the	 same	 time.	For	 example,	 consider	weather	data.	We	may	want	 to	visualize
how	 temperature	 varies	 across	 different	 months	 while	 also	 showing	 the
distribution	of	observed	temperatures	within	each	month.	This	scenario	requires
showing	twelve	temperature	distributions	at	once,	one	for	each	month.	None	of
the	visualizations	discussed	 in	Chapters	7	or	8	work	well	 in	 this	case.	 Instead,
viable	approaches	include	boxplots,	violin	plots,	and	ridgeline	plots.

Whenever	we	are	dealing	with	many	distributions,	it	is	helpful	to	think	in	terms
of	 the	 response	 variable	 and	 one	 or	 more	 grouping	 variables.	 The	 response
variable	 is	 the	 variable	 whose	 distributions	 we	 want	 to	 show.	 The	 grouping
variables	 define	 subsets	 of	 the	 data	 with	 distinct	 distributions	 of	 the	 response
variable.	For	example,	for	temperature	distributions	across	months,	the	response
variable	 is	 the	 temperature	 and	 the	 grouping	 variable	 is	 the	 month.	 All
techniques	discussed	 in	 this	 chapter	draw	 the	 response	variable	along	one	axis
and	the	grouping	variables	along	the	other.	In	the	following,	I	will	first	describe
approaches	 that	 show	 the	 response	 variable	 along	 the	 vertical	 axis,	 and	 then	 I
will	 describe	 approaches	 that	 show	 the	 response	 variable	 along	 the	 horizontal
axis.	 In	 all	 cases	discussed,	we	could	 flip	 the	 axes	 and	arrive	 at	 an	alternative
and	viable	visualization.	 I	am	showing	here	 the	canonical	 forms	of	 the	various
visualizations.

9.1	Visualizing	distributions	along	the	vertical	axis

The	 simplest	 approach	 to	 showing	many	distributions	 at	 once	 is	 to	 show	 their
mean	or	median	as	points,	with	some	indication	of	the	variation	around	the	mean
or	median	 shown	by	 error	 bars.	 Figure	 9.1	 demonstrates	 this	 approach	 for	 the
distributions	 of	 monthly	 temperatures	 in	 Lincoln,	 Nebraska,	 in	 2016.	 I	 have
labeled	 this	 figure	 as	 bad	 because	 there	 are	 multiple	 problems	 with	 this
approach.	 First,	 by	 representing	 each	 distribution	 by	 only	 one	 point	 and	 two
error	 bars,	we	 are	 losing	 a	 lot	 of	 information	 about	 the	 data.	 Second,	 it	 is	 not
immediately	obvious	what	the	points	represent,	even	though	most	readers	would



likely	 guess	 that	 they	 represent	 either	 the	 mean	 or	 the	 median.	 Third,	 it	 is
definitely	 not	 obvious	 what	 the	 error	 bars	 represent.	 Do	 they	 represent	 the
standard	deviation	of	the	data,	the	standard	error	of	the	mean,	a	95%	confidence
interval,	or	something	else	altogether?	There	is	no	commonly	accepted	standard.
By	reading	the	figure	caption	of	Figure	9.1,	we	can	see	that	they	represent	here
twice	 the	 standard	deviation	of	 the	daily	mean	 temperatures,	meant	 to	 indicate
the	range	that	contains	approximately	95%	of	the	data.	However,	error	bars	are
more	commonly	employed	to	visualize	the	standard	error	(or	twice	the	standard
error	 for	 a	 95%	 confidence	 interval),	 and	 it	 is	 easy	 for	 readers	 to	 confuse	 the
standard	 error	 with	 the	 standard	 deviation.	 The	 standard	 error	 quantifies	 how
accurate	our	 estimate	of	 the	mean	 is,	whereas	 the	 standard	deviation	estimates
how	much	spread	there	is	in	the	data	around	the	mean.	It	is	possible	for	a	dataset
to	have	both	a	very	small	standard	error	of	the	mean	and	a	very	large	standard
deviation.	Fourth,	symmetric	error	bars	are	misleading	if	there	is	any	skew	in	the
data,	which	is	the	case	here	and	almost	always	for	real-world	datasets.

Figure	9.1:	Mean	daily	temperatures	in	Lincoln,	Nebraska	in	2016.	Points
represent	the	average	daily	mean	temperatures	for	each	month,	averaged	over	all
days	of	the	month,	and	error	bars	represent	twice	the	standard	deviation	of	the
daily	mean	temperatures	within	each	month.	This	figure	has	been	labeled	as
"bad"	because	because	error	bars	are	conventionally	used	to	visualize	the
uncertainty	of	an	estimate,	not	the	variability	in	a	population.	Data	source:



Weather	Underground

We	can	 address	 all	 four	 shortcomings	of	Figure	9.1	 by	 using	 a	 traditional	 and
commonly	 used	 method	 for	 visualizing	 distributions,	 the	 boxplot.	 A	 boxplot
divides	 the	 data	 into	 quartiles	 and	 visualizes	 them	 in	 a	 standardized	 manner
(Figure	9.2).

Figure	9.2:	Anatomy	of	a	boxplot.	Shown	are	a	cloud	of	points	(left)	and	the
corresponding	boxplot	(right).	Only	the	y	values	of	the	points	are	visualized	in
the	boxplot.	The	line	in	the	middle	of	the	boxplot	represents	the	median,	and	the
box	encloses	the	middle	50%	of	the	data.	The	top	and	bottom	whiskers	extend

either	to	the	maximum	and	minimum	of	the	data	or	to	the	maximum	or	minimum
that	falls	within	1.5	times	the	height	of	the	box,	whichever	yields	the	shorter
whisker.	The	distances	of	1.5	times	the	height	of	the	box	in	either	direction	are
called	the	upper	and	the	lower	fences.	Individual	data	points	that	fall	beyond	the
fences	are	referred	to	as	outliers	and	are	usually	showns	as	individual	dots.

Boxplots	 are	 simple	yet	 informative,	 and	 they	work	well	when	plotted	next	 to
each	other	to	visualize	many	distributions	at	once.	For	the	Lincoln	temperature
data,	 using	 boxplots	 leads	 to	 Figure	 9.3.	 In	 that	 figure,	 we	 can	 now	 see	 that
temperature	is	highly	skewed	in	December	(most	days	are	moderately	cold	and	a



few	are	 extremely	 cold)	 and	not	very	 skewed	at	 all	 in	 some	other	months,	 for
example	in	July.

Figure	9.3:	Mean	daily	temperatures	in	Lincoln,	Nebraska,	visualized	as
boxplots.

Boxplots	were	 invented	by	 the	 statistician	 John	Tukey	 in	 the	 early	 1970s,	 and
they	quickly	gained	popularity	because	they	were	highly	informative	while	being
easy	to	draw	by	hand.	Most	data	visualizations	were	drawn	by	hand	at	that	time.
However,	 with	 modern	 computing	 and	 visualization	 capabilities,	 we	 are	 not
limited	 to	 what	 is	 easily	 drawn	 by	 hand.	 Therefore,	 more	 recently,	 we	 see
boxplots	 being	 replaced	 by	 violin	 plots,	 which	 are	 equivalent	 to	 the	 density
estimates	 discussed	 in	Chapter	 7	 but	 rotated	 by	 90	 degrees	 and	 then	mirrored
(Figure	9.4).	Violins	can	be	used	whenever	one	would	otherwise	use	a	boxplot,
and	they	provide	a	much	more	nuanced	picture	of	the	data.	In	particular,	violin
plots	will	accurately	represent	bimodal	data	whereas	a	boxplot	will	not.



Figure	9.4:	Anatomy	of	a	violin	plot.	Shown	are	a	cloud	of	points	(left)	and	the
corresponding	violin	plot	(right).	Only	the	y	values	of	the	points	are	visualized	in
the	violin	plot.	The	width	of	the	violin	at	a	given	y	value	represents	the	point
density	at	that	y	value.	Technically,	a	violin	plot	is	a	density	estimate	rotated	by
90	degrees	and	then	mirrored.	Violins	are	therefore	symmetric.	Violins	begin	and
end	at	the	minimum	and	maximum	data	values,	respectively.	The	thickest	part	of

the	violin	corresponds	to	the	highest	point	density	in	the	dataset.

Before	using	violins	 to	visualize	distributions,	verify	 that	you	have	sufficiently
many	data	points	in	each	group	to	justify	showing	the	point	densities	as	smooth
lines.

When	we	visualize	the	Lincoln	temperature	data	with	violins,	we	obtain	Figure
9.5.	We	can	now	see	 that	 some	months	do	have	moderately	bimodal	data.	For
example,	 the	month	of	November	seems	 to	have	had	 two	 temperature	clusters,
one	around	50	degrees	and	one	around	35	degrees	Fahrenheit.



Figure	9.5:	Mean	daily	temperatures	in	Lincoln,	Nebraska,	visualized	as	violin
plots.

Because	 violin	 plots	 are	 derived	 from	 density	 estimates,	 they	 have	 similar
shortcomings	 (Chapter	 7).	 In	 particular,	 they	 can	 generate	 the	 appearance	 that
there	is	data	where	none	exists,	or	that	the	data	set	is	very	dense	when	actually	it
is	quite	sparse.	We	can	try	to	circumvent	these	issues	by	simply	plotting	all	the
individual	data	points	directly,	as	dots	(Figure	9.6).	Such	a	figure	is	called	a	strip
chart.	Strip	charts	are	 fine	 in	principle,	as	 long	as	we	make	sure	 that	we	don't
plot	too	many	points	on	top	of	each	other.	A	simple	solution	to	overplotting	is	to
spread	out	the	points	somewhat	along	the	x	axis,	by	adding	some	random	noise
in	the	x	dimension	(Figure	9.7).	This	technique	is	also	called	jittering.

(ref:lincoln-temp-all-points)	 Mean	 daily	 temperatures	 in	 Lincoln,	 Nebraska,
visualized	as	strip	chart.	Each	point	represents	the	mean	temperature	for	one	day.
This	figure	is	labeled	as	"bad"	because	so	many	points	are	plotted	on	top	of	each
other	 that	 it	 is	 not	 possible	 to	 ascertain	 which	 temperatures	 were	 the	 most
common	in	each	month.



Figure	9.6:	(ref:lincoln-temp-all-points)

Figure	9.7:	Mean	daily	temperatures	in	Lincoln,	Nebraska,	visualized	as	strip
chart.	The	points	have	been	jittered	along	the	x	axis	to	better	show	the	density	of

points	at	each	temperature	value.



Whenever	the	dataset	is	too	sparse	to	justify	the	violin	visualization,	plotting	the
raw	data	as	individual	points	will	be	possible.

Finally,	we	 can	 combine	 the	 best	 of	 both	worlds	 by	 spreading	 out	 the	 dots	 in
proportion	to	the	point	density	at	a	given	y	coordinate.	This	method,	called	a	sina
plot	 (Sidiropoulos	et	al.	2018),	can	be	 thought	of	as	a	hybrid	between	a	violin
plot	and	jittered	points,	and	it	shows	each	individual	point	while	also	visualizing
the	 distributions.	 I	 have	 here	 drawn	 the	 sina	 plots	 on	 top	 of	 the	 violins	 to
highlight	the	relationship	between	these	two	approaches	(Figure	9.8).

Figure	9.8:	Mean	daily	temperatures	in	Lincoln,	Nebraska,	visualized	as	a	sina
plot	(combination	of	individual	points	and	violins).	The	points	have	been	jittered
along	the	x	axis	in	proportion	to	the	point	density	at	the	respective	temperature.
The	name	sina	plot	is	meant	to	honor	Sina	Hadi	Sohi,	a	student	at	the	University

of	Copenhagen,	Denmark,	who	wrote	the	first	version	of	the	code	that
researchers	at	the	university	used	to	make	such	plots	(Frederik	O.	Bagger,

personal	communication).

9.2	Visualizing	distributions	along	the	horizontal	axis

In	 Chapter	 7,	 we	 visualized	 distributions	 along	 the	 horizontal	 axis	 using
histograms	and	density	plots.	Here,	we	will	expand	on	this	idea	by	staggering	the



distribution	plots	in	the	vertical	direction.	The	resulting	visualization	is	called	a
ridgeline	plot,	because	these	plots	look	like	mountain	ridgelines.	Ridgeline	plots
tend	to	work	particularly	well	if	want	to	show	trends	in	distributions	over	time.

The	standard	ridgeline	plot	uses	density	estimates	(Figure	9.9).	It	is	quite	closely
related	to	the	violin	plot,	but	frequently	evokes	a	more	intuitive	understanding	of
the	data.	For	example,	the	two	clusters	of	temperatures	around	35	degrees	and	50
degrees	Fahrenheit	 in	November	are	much	more	obvious	 in	Figure	9.9	 than	 in
Figure	9.5.

Figure	9.9:	Temperatures	in	Lincoln,	Nebraska,	in	2016,	visualized	as	a	ridgeline
plot.	For	each	month,	we	show	the	distribution	of	daily	mean	temperatures

measured	in	Fahrenheit.	Original	figure	concept:	Wehrwein	(2017).

Because	 the	 x	 axis	 shows	 the	 response	 variable	 and	 the	 y	 axis	 shows	 the
grouping	 variable,	 there	 is	 no	 separate	 axis	 for	 the	 density	 estimates	 in	 a
ridgeline	plot.	Density	estimates	are	shown	alongside	the	grouping	variable.	This
is	no	different	from	the	violin	plot,	where	densities	are	also	shown	alongside	the
grouping	variable,	without	a	separate,	explicit	scale.	In	both	cases,	 the	purpose
of	 the	plot	 is	not	 to	 show	specific	density	values	but	 instead	 to	allow	 for	easy
comparison	of	density	shapes	and	relative	heights	across	groups.

In	 principle,	 we	 can	 use	 histograms	 instead	 of	 density	 plots	 in	 a	 ridgeline



visualization.	However,	the	resulting	figures	often	don't	look	very	good	(Figure
9.10).	The	problems	 are	 similar	 to	 those	 of	 stacked	or	 overlapping	histograms
(Chapter	 7).	 Because	 the	 vertical	 lines	 in	 these	 ridgeline	 histograms	 appear
always	at	the	exact	same	x	values,	the	bars	from	different	histograms	align	with
each	 other	 in	 confusing	 ways.	 In	 my	 opinion,	 it	 is	 better	 to	 not	 draw	 such
overlapping	histograms.

Figure	9.10:	Temperatures	in	Lincoln,	Nebraska,	in	2016,	visualized	as	a
ridgeline	plot	of	histograms.	The	individual	histograms	don't	separate	well

visually,	and	the	overall	figure	is	quite	busy	and	confusing.

Ridgeline	plots	scale	to	very	large	numbers	of	distributions.	For	example,	Figure
9.11	 shows	 the	 distributions	 of	movie	 lengths	 from	 1913	 to	 2005.	 This	 figure
contains	almost	100	distinct	distributions	and	yet	it	is	very	easy	to	read.	We	can
see	 that	 in	 the	 1920s,	movies	 came	 in	many	different	 lengths,	 but	 since	 about
1960	movie	length	has	standardized	to	approximately	90	minutes.



Figure	9.11:	Evolution	of	movie	lengths	over	time.	Since	the	1960s,	the	majority
of	all	movies	are	approximately	90	minutes	long.	Data	source:	Internet	Movie

Database,	IMDB

Ridgeline	plots	also	work	well	if	we	want	to	compare	two	trends	over	time.	This
is	a	scenario	that	arises	commonly	if	we	want	to	analyze	the	voting	patterns	of
the	 members	 of	 two	 different	 parties.	 We	 can	 make	 this	 comparison	 by
staggering	 the	 distributions	 vertically	 by	 time	 and	 drawing	 two	 differently
colored	 distributions	 at	 each	 time	 point,	 representing	 the	 two	 parties	 (Figure
9.12).



Figure	9.12:	Voting	patterns	in	the	U.S.	House	of	Representatives	have	become
increasingly	polarized.	DW-NOMINATE	scores	are	frequently	used	to	compare
voting	patterns	of	representatives	between	parties	and	over	time.	Here,	score
distributions	are	shown	for	each	Congress	from	1963	to	2013	separately	for
Democrats	and	Republicans.	Each	Congress	is	represented	by	its	first	year.

Original	figure	concept:	McDonald	(2017).
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10	Visualizing	proportions
We	 often	want	 to	 show	 how	 some	 group,	 entity,	 or	 amount	 breaks	 down	 into
individual	 pieces	 that	 each	 represent	 a	 proportion	 of	 the	 whole.	 Common
examples	 include	the	proportions	of	men	and	women	in	a	group	of	people,	 the
percentages	of	people	voting	for	different	political	parties	in	an	election,	or	the
market	shares	of	companies.	The	archetypal	such	visualization	 is	 the	pie	chart,
omnipresent	 in	 any	 business	 presentation	 and	 much	 maligned	 among	 data
scientists.	 As	 we	 will	 see,	 visualizing	 proportions	 can	 be	 challenging,	 in
particular	when	the	whole	is	broken	into	many	different	pieces	or	when	we	want
to	see	changes	in	proportions	over	time	or	across	conditions.	There	is	no	single
ideal	 visualization	 that	 always	 works.	 To	 illustrate	 this	 issue,	 I	 discuss	 a	 few
different	scenarios	that	each	call	for	a	different	type	of	visualization.

Remember:	You	always	need	to	pick	the	visualization	that	best	fits	your	specific
dataset	and	that	highlights	the	key	data	features	you	want	to	show.

10.1	A	case	for	pie	charts

From	 1961	 to	 1983,	 the	 German	 parliament	 (called	 the	 Bundestag)	 was
composed	 of	 members	 of	 three	 different	 parties,	 CDU/CSU,	 SPD,	 and	 FDP.
During	most	 of	 this	 time,	CDU/CSU	 and	 SPD	had	 approximately	 comparable
numbers	of	seats,	while	the	FDP	typically	held	only	a	small	fraction	of	seats.	For
example,	in	the	8th	Bundestag,	from	1976--1980,	the	CDU/CSU	held	243	seats,
SPD	 214,	 and	 FDP	 39,	 for	 a	 total	 of	 496.	 Such	 parliamentary	 data	 is	 most
commonly	visualized	as	a	pie	chart	(Figure	10.1).



Figure	10.1:	Party	composition	of	the	8th	German	Bundestag,	1976--1980,
visualized	as	a	pie	chart.	This	visualization	shows	clearly	that	the	ruling

coalition	of	SPD	and	FDP	had	a	small	majority	over	the	opposition	CDU/CSU.

A	 pie	 chart	 breaks	 a	 circle	 into	 slices	 such	 that	 the	 area	 of	 each	 slice	 is
proportional	to	the	fraction	of	the	total	it	represents.	The	same	procedure	can	be
performed	 on	 a	 rectangle,	 and	 the	 result	 is	 a	 stacked	 bar	 chart	 (Figure	 10.2).
Depending	 on	 whether	 we	 slice	 the	 bar	 vertically	 or	 horizontally,	 we	 obtain
vertically	 stacked	 bars	 (Figure	 10.2a)	 or	 horizontally	 stacked	 bars	 (Figure
10.2b).



Figure	10.2:	Party	composition	of	the	8th	German	Bundestag,	1976--1980,
visualized	as	stacked	bars.	(a)	Bars	stacked	vertically.	(b)	Bars	stacked

horizontally.	It	is	not	immediately	obvious	that	SPD	and	FDP	jointly	had	more
seats	than	CDU/CSU.

We	can	also	take	the	bars	from	Figure	10.2a	and	place	them	side-by-side	rather
than	 stacking	 them	 on	 top	 of	 each	 other.	 This	 visualization	makes	 it	 easier	 to
perform	a	direct	comparison	of	the	three	groups,	though	it	obscures	other	aspects
of	 the	 data	 (Figure	 10.3).	 Most	 importantly,	 in	 a	 side-by-side	 bar	 plot	 the
relationship	of	each	bar	to	the	total	is	not	visually	obvious.



Figure	10.3:	Party	composition	of	the	8th	German	Bundestag,	1976--1980,
visualized	as	side-by-side	bars.	As	in	Figure	10.2,	it	is	not	immediately	obvious

that	SPD	and	FDP	jointly	had	more	seats	than	CDU/CSU.

Many	authors	categorically	reject	pie	charts	and	argue	in	favor	of	side-by-side	or
stacked	bars.	Others	defend	the	use	of	pie	charts	in	some	applications.	My	own
opinion	 is	 that	 none	 of	 these	 visualizations	 is	 consistently	 superior	 over	 any
other.	Depending	on	the	features	of	the	dataset	and	the	specific	story	you	want	to
tell,	 you	may	want	 to	 favor	 one	 or	 the	 other	 approach.	 In	 the	 case	 of	 the	 8th
German	Bundestag,	 I	 think	 that	 a	pie	 chart	 is	 the	best	option.	 It	 shows	clearly
that	 the	ruling	coalition	of	SPD	and	FDP	jointly	had	a	small	majority	over	 the
CDU/CSU	 (Figure	10.1).	 This	 fact	 is	 not	 visually	 obvious	 in	 any	 of	 the	 other
plots	(Figures	10.2	and	10.3).

In	general,	pie	charts	work	well	when	the	goal	is	to	emphasize	simple	fractions,
such	as	one-half,	one-third,	or	one-quarter.	They	also	work	well	when	we	have
very	small	datasets.	A	single	pie	chart,	as	 in	Figure	10.1,	 looks	 just	 fine,	but	a
single	column	of	stacked	bars,	as	in	Figure	10.2a,	looks	awkward.	Stacked	bars,
on	the	other	hand,	can	work	for	side-by-side	comparisons	of	multiple	conditions
or	in	a	time	series,	and	side-by-side	bars	are	preferred	when	we	want	to	directly
compare	 the	 individual	 fractions	 to	each	other.	A	summary	of	 the	various	pros
and	cons	of	pie	charts,	stacked	bars,	and	side-by-side	bars	is	provided	in	Table



10.1.

Table	10.1:	Pros	and	cons	of	common	approaches	to	visualizing	proportions:	pie
charts,	stacked	bars,	and	side-by-side	bars.

Pie	chart Stacked	bars Side-by-side
bars

Clearly	visualizes	the	data
as	proportions	of	a	whole ✔ ✔ ✖

Allows	easy	visual
comparison	of	the	relative
proportions

✖ ✖ ✔

Visually	emphasizes	simple
fractions,	such	as	1/2,	1/3,
1/4

✔ ✖ ✖

Looks	visually	appealing
even	for	very	small
datasets

✔ ✖ ✔

Works	well	when	the
whole	is	broken	into	many
pieces

✖ ✖ ✔

Works	well	for	the
visualization	of	many	sets
of	proportions	or	time
series	of	proportions

✖ ✔ ✖

10.2	A	case	for	side-by-side	bars

I	will	 now	demonstrate	 a	 case	where	 pie	 charts	 fail.	This	 example	 is	modeled
after	 a	 critique	of	pie	 charts	originally	posted	on	Wikipedia	 (Wikipedia	2007).
Consider	the	hypothetical	scenario	of	five	companies,	A,	B,	C,	D,	and	E,	who	all
have	roughly	comparable	market	share	of	approximately	20%.	Our	hypothetical
dataset	lists	the	market	share	of	each	company	for	three	consecutive	years.	When
we	 visualize	 this	 dataset	 with	 pie	 charts,	 it	 is	 difficult	 to	 see	 what	 exactly	 is
going	on	(Figure	10.4).	It	appears	that	the	market	share	of	company	A	is	growing
and	the	one	of	company	E	is	shrinking,	but	beyond	this	one	observation	we	can't
tell	what's	going	on.	In	particular,	it	is	unclear	how	exactly	the	market	shares	of
the	different	companies	compare	within	each	year.



Figure	10.4:	Market	share	of	five	hypothetical	companies,	A--E,	for	the	years
2015--2017,	visualized	as	pie	charts.	This	visualization	has	two	major	problems:
1.	A	comparison	of	relative	market	share	within	years	is	nearly	impossible.	2.

Changes	in	market	share	across	years	are	difficult	to	see.

The	 picture	 becomes	 a	 little	 clearer	 when	 we	 switch	 to	 stacked	 bars	 (Figure
10.5).	Now	the	trends	of	a	growing	market	share	for	company	A	and	a	shrinking
market	 share	 for	 company	 E	 are	 clearly	 visible.	 However,	 the	 relative	market
shares	of	the	five	companies	within	each	year	are	still	hard	to	compare.	And	it	is
difficult	 to	compare	 the	market	shares	of	companies	B,	C,	and	D	across	years,
because	the	bars	are	shifted	relative	to	each	other	across	years.	This	is	a	general
problem	 of	 stacked-bar	 plots,	 and	 the	 main	 reason	 why	 I	 normally	 do	 not
recommend	this	type	of	visualization.



Figure	10.5:	Market	share	of	five	hypothetical	companies	for	the	years	2015-
-2017,	visualized	as	stacked	bars.	This	visualization	has	two	major	problems:	1.
A	comparison	of	relative	market	shares	within	years	is	difficult.	2.	Changes	in
market	share	across	years	are	difficult	to	see	for	the	middle	companies	B,	C,	and

D,	because	the	location	of	the	bars	changes	across	years.

For	this	hypothetical	data	set,	side-by-side	bars	are	the	best	choice	(Figure	10.6).
This	visualization	highlights	 that	both	companies	A	and	B	have	increased	their
market	 share	 from	2015	 to	2017	while	both	companies	D	and	E	have	 reduced
theirs.	It	also	shows	that	market	shares	increase	sequentially	from	company	A	to
E	in	2015	and	similarly	decrease	in	2017.



Figure	10.6:	Market	share	of	five	hypothetical	companies	for	the	years	2015-
-2017,	visualized	as	side-by-side	bars.

10.3	A	case	for	stacked	bars	and	stacked	densities

In	Section	10.2,	I	wrote	that	I	don't	normally	recommend	sequences	of	stacked
bars,	 because	 the	 location	 of	 the	 internal	 bars	 shifts	 along	 the	 sequence.
However,	 the	problem	of	shifting	internal	bars	disappears	 if	 there	are	only	two
bars	 in	 each	 stack,	 and	 in	 those	 cases	 the	 resulting	 visualization	 can	 be	 quite
clear.	As	an	example,	consider	the	proportion	of	women	in	a	country's	national
parliament.	We	will	specifically	look	at	the	African	country	Rwanda,	which	as	of
2016	tops	the	list	of	countries	with	the	highest	proportion	of	female	parliament
members.	Rwanda	has	had	a	majority	 female	parliament	since	2008,	and	since
2013	 nearly	 two-thirds	 of	 its	 members	 of	 parliament	 are	 female.	 To	 visualize
how	the	proportion	of	women	in	the	Rwandan	parliament	has	changed	over	time,
we	 can	 draw	 a	 sequence	 of	 stacked	 bar	 graphs	 (Figure	 10.7).	 This	 figure
provides	 an	 immediate	 visual	 representation	 of	 the	 changing	 proportions	 over
time.	 To	 help	 the	 reader	 see	 exactly	when	 the	majority	 turned	 female,	 I	 have
added	 a	 dashed	 horizontal	 line	 at	 50%.	 Without	 this	 line,	 it	 would	 be	 near
impossible	 to	 determine	whether	 from	2003	 to	 2007	 the	majority	was	male	or
female.	 I	 have	 not	 added	 similar	 lines	 at	 25%	 and	 75%,	 to	 avoid	making	 the
figure	too	cluttered.



Figure	10.7:	Change	in	the	gender	composition	of	the	Rwandan	parliament	over
time,	1997	to	2016.	Data	source:	Inter-Parliamentary	Union	(IPU),	ipu.org.

If	 we	 want	 to	 visualize	 how	 proportions	 change	 in	 response	 to	 a	 continuous
variable,	we	can	switch	from	stacked	bars	to	stacked	densities.	Stacked	densities
can	be	thought	of	as	the	limiting	case	of	infinitely	many	infinitely	small	stacked
bars	 arranged	 side-by-side.	The	 densities	 in	 stacked-density	 plots	 are	 typically
obtained	 from	kernel	density	estimation,	as	described	 in	Chapter	7,	and	I	 refer
you	to	 that	chapter	for	a	general	discussion	of	 the	strengths	and	weaknesses	of
this	method.

To	 give	 an	 example	where	 stacked	 densities	may	 be	 appropriate,	 consider	 the
health	status	of	people	as	a	function	of	age.	Age	can	be	considered	a	continuous
variable,	 and	 visualizing	 the	 data	 in	 this	 way	 works	 reasonably	 well	 (Figure
10.8).	Even	though	we	have	four	health	categories	here,	and	I'm	generally	not	a
fan	of	stacking	multiple	conditions,	as	discussed	above,	I	 think	in	 this	case	 the
figure	 is	 acceptable.	We	 can	 see	 clearly	 that	 overall	 health	 declines	 as	 people
age,	 and	 we	 can	 also	 see	 that	 despite	 this	 trend,	 over	 half	 of	 the	 population
remain	in	good	or	excellent	health	until	very	old	age.



Figure	10.8:	Health	status	by	age,	as	reported	by	the	general	social	survey
(GSS).

Nevertheless,	this	figure	has	a	major	limitation:	By	visualizing	the	proportions	of
the	four	health	conditions	as	percent	of	 the	 total,	 the	 figure	obscures	 that	 there
are	many	more	young	people	than	old	people	in	the	dataset.	Thus,	even	though
the	percentage	of	people	 reporting	 to	be	 in	good	health	 remains	approximately
unchanged	across	ages	spanning	seven	decades,	 the	absolute	number	of	people
in	good	health	declines	as	the	total	number	of	people	at	a	given	age	declines.	I
will	present	a	potential	solution	to	this	problem	in	the	next	section.

10.4	Visualizing	proportions	separately	as	parts	of	the
total

Side-by-side	bars	have	 the	problem	that	 they	don't	clearly	visualize	 the	size	of
the	individual	parts	relative	to	the	whole	and	stacked	bars	have	the	problem	that
the	 different	 bars	 cannot	 be	 compared	 easily	 because	 they	 have	 different
baselines.	We	can	 resolve	 these	 two	 issues	by	making	a	 separate	plot	 for	 each
part	and	in	each	plot	showing	the	respective	part	relative	 to	 the	whole.	For	 the
health	dataset	of	Figure	10.8,	this	procedure	results	in	Figure	10.9.	The	overall
age	 distribution	 in	 the	 dataset	 is	 shown	 as	 the	 shaded	 gray	 areas,	 and	 the	 age
distributions	for	each	health	status	are	shown	in	blue.	This	figure	highlights	that
in	absolute	terms,	the	number	people	with	excellent	or	good	health	declines	past
ages	30--40,	while	the	number	of	people	with	fair	health	remains	approximately



constant	across	all	ages.

Figure	10.9:	Health	status	by	age,	shown	as	proportion	of	the	total	number	of
people	in	the	survey.	The	colored	areas	show	the	density	estimates	of	the	ages	of
people	with	the	respective	health	status	and	the	gray	areas	show	the	overall	age

distribution.

To	provide	a	second	example,	 let's	consider	a	different	variable	 from	the	same
survey:	 marital	 status.	Marital	 status	 changes	much	more	 drastically	 with	 age
than	does	health	status,	and	a	stacked	densities	plot	of	marital	status	vs	age	is	not
very	illuminating	(Figure	10.10).

(ref:marital-vs-age)	 Marital	 status	 by	 age,	 as	 reported	 by	 the	 general	 social
survey	(GSS).	To	simplify	 the	figure,	 I	have	removed	a	small	number	of	cases
that	report	as	separated.	I	have	labeled	this	figure	as	"bad"	because	the	frequency
of	people	who	have	never	been	married	or	are	widowed	changes	so	drastically
with	 age	 that	 the	 age	 distributions	 of	married	 and	 divorced	 people	 are	 highly
distorted	and	difficult	to	interpret.



Figure	10.10:	(ref:marital-vs-age)

The	same	dataset	visualized	as	partial	densities	is	much	clearer	(Figure	10.11).	In
particular,	we	 see	 that	 the	 proportion	 of	married	 people	 peaks	 around	 the	 late
30s,	 the	 proportion	 of	 divorced	 people	 peaks	 around	 the	 early	 40s,	 and	 the
proportion	of	widowed	people	peaks	around	the	mid	70s.

Figure	10.11:	Marital	status	by	age,	shown	as	proportion	of	the	total	number	of
people	in	the	survey.	The	colored	areas	show	the	density	estimates	of	the	ages	of
people	with	the	respective	marital	status,	and	the	gray	areas	show	the	overall	age

distribution.

However,	one	downside	of	Figure	10.11	is	that	this	representation	doesn't	make
it	easy	to	determine	relative	proportions	at	any	given	point	in	time.	For	example,
if	we	wanted	 to	 know	 at	what	 age	more	 than	 50%	of	 all	 people	 surveyed	 are



married,	we	could	not	easily	tell	from	Figure	10.11.	To	answer	this	question,	we
can	instead	use	the	same	type	of	display	but	show	relative	proportions	instead	of
absolute	counts	along	the	y	axis	(Figure	10.12).	Now	we	see	that	married	people
are	 in	 the	 majority	 starting	 in	 their	 late	 20s,	 and	 widowed	 people	 are	 in	 the
majority	starting	in	their	mid	70s.

Figure	10.12:	Marital	status	by	age,	shown	as	proportion	of	the	total	number	of
people	in	the	survey.	The	areas	colored	in	blue	show	the	percent	of	people	at	the
given	age	with	the	respective	status,	and	the	areas	colored	in	gray	show	the

percent	of	people	with	all	other	marital	statuses.



11	Visualizing	nested	proportions
In	 the	 preceding	 chapter,	 I	 discussed	 scenarios	where	 a	 dataset	 is	 broken	 into
pieces	 defined	by	one	 cateogical	 variable,	 such	 as	 political	 party,	 company,	 or
health	status.	 It	 is	not	uncommon,	however,	 that	we	want	 to	drill	down	further
and	break	down	a	dataset	by	multiple	categorical	variables	at	once.	For	example,
in	 the	case	of	parliamentary	seats,	we	could	be	 interested	 in	 the	proportions	of
seats	by	party	and	by	the	gender	of	the	representatives.	Similarly,	in	the	case	of
people's	 health	 status,	we	 could	 ask	 how	health	 status	 further	 breaks	 down	by
marital	 status.	 I	 refer	 to	 these	 scenarios	 as	 nested	 proportions,	 because	 each
additional	categorical	variable	that	we	add	creates	a	finer	subdivision	of	the	data
nested	within	the	previous	proportions.	There	are	several	suitable	approaches	to
visualize	such	nested	proportions,	including	mosaic	plots,	treemaps,	and	parallel
sets.

11.1	Nested	proportions	gone	wrong

I	 will	 begin	 by	 demonstrating	 two	 flawed	 approaches	 to	 visualizing	 nested
proportions.	While	 these	approaches	may	seem	nonsensical	 to	any	experienced
data	 scientist,	 I	 have	 seen	 them	 in	 the	 wild	 and	 therefore	 think	 they	 warrant
discussion.	Throughout	this	chapter,	I	will	work	with	a	dataset	of	106	bridges	in
Pittsburgh.	This	dataset	contains	various	pieces	of	information	about	the	bridges,
such	as	the	material	from	which	they	are	constructed	(steel,	iron,	or	wood)	and
the	 year	 when	 they	 were	 erected.	 Based	 on	 the	 year	 of	 erection,	 bridges	 are
grouped	into	distinct	categories,	such	as	crafts	bridges	that	were	erected	before
1870	and	modern	bridges	that	were	erected	after	1940.

Let's	assume	we	want	to	visualize	both	the	fraction	of	bridges	made	from	steel,
iron,	or	wood	and	the	fraction	that	are	crafts	or	modern.	We	might	be	tempted	to
do	so	by	drawing	a	combined	pie	chart	(Figure	11.1).	However,	this	visualization
is	not	valid.	All	the	slices	in	a	pie	chart	must	add	up	to	100%,	and	here	the	slices
add	up	to	135%.	We	reach	a	total	percentage	in	excess	of	100%	because	we	are
double-counting	 bridges.	Every	 bridge	 in	 the	 dataset	 is	made	 of	 steel,	 iron,	 or
wood,	 so	 these	 three	 slices	 of	 the	 pie	 already	 represent	 100%	 of	 the	 bridges.
Every	crafts	or	modern	bridge	is	also	a	steel,	iron,	or	wood	bridge,	and	hence	is
counted	twice	in	the	pie	chart.



Figure	11.1:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron)	and	by	date	of	construction	(crafts,	before	1870,	and	modern,	after
1940),	shown	as	a	pie	chart.	Numbers	represent	the	percentages	of	bridges	of	a
given	type	among	all	bridges.	This	figure	is	invalid,	because	the	percentages	add
up	to	more	than	100%.	There	is	overlap	between	construction	material	and	date
of	construction.	For	example,	all	modern	bridges	are	made	of	steel,	and	the
majority	of	crafts	bridges	are	made	of	wood.	Data	source:	Yoram	Reich	and
Steven	J.	Fenves,	via	the	UCI	Machine	Learning	Repository	(Dua	and	Karra

Taniskidou	2017)

Double-counting	 is	not	necessarily	a	problem	 if	we	choose	a	visualization	 that
does	not	require	the	proportions	to	add	to	100%.	As	discussed	in	the	preceding
chapter,	 side-by-side	 bars	 meet	 this	 criterion.	 We	 can	 show	 the	 various
proportions	 of	 bridges	 as	 bars	 in	 a	 single	 plot,	 and	 this	 plot	 is	 not	 technically
wrong	(Figure	11.2).	Nevertheless,	I	have	labeled	it	as	"bad",	because	it	does	not
immediately	show	that	there	is	overlap	among	some	of	the	categories	shown.	A
casual	 observer	 might	 conclude	 from	 Figure	 11.2	 that	 there	 are	 five	 separate
categories	of	bridges,	and	that,	for	example,	modern	bridges	are	neither	made	of
steel	nor	of	wood	or	iron.



Figure	11.2:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron)	and	by	date	of	construction	(crafts,	before	1870,	and	modern,	after

1940),	shown	as	a	bar	plot.	Unlike	Figure	11.1,	this	visualization	is	not
technically	wrong,	since	it	doesn't	imply	that	the	bar	heights	need	to	add	up	to
100%.	However,	it	also	does	not	clearly	indicate	the	overlap	among	different
groups,	and	therefore	I	have	labeled	it	"bad".	Data	source:	Yoram	Reich	and
Steven	J.	Fenves,	via	the	UCI	Machine	Learning	Repository	(Dua	and	Karra

Taniskidou	2017)

11.2	Mosaic	plots	and	treemaps

Whenever	we	have	categories	 that	overlap,	 it	 is	best	 to	 show	clearly	how	 they
relate	to	each	other.	This	can	be	done	with	a	mosaic	plot	(Figure	11.3).	On	first
glance,	 a	 mosaic	 plot	 looks	 similar	 to	 a	 stacked	 bar	 plot	 (e.g.,	 Figure	 10.5).
However,	unlike	in	a	stacked	bar	plot,	in	a	mosaic	plot	both	the	heights	and	the
widths	 of	 individual	 shaded	 areas	 vary.	 Note	 that	 in	 Figure	 11.3,	 we	 see	 two
additional	construction	eras,	emerging	(from	1870	to	1889)	and	mature	(1890	to
1939).	In	combination	with	crafts	and	modern,	these	construction	eras	cover	all
bridges	 in	 the	 dataset,	 as	 do	 the	 three	 building	 materials.	 This	 is	 a	 critical
condition	for	a	mosaic	plot:	Every	categorical	variable	shown	must	cover	all	the
observations	in	the	dataset.



Figure	11.3:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron)	and	by	era	of	construction	(crafts,	emerging,	mature,	modern),
shown	as	a	mosaic	plot.	The	widths	of	each	rectangle	are	proportional	to	the

number	of	bridges	constructed	in	that	era,	and	the	heights	are	proportional	to	the
number	of	bridges	constructed	from	that	material.	Numbers	represent	the	counts
of	bridges	within	each	category.	Data	source:	Yoram	Reich	and	Steven	J.	Fenves,
via	the	UCI	Machine	Learning	Repository	(Dua	and	Karra	Taniskidou	2017)

To	draw	a	mosaic	plot,	we	begin	by	placing	one	categorical	variable	along	the	x
axis	 (here,	 era	of	 bridge	 construction)	 and	 subdivide	 the	x	 axis	 by	 the	 relative
proportions	 that	 make	 up	 the	 categories.	 We	 then	 place	 the	 other	 categorical
variable	 along	 the	 y	 axis	 (here,	 building	 material)	 and,	 within	 each	 category
along	the	x	axis,	subdivide	the	y	axis	by	the	relative	proportions	that	make	up	the
categories	 of	 the	 y	 variable.	 The	 result	 is	 a	 set	 of	 rectangles	 whose	 areas	 are
proportional	 to	 the	number	of	 cases	 representing	each	possible	combination	of
the	two	categorical	variables.

The	bridges	dataset	can	also	be	visualized	in	a	related	but	distinct	format	called	a
treemap.	In	a	treemap,	just	as	is	the	case	in	a	mosaic	plot,	we	take	an	enclosing
rectangle	 and	 subdivide	 it	 into	 smaller	 rectangles	 whose	 areas	 represent	 the
proportions.	 However,	 the	 method	 of	 placing	 the	 smaller	 rectangles	 into	 the
larger	one	is	different	compared	to	the	mosaic	plot.	In	a	treemap,	we	recursively
nest	 rectangles	 inside	 each	 other.	 For	 example,	 in	 the	 case	 of	 the	 Pittsburgh



bridges,	 we	 can	 first	 subdivide	 the	 total	 area	 into	 three	 parts	 representing	 the
three	building	materials	wood,	iron,	and	steel.	Then,	we	subdivide	each	of	those
areas	 further	 to	 represent	 the	 construction	 eras	 represented	 for	 each	 building
material	(Figure	11.4).	In	principle,	we	could	keep	going	with	nesting	ever	more
smaller	subdivisions	inside	each	other,	though	relatively	quickly	the	result	would
become	unwieldy	or	confusing.

Figure	11.4:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron)	and	by	era	of	construction	(crafts,	emerging,	mature,	modern),

shown	as	a	treemap.	The	area	of	each	rectangle	is	proportional	to	the	number	of
bridges	of	that	type.	Data	source:	Yoram	Reich	and	Steven	J.	Fenves,	via	the

UCI	Machine	Learning	Repository	(Dua	and	Karra	Taniskidou	2017)

While	mosaic	plots	and	treemaps	are	closely	related,	 they	have	different	points
of	emphasis	and	different	application	areas.	Here,	the	mosaic	plot	(Figure	11.3)
emphasizes	the	temporal	evolution	in	building-material	use	from	the	crafts	era	to
the	modern	era,	whereas	the	treemap	(Figure	11.4)	emphasizes	the	total	number
of	steel,	iron,	and	wood	bridges.



More	 generally,	mosaic	 plots	 assume	 that	 all	 of	 the	 proportions	 shown	 can	 be
identified	via	combinations	of	two	or	more	orthogonal	categorical	variables.	For
example,	in	Figure	11.3,	every	bridge	can	be	described	by	a	choice	of	building
material	 (wood,	 iron,	 steel)	 and	 a	 choice	 of	 time	 period	 (crafts,	 emerging,
mature,	modern).	Moreover,	in	principle	every	combination	of	these	two	variable
is	possible,	even	though	in	practice	this	need	not	be	the	case.	(Here,	there	are	no
steel	 crafts	 bridges	 and	 no	wood	or	 iron	modern	 bridges.)	By	 contrast,	 such	 a
requirement	 does	 not	 exist	 for	 treemaps.	 In	 fact,	 treemaps	 tend	 to	 work	 well
when	the	proportions	cannot	meaningfully	be	described	by	combining	multiple
categorical	 variables.	 For	 example,	we	 can	 separate	 the	U.S.	 into	 four	 regions
(West,	Northeast,	Midwest,	and	South)	and	each	region	 into	distinct	states,	but
the	 states	 in	 one	 region	 have	 no	 relationship	 to	 the	 states	 in	 another	 region
(Figure	11.5).

Figure	11.5:	States	in	the	U.S.	visualized	as	a	treemap.	Each	rectangle	represents
one	state,	and	the	area	of	each	rectangle	is	proportional	to	the	state's	land	surface
area.	The	states	are	grouped	into	four	regions,	West,	Northeast,	Midwest,	and
South.	The	coloring	is	proportional	to	the	number	of	inhabitants	for	each	state,
with	darker	colors	representing	larger	numbers	of	inhabitants.	Data	source:	2010

U.S.	Census



Both	mosaic	plots	and	treemaps	are	commonly	used	and	can	be	illuminating,	but
they	 have	 similar	 limitations	 as	 do	 stacked	 bars	 (Chapter	 10.1):	 A	 direct
comparison	 among	 conditions	 can	 be	 difficult,	 because	 different	 rectangles	 do
not	necessarily	share	baselines	that	enable	visual	comparison.	In	mosaic	plots	or
treemaps,	this	problem	is	exacerbated	by	the	fact	that	the	shapes	of	the	different
rectangles	 can	 vary.	 For	 example,	 there	 are	 the	 same	 number	 of	 iron	 bridges
(three)	among	the	emerging	and	the	mature	bridges,	but	this	is	difficult	to	discern
in	 the	mosaic	plot	 (Figure	11.3),	because	 the	 two	 rectangles	 representing	 these
two	groups	of	three	bridges	have	entirely	different	shapes.	There	isn't	necessarily
a	 solution	 to	 this	 problem---visualizing	 nested	 proportions	 can	 be	 tricky.
Whenever	possible,	 I	 recommend	showing	 the	actual	 counts	or	percentages	on
the	 plot,	 so	 readers	 can	 verify	 that	 their	 intuitive	 interpretation	 of	 the	 shaded
areas	is	correct.

11.3	Nested	pies

At	 the	beginning	of	 this	chapter,	 I	visualized	 the	bridges	dataset	with	a	 flawed
pie	 chart	 (Figure	 11.1),	 and	 I	 then	 argued	 that	 a	mosaic	 plot	 or	 a	 treemap	 are
more	appropriate.	However,	both	of	these	latter	plot	types	are	closely	related	to
pie	 charts,	 since	 they	 all	 use	 area	 to	 represent	 data	 values.	 The	 primary
difference	is	the	type	of	coordinate	system,	polar	in	the	case	of	a	pie	chart	versus
cartesian	in	the	case	of	a	mosaic	plot	or	treemap.	This	close	relationship	between
these	different	plots	begs	the	question	whether	some	variant	of	a	pie	chart	can	be
used	to	visualize	this	dataset.

There	are	two	possibilities.	First,	we	can	draw	a	pie	chart	composed	of	an	inner
and	an	outer	circle	 (Figure	11.6).	The	 inner	circle	shows	 the	breakdown	of	 the
data	 by	 one	 variable	 (here,	 building	 material)	 and	 the	 outer	 circle	 shows	 the
breakdown	of	each	slice	of	the	inner	circle	by	the	second	variable	(here,	era	of
bridge	construction).	This	visualization	is	reasonable	but	I	have	my	reservations,
and	therefore	I	have	labeled	it	"ugly".	Most	importantly,	the	two	separate	circles
obscure	the	fact	that	each	bridge	in	the	dataset	has	both	a	building	material	and
an	 era	 of	 bridge	 construction.	 In	 effect,	 in	 Figure	 11.6,	 we	 are	 still	 double-
counting	each	bridge.	If	we	add	up	all	the	numbers	shown	in	the	two	circles	we
obtain	212,	which	is	twice	the	number	of	bridges	in	the	dataset.



Figure	11.6:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron,	inner	circle)	and	by	era	of	construction	(crafts,	emerging,	mature,
modern,	outer	circle).	Numbers	represent	the	counts	of	bridges	within	each

category.	Data	source:	Yoram	Reich	and	Steven	J.	Fenves,	via	the	UCI	Machine
Learning	Repository	(Dua	and	Karra	Taniskidou	2017)

Alternatively,	we	can	first	slice	the	pie	 into	pieces	representing	the	proportions
according	to	one	variable	(e.g.	material)	and	then	subdivide	these	slices	further
according	 to	 the	other	variable	 (construction	era)	 (Figure	11.7).	 In	 this	way,	 in
effect	we	are	making	a	normal	pie	chart	with	a	large	number	of	small	pie	slices.
However,	we	can	 then	use	coloring	 to	 indicate	 the	nested	nature	of	 the	pie.	 In
Figure	11.7,	 green	 colors	 represent	wood	bridges,	 orange	 colors	 represent	 iron
bridges,	 and	 blue	 colors	 represent	 steel	 bridges.	 The	 darkness	 of	 each	 color
represents	 the	 construction	 era,	 with	 darker	 colors	 corresponding	 to	 more
recently	constructed	bridges.	By	using	a	nested	color	scale	 in	 this	way,	we	can
visualize	 the	breakdown	of	 the	data	both	by	 the	primary	variable	 (construction
material)	and	by	the	secondary	variable	(construction	era).



Figure	11.7:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material	(steel,
wood,	iron)	and	by	era	of	construction	(crafts,	emerging,	mature,	modern).
Numbers	represent	the	counts	of	bridges	within	each	category.	Data	source:
Yoram	Reich	and	Steven	J.	Fenves,	via	the	UCI	Machine	Learning	Repository

(Dua	and	Karra	Taniskidou	2017)

The	pie	chart	of	Figure	11.7	represents	a	reasonable	visualization	of	the	bridges
dataset,	but	in	a	direct	comparison	to	the	equivalent	treemap	(Figure	11.4)	I	think
the	treemap	is	preferable.	First,	the	rectangular	shape	of	the	treemap	allows	it	to
make	better	use	of	the	available	space.	Figures	11.4	and	11.7	are	of	exactly	equal
size,	but	in	Figure	11.7	much	of	the	figure	is	wasted	as	white	space.	Figure	11.4,
the	 treemap,	 has	 virtually	 no	 superfluous	white	 space.	 This	matters	 because	 it
enables	 me	 to	 place	 the	 labels	 inside	 the	 shaded	 areas	 in	 the	 treemap.	 Inside
labels	always	create	a	stronger	visual	unit	with	the	data	than	outside	labels	and
hence	are	preferred.	Second,	some	of	the	pie	slices	in	Figure	11.7	are	very	thin
and	 thus	 hard	 to	 see.	 By	 contrast,	 every	 rectangle	 in	 Figure	 11.4	 is	 of	 a
reasonable	size.

11.4	Parallel	sets



When	we	want	to	visualize	proportions	described	by	more	than	two	categorical
variables,	 mosaic	 plots,	 treemaps,	 and	 pie	 charts	 all	 can	 quickly	 become
unwieldy.	A	viable	alternative	in	this	case	can	be	a	parallel	sets	plot.	In	a	parallel
sets	 plot,	 we	 show	 how	 the	 total	 dataset	 breaks	 down	 by	 each	 individual
categorical	 variable,	 and	 then	 we	 draw	 shaded	 bands	 that	 show	 how	 the
subgroups	relate	to	each	other.	See	Figure	11.8	for	an	example.	In	this	figure,	I
have	 broken	 down	 the	 bridges	 dataset	 by	 construction	 material	 (iron,	 steel,
wood),	 length	of	each	bridge	(long,	medium,	short),	 the	era	during	which	each
bridge	was	 constructed	 (crafts,	 emerging,	mature,	modern),	 and	 the	 river	 each
bridge	 spans	 (Allegheny,	 Monongahela,	 Ohio).	 The	 bands	 that	 connect	 the
parallel	sets	are	colored	by	construction	material.	This	shows,	for	example,	that
wood	 bridges	 are	 mostly	 of	 medium	 length	 (with	 a	 few	 short	 bridges),	 were
primarily	erected	during	the	crafts	period	(with	a	few	bridges	of	medium	length
erected	 during	 the	 emerging	 and	 mature	 periods),	 and	 span	 primarily	 the
Allegheny	river	(with	a	few	crafts	bridges	spanning	the	Monongahela	river).	By
contrast,	iron	bridges	are	all	of	medium	length,	were	primarily	erected	during	the
crafts	period,	and	span	the	Allegheny	and	Monongahela	rivers	in	approximately
equal	proportions.

Figure	11.8:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material,



length,	era	of	construction,	and	the	river	they	span,	shown	as	a	parallel	sets	plot.
The	coloring	of	the	bands	highlights	the	construction	material	of	the	different
bridges.	Data	source:	Yoram	Reich	and	Steven	J.	Fenves,	via	the	UCI	Machine

Learning	Repository	(Dua	and	Karra	Taniskidou	2017)

The	same	visualization	looks	quite	different	if	we	color	by	a	different	criterion,
for	example	by	river	(Figure	11.9).	This	figure	is	visually	busy,	with	many	criss-
crossing	bands,	but	we	do	see	that	nearly	any	bridge	of	any	type	can	be	found	to
span	each	river.

Figure	11.9:	Breakdown	of	bridges	in	Pittsburgh	by	construction	material,
length,	era	of	construction,	and	the	river	they	span.	This	figure	is	similar	to

Figure	11.8	but	now	the	coloring	of	the	bands	highlights	the	river	spanned	by	the
different	bridges.	This	figure	is	labeled	"ugly"	because	the	arrangement	of	the
colored	bands	in	the	middle	of	the	figure	is	very	busy,	and	also	because	the

bands	need	to	be	read	from	right	to	left.	Data	source:	Yoram	Reich	and	Steven	J.
Fenves,	via	the	UCI	Machine	Learning	Repository	(Dua	and	Karra	Taniskidou

2017)

I	 have	 labeled	 Figure	 11.9	 as	 "ugly"	 because	 I	 think	 it	 is	 overly	 complex	 and
confusing.	First,	since	we	are	used	to	reading	from	left	 to	right	I	 think	the	sets



that	define	 the	 coloring	 should	appear	 all	 the	way	 to	 the	 left,	 not	on	 the	 right.
This	will	make	 it	 easier	 to	 see	where	 the	 coloring	originates	 and	how	 it	 flows
through	the	dataset.	Second,	it	is	a	good	idea	to	change	the	order	of	the	sets	such
that	the	amount	of	criss-crossing	bands	is	minimized.	Following	these	principles,
I	arrive	at	Figure	11.10,	which	I	consider	preferable	to	Figure	11.9.

Figure	11.10:	Breakdown	of	bridges	in	Pittsburgh	by	river,	era	of	construction,
length,	and	construction	material.	This	figure	differs	from	Figure	11.9	only	in	the
order	of	the	parallel	sets.	However,	the	modified	order	results	in	a	figure	that	is
easier	to	read	and	less	busy.	Data	source:	Yoram	Reich	and	Steven	J.	Fenves,	via

the	UCI	Machine	Learning	Repository	(Dua	and	Karra	Taniskidou	2017)



12	Visualizing	associations	among	two
or	more	quantitative	variables
Many	 datasets	 contain	 two	 or	 more	 quantitative	 variables,	 and	 we	 may	 be
interested	in	how	these	variables	relate	to	each	other.	For	example,	we	may	have
a	dataset	of	quantiative	measurements	of	different	animals,	such	as	the	animals'
height,	weight,	length,	and	daily	energy	demands.	To	plot	the	relationship	of	just
two	 such	 variables,	 e.g.	 the	 height	 and	weight,	we	will	 normally	 use	 a	 scatter
plot.	 If	 we	want	 to	 show	more	 than	 two	 variables	 at	 once,	 we	may	 opt	 for	 a
bubble	 chart,	 a	 scatter	 plot	 matrix,	 or	 a	 correlogram.	 Finally,	 for	 very	 high-
dimensional	 datasets,	 it	 may	 be	 useful	 to	 perform	 dimension	 reduction,	 for
example	in	the	form	of	principal	components	analysis.

12.1	Scatter	plots

I	will	 demonstrate	 the	 basic	 scatter	 plot	 and	 several	 variations	 thereof	 using	 a
dataset	of	measurements	performed	on	123	blue	jay	birds.	The	dataset	contains
information	such	as	the	head	length	(measured	from	the	tip	of	the	bill	to	the	back
of	the	head),	the	skull	size	(head	length	minus	bill	length),	and	the	body	mass	of
each	 bird.	We	 expect	 that	 there	 are	 relationships	 between	 these	 variables.	 For
example,	birds	with	longer	bills	would	be	expected	to	have	larger	skull	sizes,	and
birds	with	higher	body	mass	should	have	larger	bills	and	skulls	than	birds	with
lower	body	mass.

To	explore	 these	 relationships,	 I	begin	with	a	plot	of	head	 length	against	body
mass	 (Figure	 12.1).	 In	 this	 plot,	 head	 length	 is	 shown	 along	 the	 y	 axis,	 body
mass	 along	 the	 x	 axis,	 and	 each	 bird	 is	 represented	 by	 one	 dot.	 (Note	 the
terminology:	We	say	that	we	plot	the	variable	shown	along	the	y	axis	against	the
variable	 shown	 along	 the	 x	 axis.)	 The	 dots	 form	 a	 dispersed	 cloud	 (hence	 the
term	scatter	plot),	 yet	 undoubtedly	 there	 is	 a	 trend	 for	 birds	with	 higher	 body
mass	 to	 have	 longer	 heads.	 The	 bird	 with	 the	 longest	 head	 falls	 close	 to	 the
maximum	body	mass	observed,	and	the	bird	with	the	shortest	head	falls	close	to
the	minimum	body	mass	observed.



Figure	12.1:	Head	length	(measured	from	the	tip	of	the	bill	to	the	back	of	the
head,	in	mm)	versus	body	mass	(in	gram),	for	123	blue	jays.	Each	dot

corresponds	to	one	bird.	There	is	a	moderate	tendency	for	heavier	birds	to	have
longer	heads.	Data	source:	Keith	Tarvin,	Oberlin	College

The	blue	jay	dataset	contains	both	male	and	female	birds,	and	we	may	want	to
know	whether	the	overall	relationship	between	head	length	and	body	mass	holds
up	separately	for	each	sex.	To	address	this	question,	we	can	color	the	points	in
the	scatter	plot	by	the	sex	of	the	bird	(Figure	12.2).	This	figure	reveals	that	the
overall	trend	in	head	length	and	body	mass	is	at	least	in	part	driven	by	the	sex	of
the	birds.	At	the	same	body	mass,	females	tend	to	have	shorter	heads	than	males.
At	the	same	time,	females	tend	to	be	lighter	than	males	on	average.



Figure	12.2:	Head	length	versus	body	mass	for	123	blue	jays.	The	birds'	sex	is
indicated	by	color.	At	the	same	body	mass,	male	birds	tend	to	have	longer	heads
(and	specifically,	longer	bills)	than	female	birds.	Data	source:	Keith	Tarvin,

Oberlin	College

Because	the	head	length	is	defined	as	the	distance	from	the	tip	of	the	bill	to	the
back	of	the	head,	a	larger	head	length	could	imply	a	longer	bill,	a	larger	skull,	or
both.	We	can	disentangle	bill	length	and	skull	size	by	looking	at	another	variable
in	the	dataset,	the	skull	size,	which	is	similar	to	the	head	length	but	excludes	the
bill.	As	we	are	already	using	the	x	position	for	body	mass,	the	y	position	for	head
length,	and	the	dot	color	for	bird	sex,	we	need	another	aesthetic	to	which	we	can
map	 skull	 size.	 One	 option	 is	 to	 use	 the	 size	 of	 the	 dots,	 resulting	 in	 a
visualization	called	a	bubble	chart	(Figure	12.3).



Figure	12.3:	Head	length	versus	body	mass	for	123	blue	jays.	The	birds'	sex	is
indicated	by	color,	and	the	birds'	skull	size	by	symbol	size.	Head-length

measurements	include	the	length	of	the	bill	while	skull-size	measurements	do
not.	Head	length	and	skull	size	tend	to	be	correlated,	but	there	are	some	birds
with	unusually	long	or	short	bills	given	their	skull	size.	Data	source:	Keith

Tarvin,	Oberlin	College

Bubble	charts	have	the	disadvantage	that	they	show	the	same	types	of	variables,
quantitative	variables,	with	two	different	types	of	scales,	position	and	size.	This
makes	it	difficult	to	visually	ascertain	the	strengths	of	associations	between	the
various	variables.	Moreover,	differences	between	data	values	encoded	as	bubble
size	 are	 harder	 to	 perceive	 than	 differences	 between	 data	 values	 encoded	 as
position.	Because	even	the	largest	bubbles	need	to	be	somewhat	small	compared
to	 the	 total	 figure	 size,	 the	 size	 differences	 between	 even	 the	 largest	 and	 the
smallest	bubbles	are	necessarily	small.	Consequently,	smaller	differences	in	data
values	 will	 correspond	 to	 very	 small	 size	 differences	 that	 can	 be	 virtually
impossible	to	see.	In	Figure	12.3,	I	used	a	size	mapping	that	visually	amplified
the	difference	between	the	smallest	skulls	(around	28mm)	and	the	largest	skulls
(around	 34mm),	 and	 yet	 it	 is	 difficult	 to	 determine	 what	 the	 relationship	 is
between	skull	size	and	either	body	mass	or	head	length.

As	an	alternative	to	a	bubble	chart,	it	may	be	preferable	to	show	an	all-against-
all	matrix	of	scatter	plots,	where	each	individual	plot	shows	two	data	dimensions
(Figure	12.4).	This	figure	shows	clearly	that	the	relationship	between	skull	size
and	body	mass	is	comparable	for	female	and	male	birds	except	that	 the	female
birds	 tend	 to	 be	 somewhat	 smaller.	 However,	 the	 same	 is	 not	 true	 for	 the
relationship	between	head	length	and	body	mass.	There	is	a	clear	separation	by



sex.	Male	birds	tend	to	have	longer	bills	than	female	birds,	all	else	equal.

Figure	12.4:	All-against-all	scatter	plot	matrix	of	head	length,	body	mass,	and
skull	size,	for	123	blue	jays.	This	figure	shows	the	exact	same	data	as	Figure
12.2.	However,	because	we	are	better	at	judging	position	than	symbol	size,

correlations	between	skull	size	and	the	other	two	variables	are	easier	to	perceive
in	the	pairwise	scatter	plots	than	in	Figure	12.2.	Data	source:	Keith	Tarvin,

Oberlin	College

12.2	Correlograms

When	 we	 have	 more	 than	 three	 to	 four	 quantiative	 variables,	 all-against-all
scatter	plot	matrices	quickly	become	unwieldy.	In	this	case,	it	is	more	useful	to
quantify	the	amount	of	association	between	pairs	of	variables	and	visualize	this
quantity	 rather	 than	 the	 raw	 data.	One	 common	way	 to	 do	 this	 is	 to	 calculate
correlation	coefficients.	The	correlation	coefficient	r	is	a	number	between	-1	and



1	 that	measures	 to	what	 extent	 two	 variables	 covary.	A	 value	 of	 r	 =	 0	means
there	 is	 no	 association	 whatsoever,	 and	 a	 value	 of	 either	 1	 or	 -1	 indicates	 a
perfect	association.	The	sign	of	the	correlation	coefficient	indicates	whether	the
variables	are	correlated	(larger	values	in	one	variable	coincide	with	larger	values
in	 the	 other)	 or	 anticorrelated	 (larger	 values	 in	 one	 variable	 coincide	 with
smaller	 values	 in	 the	 other).	 To	 provide	 visual	 examples	 of	 what	 different
correlation	strengths	look	like,	in	Figure	12.5	I	show	randomly	generated	sets	of
points	that	differ	widely	in	the	degree	to	which	the	x	and	y	values	are	correlated.

Figure	12.5:	Examples	of	correlations	of	different	magnitude	and	direction,	with
associated	correlation	coefficient	r.	In	both	rows,	from	left	to	right	correlations
go	from	weak	to	strong.	In	the	top	row	the	correlations	are	positive	(larger	values
for	one	quantity	are	associated	with	larger	values	for	the	other)	and	in	the	bottom
row	they	are	negative	(larger	values	for	one	quantity	are	associated	with	smaller
values	for	the	other).	In	all	six	panels,	the	sets	of	x	and	y	values	are	identical,	but
the	pairings	between	individual	x	and	y	values	have	been	reshuffled	to	generate

the	specified	correlation	coefficients.

The	correlation	coefficient	is	defined	as



where	 	and	 	are	two	sets	of	observations	and	 	and	 	are	the	corresponding
sample	means.	We	can	make	a	number	of	observations	from	this	formula.	First,
the	formula	is	symmetric	in	 	and	 ,	so	the	correlation	of	x	with	y	is	the	same
as	the	correlation	of	y	with	x.	Second,	the	individual	values	 	and	 	only	enter
the	formula	in	the	context	of	differences	to	the	respective	sample	mean,	so	if	we
shift	 an	 entire	 dataset	 by	 a	 constant	 amount,	 e.g.	 we	 replace	 	 with	

	 for	 some	 constant	 ,	 the	 correlation	 coefficient	 remains
unchanged.	 Third,	 the	 correlation	 coefficient	 also	 remains	 unchanged	 if	 we
rescale	 the	 data,	 ,	 since	 the	 constant	 	 will	 appear	 both	 in	 the
numerator	and	the	denominator	of	the	formula	and	hence	can	be	cancelled.

Visualizations	 of	 correlation	 coefficients	 are	 called	 correlograms.	 To	 illustrate
the	use	of	a	correlogram,	we	will	consider	a	data	set	of	over	200	glass	fragments
obtained	during	forensic	work.	For	each	glass	fragment,	we	have	measurements
about	 its	 composition,	 expressed	 as	 the	 percent	 in	 weight	 of	 various	 mineral
oxides.	 There	 are	 seven	 different	 oxides	 for	 which	 we	 have	 measurements,
yielding	 a	 total	 of	 6	 +	 5	 +	 4	+	 3	+	 2	+	 1	=	 21	 pairwise	 correlations.	We	 can
display	these	21	correlations	at	once	as	a	matrix	of	colored	tiles,	where	each	tile
represents	one	correlation	coefficient	(Figure	12.6).	This	correlogram	allows	us
to	 quickly	 grasp	 trends	 in	 the	 data,	 such	 as	 that	 magnesium	 is	 negatively
correlated	with	 nearly	 all	 other	 oxides,	 and	 that	 aluminum	 and	 barium	 have	 a
strong	positive	correlation.



Figure	12.6:	Correlations	in	mineral	content	for	214	samples	of	glass	fragments
obtained	during	forensic	work.	The	dataset	contains	seven	variables	measuring
the	amounts	of	magnesium	(Mg),	calcium	(Ca),	iron	(Fe),	potassium	(K),	sodium
(Na),	aluminum	(Al),	and	barium	(Ba)	found	in	each	glass	fragment.	The	colored
tiles	represents	the	correlations	between	pairs	of	these	variables.	Data	source:	B.

German

One	weakness	 of	 the	 correlogram	 of	 Figure	 12.6	 is	 that	 low	 correlations,	 i.e.
correlations	with	absolute	value	near	zero,	are	not	as	visually	suppressed	as	they
should	 be.	 For	 example,	 magnesium	 (Mg)	 and	 potassium	 (K)	 are	 not	 at	 all
correlated	 but	 Figure	 12.6	 doesn't	 immediately	 show	 this.	 To	 overcome	 this
limitation,	we	can	display	the	correlations	as	colored	circles	and	scale	the	circle
size	with	 the	absolute	value	of	 the	correlation	coefficient	 (Figure	12.6).	 In	 this
way,	low	correlations	are	suppressed	and	high	correlations	stand	out	better.



Figure	12.7:	Correlations	in	mineral	content	for	forensic	glass	samples.	The
color	scale	is	identical	to	Figure	12.6.	However,	now	the	magnitude	of	each

correlation	is	also	encoded	in	the	size	of	the	colored	circles.	This	choice	visually
deemphasizes	cases	with	correlations	near	zero.	Data	source:	B.	German

All	correlograms	have	one	important	drawback:	They	are	fairly	abstract.	While
they	show	us	 important	patterns	 in	 the	data,	 they	also	hide	 the	underlying	data
points	 and	may	 cause	 us	 to	 draw	 incorrect	 conclusions.	 It	 is	 always	 better	 to
visualize	 the	 raw	 data	 rather	 than	 abstract,	 derived	 quantities	 that	 have	 been
calculated	from	it.	Fortunately,	we	can	frequently	find	a	middle	ground	between
showing	important	patterns	and	showing	the	raw	data	by	applying	techniques	of
dimension	reduction.

12.3	Dimension	reduction

Dimension	 reduction	 relies	 on	 the	 key	 insight	 that	 most	 high-dimensional
datasets	 consist	 of	 multiple	 correlated	 variables	 that	 convey	 overlapping
information.	 Such	 datasets	 can	 be	 reduced	 to	 a	 smaller	 number	 of	 key
dimensions	 without	 loss	 of	 much	 critical	 information.	 As	 a	 simple,	 intuitive
example,	 consider	 a	 dataset	 of	 multiple	 physical	 traits	 of	 people,	 including
quantities	such	as	each	person's	height	and	weight,	 the	lengths	of	the	arms	and



legs,	 the	 circumferences	 of	 waist,	 hip,	 and	 chest,	 etc.	 We	 can	 understand
immediately	that	all	these	quantities	will	relate	first	and	foremost	to	the	overall
size	 of	 each	person.	All	 else	 being	 equal,	 a	 larger	 person	will	 be	 taller,	weigh
more,	have	longer	arms	and	legs,	and	larger	waist,	hip,	and	chest	circumferences.
The	next	important	dimension	is	going	to	be	the	person's	sex.	Male	and	female
measurements	 are	 substantially	 different	 for	 persons	 of	 comparable	 size.	 For
example,	 a	woman	will	 tend	 to	have	higher	 hip	 circumference	 than	 a	man,	 all
else	being	equal.

There	 are	 many	 techniques	 for	 dimension	 reduction.	 I	 will	 discuss	 only	 one
technique	here,	the	most	widely	used	one,	called	principal	components	analysis
(PCA).	 PCA	 introduces	 a	 new	 set	 of	 variables	 (called	 principal	 components,
PCs)	by	linear	combination	of	the	original	variables	in	the	data,	standardized	to
zero	 mean	 and	 unit	 variance	 (see	 Figure	 12.8	 for	 a	 toy	 example	 in	 two
dimensions).	The	PCs	are	chosen	such	 that	 they	are	uncorrelated,	and	 they	are
ordered	 such	 that	 the	 first	 component	 captures	 the	 largest	 possible	 amount	 of
variation	 in	 the	 data,	 and	 subsequent	 components	 capture	 increasingly	 less.
Usually,	key	features	in	the	data	can	be	seen	from	only	the	first	two	or	three	PCs.

(ref:blue-jays-PCA)	 Example	 principal	 components	 (PC)	 analysis	 in	 two
dimensions.	(a)	The	original	data.	As	example	data,	I	am	using	the	head-length
and	skull-size	measurements	from	the	blue	jays	dataset.	Female	and	male	birds
are	distinguished	by	color,	but	this	distinction	has	no	effect	on	the	PC	analysis.
(b)	As	the	first	step	in	PCA,	we	scale	the	original	data	values	to	zero	mean	and
unit	variance.	We	then	we	define	new	variables	(the	principal	components,	PCs)
along	the	directions	of	maximum	variation	in	the	data.	(c)	Finally,	we	project	the
data	into	the	new	coordinates.	Mathematically,	this	projection	is	equivalent	to	a
rotation	of	the	data	points	around	the	origin.	In	the	2D	example	shown	here,	the
data	points	are	rotated	clockwise	by	45	degrees.



Figure	12.8:	(ref:blue-jays-PCA)

When	 we	 perform	 PCA,	 we	 are	 generally	 interested	 in	 two	 pieces	 of
information:	(i)	the	composition	of	the	PCs	and	(ii)	the	location	of	the	individual
data	points	in	the	principal	components	space.	Let's	look	at	these	two	pieces	in	a
PC	analysis	of	the	forensic	glass	dataset.

First,	 we	 look	 at	 the	 component	 composition	 (Figure	 12.9).	 Here,	 we	 only
consider	 the	first	 two	components,	PC	1	and	PC	2.	Because	 the	PCs	are	 linear
combinations	of	 the	original	variables	 (after	 standardization),	we	can	 represent
the	original	variables	as	arrows	indicating	to	what	extent	they	contribute	to	the
PCs.	Here,	we	see	that	barium	and	sodium	contribute	primarily	to	PC	1	and	not
to	PC	2,	calcium	and	potassium	contribute	primarily	 to	PC	2	and	not	 to	PC	1,
and	 the	 other	 variables	 contribute	 in	 varying	 amounts	 to	 both	 components
(Figure	12.9).	The	arrows	are	of	varying	lengths	because	there	are	more	than	two
PCs.	For	example	the	arrow	for	 iron	is	particularly	short	because	it	contributes
primarily	to	higher-order	PCs	(not	shown).



Figure	12.9:	Composition	of	the	first	two	components	in	a	principal	components
analysis	(PCA)	of	the	forensic	glass	dataset.	Component	one	(PC	1)	measures
primarily	the	amount	of	aluminum,	barium,	sodium,	and	magnesium	contents	in
a	glass	fragment,	whereas	component	two	(PC	2)	measures	primarily	the	amount
of	calcium	and	potassium	content,	and	to	some	extent	the	amount	of	aluminum

and	magnesium.

Next,	we	project	 the	original	data	 into	 the	principal	 components	 space	 (Figure
12.10).	We	see	a	clear	clustering	of	distinct	types	of	glass	fragments	in	this	plot.
Fragments	from	both	headlamps	and	windows	fall	into	clearly	delineated	regions
in	the	PC	plot,	with	few	outliers.	Fragments	from	tableware	and	from	containers
are	a	little	more	spread	out,	but	nevertheless	clearly	distinct	from	both	headlamp
and	window	 fragments.	By	 comparing	 Figure	 12.10	with	Figure	 12.9,	we	 can
conclude	 that	 window	 samples	 tend	 to	 have	 higher	 than	 average	 magnesium
content	and	lower	than	average	barium,	aluminum,	and	sodium	content,	whereas
the	opposite	is	true	for	headlamp	samples.



Figure	12.10:	Composition	of	individual	glass	fragments	visualized	in	the
principal	components	space	defined	in	Figure	12.9.	We	see	that	the	different
types	of	glass	samples	cluster	at	characteristic	values	of	PC	1	and	2.	In
particular,	headlamps	are	characterized	by	a	negative	PC	1	value	whereas

windows	tend	to	have	a	positive	PC	1	value.	Tableware	and	containers	have	PC
1	values	close	to	zero	and	tend	to	have	positive	PC	2	values.	However,	there	are
a	few	exceptions	where	container	fragments	have	both	a	negative	PC	1	value	and

a	negative	PC	2	value.	These	are	fragments	whose	composition	drastically
differs	from	all	other	fragments	analyzed.

12.4	Paired	data

A	special	case	of	multivariate	quantitative	data	is	paired	data:	Data	where	there
are	 two	 or	 more	 measurements	 of	 the	 same	 quantity	 under	 slightly	 different
conditions.	 Examples	 include	 two	 comparable	 measurements	 on	 each	 subject
(e.g.,	the	length	of	the	right	and	the	left	arm	of	a	person),	repeat	measurements
on	 the	 same	 subject	 at	 different	 time	 points	 (e.g.,	 a	 person's	 weight	 at	 two
different	times	during	the	year),	or	measurements	on	two	closely	related	subjects
(e.g.,	 the	 heights	 of	 two	 identical	 twins).	 For	 paired	 data,	 it	 is	 reasonable	 to
assume	that	the	two	measurements	belonging	to	a	pair	are	more	similar	to	each



other	 than	 to	 the	 measurements	 belonging	 to	 other	 pairs.	 Two	 twins	 will	 be
approximately	 of	 the	 same	 height	 but	 will	 differ	 in	 height	 from	 other	 twins.
Therefore,	 for	paired	data,	we	need	 to	 choose	visualizations	 that	highlight	 any
differences	between	the	paired	measurements.

An	excellent	choice	in	this	case	is	a	simple	scatter	plot	on	top	of	a	diagonal	line
marking	 x	 =	 y.	 In	 such	 a	 plot,	 if	 the	 only	 difference	 between	 the	 two
measurements	of	each	pair	is	random	noise,	then	all	points	in	the	sample	will	be
scattered	symmetrically	around	this	line.	Any	systematic	differences	between	the
paired	measurements,	by	contrast,	will	be	visible	in	a	systematic	shift	of	the	data
points	up	or	down	relative	to	the	diagonal.	As	an	example,	consider	the	carbon
dioxide	(CO2)	 emissions	 per	 person,	measured	 for	 166	 countries	 both	 in	 1970
and	 in	 2010	 (Figure	 12.11).	 This	 example	 highlights	 two	 common	 features	 of
paired	 data.	 First,	 most	 points	 are	 relatively	 close	 to	 the	 diagonal	 line.	 Even
though	 CO2	 emissions	 vary	 over	 nearly	 four	 orders	 of	 magnitude	 among
countries,	 they	 are	 fairly	 consistent	 within	 each	 country	 over	 a	 40-year	 time
span.	 Second,	 the	 points	 are	 systematically	 shifted	 upwards	 relative	 to	 the
diagonal	line.	The	majority	of	countries	has	seen	an	increase	in	CO2	emissions
over	the	40	years	considered.



Figure	12.11:	Carbon	dioxide	(CO2)	emissions	per	person	in	1970	and	2010,	for
166	countries.	Each	dot	represents	one	country.	The	diagonal	line	represents

identical	CO2	emissions	in	1970	and	2010.	The	points	are	systematically	shifted
upwards	relative	to	the	diagonal	line:	In	the	majority	of	countries,	emissions
were	higher	in	2010	than	in	1970.	Data	source:	Carbon	Dioxide	Information

Analysis	Center

Scatter	plots	such	as	Figure	12.11	work	well	when	we	have	a	 large	number	of
data	points	and/or	are	 interested	in	a	systematic	deviation	of	 the	entire	data	set
from	 the	 null	 expectation.	 By	 contrast,	 if	 we	 have	 only	 a	 small	 number	 of
observations	and	are	primarily	interested	in	the	identity	of	each	individual	case,
a	 slopegraph	 may	 be	 a	 better	 choice.	 In	 a	 slopegraph,	 we	 draw	 individual
measurements	 as	 dots	 arranged	 into	 two	 columns	 and	 indicate	 pairings	 by
connecting	 the	 paired	 dots	 with	 a	 line.	 The	 slope	 of	 each	 line	 highlights	 the
magnitude	and	direction	of	change.	Figure	12.12	uses	this	approach	to	show	the
ten	countries	with	the	largest	difference	in	CO2	emissions	per	person	from	2000
to	2010.

Figure	12.12:	Carbon	dioxide	(CO2)	emissions	per	person	in	2000	and	2010,	for



the	ten	countries	with	the	largest	difference	between	these	two	years.	Data
source:	Carbon	Dioxide	Information	Analysis	Center

Slopegraphs	have	one	important	advantage	over	scatter	plots:	They	can	be	used
to	compare	more	than	two	measurements	at	a	time.	For	example,	we	can	modify
Figure	12.12	 to	show	CO2	emissions	at	 three	 time	points,	here	 the	years	2000,
2005,	and	2010	(Figure	12.13).	This	choice	highlights	both	countries	with	a	large
change	in	emissions	over	the	entire	decade	as	well	as	countries	such	as	Qatar	or
Trinidad	and	Tobago	for	which	 there	 is	a	 large	difference	 in	 the	 trend	seen	for
the	first	five-year	interval	and	the	second	one.

Figure	12.13:	CO2	emissions	per	person	in	2000,	2005,	and	2010,	for	the	ten
countries	with	the	largest	difference	between	the	years	2000	and	2010.	Data

source:	Carbon	Dioxide	Information	Analysis	Center



13	Visualizing	time	series	and	other
functions	of	an	independent	variable
The	 preceding	 chapter	 discussed	 scatter	 plots,	 where	 we	 plot	 one	 quantitative
variable	against	another.	A	special	case	arises	when	one	of	the	two	variables	can
be	 thought	 of	 as	 time,	 because	 time	 imposes	 additional	 structure	 on	 the	 data.
Now	the	data	points	have	an	inherent	order;	we	can	arrange	the	points	in	order	of
increasing	time	and	define	a	predecessor	and	successor	for	each	data	point.	We
frequently	want	to	visualize	this	temporal	order	and	we	do	so	with	line	graphs.
Line	 graphs	 are	 not	 limited	 to	 time	 series,	 however.	 They	 are	 appropriate
whenever	 one	 variable	 imposes	 an	 ordering	 on	 the	 data.	 This	 scenario	 arises
also,	 for	 example,	 in	 a	 controlled	 experiment	 where	 a	 treatment	 variable	 is
purposefully	set	to	a	range	of	different	values.	If	we	have	multiple	variables	that
depend	on	time,	we	can	either	draw	separate	line	plots	or	we	can	draw	a	regular
scatter	plot	and	then	draw	lines	to	connect	the	neighboring	points	in	time.

13.1	Individual	time	series

As	a	first	demonstration	of	a	time	series,	we	will	consider	the	pattern	of	monthly
preprint	submissions	in	biology.	Preprints	are	scientific	articles	that	researchers
post	online	before	formal	peer	review	and	publication	in	a	scientific	journal.	The
preprint	server	bioRxiv,	which	was	founded	in	November	2013	specifically	for
researchers	 working	 in	 the	 biological	 sciences,	 has	 seen	 substantial	 growth	 in
monthly	submissions	since.	We	can	visualize	 this	growth	by	making	a	 form	of
scatter	 plot	 (Chapter	 12)	 where	 we	 draw	 dots	 representing	 the	 number	 of
submissions	in	each	month	(Figure	13.1).



Figure	13.1:	Monthly	submissions	to	the	preprint	server	bioRxiv,	from	its
inception	in	November	2014	until	April	2018.	Each	dot	represents	the	number	of

submissions	in	one	month.	There	has	been	a	steady	increase	in	submission
volume	throughout	the	entire	4.5-year	period.	Data	source:	Jordan	Anaya,

http://www.prepubmed.org/

There	 is	 an	 important	 difference	 however	 between	Figure	 13.1	 and	 the	 scatter
plots	discussed	in	Chapter	12.	In	Figure	13.1,	 the	dots	are	spaced	evenly	along
the	x	axis,	and	there	is	a	defined	order	among	them.	Each	dot	has	exactly	one	left
and	 one	 right	 neighbor	 (except	 the	 leftmost	 and	 rightmost	 points	 which	 have
only	 one	 neighbor	 each).	We	 can	 visually	 emphasize	 this	 order	 by	 connecting
neighboring	points	with	lines	(Figure	13.2).	Such	a	plot	is	called	a	line	graph.

http://www.prepubmed.org/


Figure	13.2:	Monthly	submissions	to	the	preprint	server	bioRxiv,	shown	as	dots
connected	by	lines.	The	lines	do	not	represent	data	but	are	only	meant	as	a	guide
to	the	eye.	By	connecting	the	individual	dots	with	lines,	we	emphasize	that	there

is	an	order	between	the	dots,	each	dot	has	exactly	one	neighbor	that	comes
before	and	one	that	comes	after.	Data	source:	Jordan	Anaya,

http://www.prepubmed.org/

Some	 people	 object	 to	 drawing	 lines	 between	 points	 because	 the	 lines	 do	 not
represent	observed	data.	In	particular,	if	there	are	only	a	few	observations	spaced
far	apart,	had	observations	been	made	at	intermediate	times	they	would	probably
not	 have	 fallen	 exactly	 onto	 the	 lines	 shown.	 Thus,	 in	 a	 sense,	 the	 lines
correspond	to	made-up	data.	Yet	they	may	help	with	perception	when	the	points
are	 spaced	 far	 apart	 or	 are	 unevenly	 spaced.	 We	 can	 somewhat	 resolve	 this
dilemma	by	pointing	 it	out	 in	 the	figure	caption,	 for	example	by	writing	"lines
are	meant	as	a	guide	to	the	eye"	(see	caption	of	Figure	13.2).

Using	lines	to	represent	time	series	is	generally	accepted	practice,	however,	and
frequently	the	dots	are	omitted	altogether	(Figure	13.3).	Without	dots,	the	figure
places	 more	 emphasis	 on	 the	 overall	 trend	 in	 the	 data	 and	 less	 on	 individual
observations.	 A	 figure	 without	 dots	 is	 also	 visually	 less	 busy.	 In	 general,	 the
denser	the	time	series,	the	less	important	it	is	to	show	individual	obserations	with
dots.	For	the	preprint	dataset	shown	here,	I	think	omitting	the	dots	is	fine.

http://www.prepubmed.org/


Figure	13.3:	Monthly	submissions	to	the	preprint	server	bioRxiv,	shown	as	a	line
graph	without	dots.	Omitting	the	dots	emphasizes	the	overall	temporal	trend
while	de-emphasizing	individual	observations	at	specific	time	points.	It	is

particularly	useful	when	the	time	points	are	spaced	very	densely.	Data	source:
Jordan	Anaya,	http://www.prepubmed.org/

We	can	also	fill	 the	area	under	 the	curve	with	a	solid	color	(Figure	13.4).	This
choice	further	emphasizes	the	overarching	trend	in	the	data,	because	it	visually
separates	 the	 area	 above	 the	 curve	 from	 the	 area	 below.	 However,	 this
visualization	 is	 only	valid	 if	 the	y	 axis	 starts	 at	 zero,	 so	 that	 the	 height	 of	 the
shaded	area	at	each	time	point	represents	the	data	value	at	that	time	point.

http://www.prepubmed.org/


Figure	13.4:	Monthly	submissions	to	the	preprint	server	bioRxiv,	shown	as	a	line
graph	with	filled	area	underneath.	By	filling	the	area	under	the	curve,	we	put
even	more	emphasis	on	the	overarching	temporal	trend	than	if	we	just	draw	a
line	(Figure	13.3).	Data	source:	Jordan	Anaya,	http://www.prepubmed.org/

13.2	Multiple	time	series	and	dose--response	curves

We	often	have	multiple	time	courses	that	we	want	to	show	at	once.	In	this	case,
we	 have	 to	 be	 more	 careful	 in	 how	 we	 plot	 the	 data,	 because	 the	 figure	 can
become	 confusing	 or	 difficult	 to	 read.	 For	 example,	 if	 we	 want	 to	 show	 the
monthly	 submissions	 to	multiple	 preprint	 servers,	 a	 scatter	 plot	 is	 not	 a	 good
idea,	 because	 the	 individual	 time	 courses	 run	 into	 each	 other	 (Figure	 13.5).
Connecting	the	dots	with	lines	alleviates	this	issue	(Figure	13.6).

http://www.prepubmed.org/


Figure	13.5:	Monthly	submissions	to	three	preprint	servers	covering	biomedical
research:	bioRxiv,	the	q-bio	section	of	arXiv,	and	PeerJ	Preprints.	Each	dot
represents	the	number	of	submissions	in	one	month	to	the	respective	preprint
server.	This	figure	is	labeled	"bad"	because	the	three	time	courses	visually

interfere	with	each	other	and	are	difficult	to	read.	Data	source:	Jordan	Anaya,
http://www.prepubmed.org/

http://www.prepubmed.org/


Figure	13.6:	Monthly	submissions	to	three	preprint	servers	covering	biomedical
research.	By	connecting	the	dots	in	Figure	13.5	with	lines,	we	help	the	viewer

follow	each	individual	time	course.	Data	source:	Jordan	Anaya,
http://www.prepubmed.org/

Figure	 13.6	 represents	 an	 acceptable	 visualization	 of	 the	 preprints	 dataset.
However,	the	separate	legend	creates	unnecessary	cognitive	load.	We	can	reduce
this	 cognitive	 load	 by	 labeling	 the	 lines	 directly	 (Figure	 13.7).	We	 have	 also
eliminated	 the	 individual	 dots	 in	 this	 figure,	 for	 a	 result	 that	 is	 much	 more
streamlined	and	easy	to	read	than	the	original	starting	point,	Figure	13.5.

Figure	13.7:	Monthly	submissions	to	three	preprint	servers	covering	biomedical
research.	By	direct	labeling	the	lines	instead	of	providing	a	legend,	we	have

reduced	the	cognitive	load	required	to	read	the	figure.	And	the	elimination	of	the
legend	removes	the	need	for	points	of	different	shapes.	Thus,	we	could

streamline	the	figure	further	by	eliminating	the	dots.	Data	source:	Jordan	Anaya,
http://www.prepubmed.org/

Line	 graphs	 are	 not	 limited	 to	 time	 series.	 They	 are	 appropriate	whenever	 the
data	points	have	a	natural	order	that	is	reflected	in	the	variable	shown	along	the	x
axis,	 so	 that	 neighboring	 points	 can	 be	 connected	 with	 a	 line.	 This	 situation
arises,	for	example,	in	dose--response	curves,	where	we	measure	how	changing
some	 numerical	 parameter	 in	 an	 experiment	 (the	 dose)	 affects	 an	 outcome	 of

http://www.prepubmed.org/
http://www.prepubmed.org/


interest	 (the	 response).	 Figure	 13.8	 shows	 a	 classic	 experiment	 of	 this	 type,
measuring	oat	yield	in	response	to	increasing	amounts	of	fertilization.	The	line-
graph	visualization	highlights	how	the	dose--response	curve	has	a	similar	shape
for	 the	 three	 oat	 varieties	 considered	 but	 differs	 in	 the	 starting	 point	 in	 the
absence	 of	 fertilization	 (i.e.,	 some	 varieties	 have	 naturally	 higher	 yield	 than
others).

Figure	13.8:	Dose--response	curve	showing	the	mean	yield	of	oats	varieties	after
fertilization	with	manure.	The	manure	serves	as	a	source	of	nitrogen,	and	oat
yields	generally	increase	as	more	nitrogen	is	available,	regardless	of	variety.
Here,	manure	application	is	measured	in	cwt	(hundredweight)	per	acre.	The
hundredweight	is	an	old	imperial	unit	equal	to	112	lbs	or	50.8	kg.	Data	soure:

Yates	(1935)

13.3	Time	series	of	two	or	more	response	variables

In	the	preceding	examples	we	dealt	with	time	courses	of	only	a	single	response
variable	 (e.g.,	 preprint	 submissions	 per	month	 or	 oat	 yield).	 It	 is	 not	 unusual,
however,	 to	 have	 more	 than	 one	 response	 variable.	 Such	 situations	 arise
commonly	in	macroeconomics.	For	example,	we	may	be	interested	in	the	change
in	house	prices	from	the	previous	12	months	as	 it	 relates	 to	 the	unemployment
rate.	We	may	expect	 that	house	prices	rise	when	the	unemployment	rate	is	 low



and	vice	versa.

Given	 the	 tools	 from	 the	preceding	 subsections,	we	 can	visualize	 such	data	 as
two	 separate	 line	 graphs	 stacked	on	 top	of	 each	other	 (Figure	 13.9).	 This	 plot
directly	shows	the	two	variables	of	interest,	and	it	is	straightforward	to	interpret.
However,	because	the	two	variables	are	shown	as	separate	line	graphs,	drawing
comparisons	between	them	can	be	cumbersome.	If	we	want	to	identify	temporal
regions	when	both	variables	move	in	the	same	or	in	opposite	directions,	we	need
to	switch	back	and	forth	between	the	two	graphs	and	compare	the	relative	slopes
of	the	two	curves.

Figure	13.9:	12-month	change	in	house	prices	(a)	and	unemployment	rate	(b)
over	time,	from	Jan.	2001	through	Dec.	2017.	Data	sources:	Freddie	Mac	House

Prices	Index,	U.S.	Bureau	of	Labor	Statistics.

As	 an	 alternative	 to	 showing	 two	 separate	 line	 graphs,	 we	 can	 plot	 the	 two
variables	 against	 each	 other,	 drawing	 a	 path	 that	 leads	 from	 the	 earliest	 time
point	 to	 the	 latest	 (Figure	 13.10).	 Such	 a	 visualization	 is	 called	 a	 connected
scatter	plot,	because	we	are	technically	making	a	scatter	plot	of	the	two	variables
against	 each	 other	 and	 then	 are	 connecting	 neighboring	 points.	 Physicists	 and
engineers	 often	 call	 this	 a	 phase	 portrait,	 because	 in	 their	 disciplines	 it	 is



commonly	 used	 to	 represent	 movement	 in	 phase	 space.	 We	 have	 previously
encountered	 connected	 scatter	 plots	 in	 Chapter	 3,	 where	 we	 plotted	 the	 daily
temperature	 normals	 in	 Houston,	 TX,	 versus	 those	 in	 San	 Diego,	 CA	 (Figure
3.3).

Figure	13.10:	12-month	change	in	house	prices	versus	unemployment	rate,	from
Jan.	2001	through	Dec.	2017,	shown	as	a	connected	scatter	plot.	Darker	shades
represent	more	recent	months.	The	anti-correlation	seen	in	Figure	13.9	between
the	change	in	house	prices	and	the	unemployment	rate	causes	the	connected
scatter	plot	to	form	two	counter-clockwise	circles.	Data	sources:	Freddie	Mac

House	Price	Index,	U.S.	Bureau	of	Labor	Statistics.	Original	figure	concept:	Len
Kiefer

In	a	connected	scatter	plot,	lines	going	in	the	direction	from	the	lower	left	to	the
upper	 right	 represent	 correlated	movement	 between	 the	 two	 variables	 (as	 one
variable	grows,	so	does	the	other),	and	lines	going	in	the	perpendicular	direction,
from	 the	 upper	 left	 to	 the	 lower	 right,	 represent	 anti-correlated	movement	 (as
one	 variable	 grows,	 the	 other	 shrinks).	 If	 the	 two	 variables	 have	 a	 somewhat
cyclic	relationship,	we	will	see	circles	or	spirals	in	the	connected	scatter	plot.	In



Figure	 13.10,	we	 see	 one	 small	 circle	 from	 2001	 through	 2005	 and	 one	 large
circle	for	the	remainder	of	the	time	course.

When	drawing	a	connected	scatter	plot,	it	is	important	that	we	indicate	both	the
direction	and	the	temporal	scale	of	the	data.	Without	such	hints,	the	plot	can	turn
into	meaningless	 scribble	 (Figure	 13.11).	 I	 am	 using	 here	 (in	 Figure	 13.10)	 a
gradual	 darkening	 of	 the	 color	 to	 indicate	 direction.	 Alternatively,	 one	 could
draw	arrows	along	the	path.

Figure	13.11:	12-month	change	in	house	prices	versus	unemployment	rate,	from
Jan.	2001	through	Dec.	2017.	This	figure	is	labeled	"bad"	because	without	the
date	markers	and	color	shading	of	Figure	13.10,	we	can	see	neither	the	direction
nor	the	speed	of	change	in	the	data.	Data	sources:	Freddie	Mac	House	Prices

Index,	U.S.	Bureau	of	Labor	Statistics.

Is	it	better	to	use	a	connected	scatter	plot	or	two	separate	line	graphs?	Separate
line	 graphs	 tend	 to	 be	 easier	 to	 read,	 but	 once	 people	 are	 used	 to	 connected
scatter	 plots	 they	 may	 be	 able	 to	 extract	 certain	 patterns	 (such	 as	 cyclical
behavior	with	 some	 irregularity)	 that	 can	be	difficult	 to	 spot	 in	 line	graphs.	 In



fact,	 to	 me	 the	 cyclical	 relationship	 between	 change	 in	 house	 prices	 and
unemployment	 rate	 is	 hard	 to	 spot	 in	 Figure	 13.9,	 but	 the	 counter-clockwise
spiral	 in	Figure	13.10	 clearly	 shows	 it.	Research	 reports	 that	 readers	 are	more
likely	 to	 confuse	 order	 and	 direction	 in	 a	 connected	 scatter	 plot	 than	 in	 line
graphs	 and	 less	 likely	 to	 report	 correlation	 (Haroz,	 Kosara,	 and	 Franconeri
2016).	 On	 the	 flip	 side,	 connected	 scatter	 plots	 seem	 to	 result	 in	 higher
engagement,	and	thus	such	plots	may	be	a	effective	tools	to	draw	readers	into	a
story	(Haroz,	Kosara,	and	Franconeri	2016).

Even	though	connected	scatter	plots	can	show	only	two	variables	at	a	time,	we
can	also	use	them	to	visualize	higher-dimensional	datasets.	The	trick	is	to	apply
dimension	 reduction	 first	 (see	 Chapter	 12).	 We	 can	 then	 draw	 a	 connected
scatterplot	in	the	dimension-reduced	space.	As	an	example	of	this	approach,	we
will	 visualize	 a	 database	of	monthly	observations	of	 over	 100	macroeconomic
indicators,	 provided	 by	 the	 Federal	 Reserve	Bank	 of	 St.	 Louis.	We	 perform	 a
principal	components	analysis	(PCA)	of	all	indicators	and	then	draw	a	connected
scatter	 plot	 of	 PC	 2	 versus	 PC	 1	 (Figure	 13.12a)	 and	 versus	 PC	 3	 (Figure
13.12b).



Figure	13.12:	Visualizing	a	high-dimensional	time	series	as	a	connected	scatter
plot	in	principal	components	space.	The	path	indicates	the	joint	movement	of
over	100	macroeconomic	indicators	from	January	1990	to	December	2017.



Times	of	recession	and	recovery	are	indicated	via	color,	and	the	end	points	of	the
three	recessions	(March	1991,	November	2001,	and	June	2009)	are	also	labeled.
(a)	PC	2	versus	PC	1.	(b)	PC	2	versus	PC	3.	Data	source:	M.	W.	McCracken,	St.

Louis	Fed

Notably,	Figure	13.12a	 looks	almost	 like	a	 regular	 line	plot,	with	 time	running
from	left	to	right.	This	pattern	is	caused	by	a	common	feature	of	PCA:	The	first
component	 often	 measures	 the	 overall	 size	 of	 the	 system.	 Here,	 PC	 1
approximately	measures	the	overall	size	of	the	economy,	which	rarely	decreases
over	time.

By	 coloring	 the	 connected	 scatter	 plot	 by	 times	 of	 recession	 and	 recovery,	we
can	see	that	recessions	are	associated	with	a	drop	in	PC	2	whereas	recoveries	do
not	 correspond	 to	 a	 clear	 feature	 in	 either	 PC	1	 or	 PC	2	 (Figure	 13.12a).	The
recoveries	do,	however,	seem	to	correspond	to	a	drop	in	PC	3	(Figure	13.12b).
Moreover,	in	the	PC	2	versus	PC	3	plot,	we	see	that	the	line	follows	the	shape	of
a	clockwise	spiral.	This	pattern	emphasizes	the	cyclical	nature	of	the	economy,
with	recessions	following	recoveries	and	vice	versa.
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14	Visualizing	trends
When	making	scatter	plots	(Chapter	12)	or	time	series	(Chapter	13),	we	are	often
more	interested	in	the	overarching	trend	of	the	data	than	in	the	specific	detail	of
where	each	individual	data	point	lies.	By	drawing	the	trend	on	top	of	or	instead
of	the	actual	data	points,	usually	in	the	form	of	a	straight	or	curved	line,	we	can
create	a	visualization	 that	helps	 the	 reader	 immediately	 see	key	 features	of	 the
data.	 There	 are	 two	 fundamental	 approaches	 to	 determining	 a	 trend:	 We	 can
either	smooth	the	data	by	some	method,	such	as	a	moving	average,	or	we	can	fit
a	curve	with	a	defined	functional	form	and	then	draw	the	fitted	curve.	Once	we
have	identified	a	trend	in	a	dataset,	it	may	also	be	useful	to	look	specifically	at
deviations	 from	 the	 trend	 or	 to	 separate	 the	 data	 into	 multiple	 components,
including	 the	underlying	 trend,	any	existing	cyclical	components,	 and	episodic
components	or	random	noise.

14.1	Smoothing

Let	us	consider	a	 time	series	of	 the	Dow	Jones	Industrial	Average	(Dow	Jones
for	 short),	 a	 stock-market	 index	 representing	 the	 price	 of	 30	 large,	 publicly
owned	U.S.	 companies.	Specifically,	we	will	 look	at	 the	year	2009,	 right	 after
the	2008	crash	(Figure	14.1).	During	the	tail	end	of	 the	crash,	 in	 the	first	 three
months	 of	 the	 year	 2009,	 the	 market	 lost	 over	 2400	 points	 (~27%).	 Then	 it
slowly	 recovered	 for	 the	 remainder	 of	 the	 year.	 How	 can	 we	 visualize	 these
longer-term	 trends	 while	 de-emphasizing	 the	 less	 important	 short-term
fluctuations?



Figure	14.1:	Daily	closing	values	of	the	Dow	Jones	Industrial	Average	for	the
year	2009.	Data	source:	Yahoo!	Finance

In	 statistical	 terms,	we	are	 looking	 for	 a	way	 to	 smooth	 the	 stock-market	 time
series.	The	act	of	smoothing	produces	a	function	that	captures	key	patterns	in	the
data	while	removing	irrelevant	minor	detail	or	noise.	Financial	analysts	usually
smooth	stock-market	data	by	calculating	moving	averages.	To	generate	a	moving
average,	we	take	a	time	window,	say	the	first	20	days	in	the	time	series,	calculate
the	average	price	over	these	20	days,	then	move	the	time	window	by	one	day,	so
it	now	spans	the	2nd	to	21st	day,	calculate	the	average	over	these	20	days,	move
the	time	window	again,	and	so	on.	The	result	is	a	new	time	series	consisting	of	a
sequence	of	averaged	prices.

To	plot	this	sequence	of	moving	averages,	we	need	to	decide	which	specific	time
point	 to	 associate	 with	 the	 average	 for	 each	 time	 window.	 Financial	 analysts
often	 plot	 each	 average	 at	 the	 end	 of	 its	 respective	 time	window.	 This	 choice
results	in	curves	that	lag	the	original	data	(Figure	14.2a),	with	more	severe	lags
corresponding	to	larger	averaging	time	windows.	Statisticians,	on	the	other	hand,
plot	the	average	at	the	center	of	the	time	window,	which	results	in	a	curve	that
overlays	perfectly	on	the	original	data	(Figure	14.2b).



Figure	14.2:	Daily	closing	values	of	the	Dow	Jones	Industrial	Average	for	the
year	2009,	shown	together	with	their	20-day,	50-day,	and	100-day	moving
averages.	(a)	The	moving	averages	are	plotted	at	the	end	of	the	moving	time

windows.	(b)	The	moving	averages	are	plotted	in	the	center	of	the	moving	time
windows.	Data	source:	Yahoo!	Finance

Regardless	of	whether	we	plot	the	smoothed	time	series	with	or	without	lag,	we
can	see	that	the	length	of	the	time	window	over	which	we	average	sets	the	scale
of	the	fluctuations	that	remain	visible	in	the	smoothed	curve.	The	20-day	moving
average	only	 removes	 small,	 short-term	 spikes	 but	 otherwise	 follows	 the	daily



data	 closely.	 The	 100-day	 moving	 average,	 on	 the	 other	 hand,	 removes	 even
fairly	 substantial	 drops	 or	 spikes	 that	 play	 out	 over	 a	 time	 span	 of	 multiple
weeks.	For	example,	the	massive	drop	to	below	7000	points	in	the	first	quarter	of
2009	 is	 not	 visible	 in	 the	 100-day	 moving	 average,	 which	 replaces	 it	 with	 a
gentle	curve	 that	doesn't	dip	much	below	8000	points	 (Figure	14.2).	Similarly,
the	 drop	 around	 July	 2009	 is	 completely	 invisible	 in	 the	 100-day	 moving
average.

The	moving	 average	 is	 the	most	 simplistic	 approach	 to	 smoothing,	 and	 it	 has
some	obvious	limitations.	First,	it	results	in	a	smoothed	curve	that	is	shorter	than
the	original	curve	(Figure	14.2).	Parts	are	missing	at	either	the	beginning	or	the
end	 or	 both.	 And	 the	 more	 the	 time	 series	 is	 smoothed	 (i.e.,	 the	 larger	 the
averaging	window),	 the	shorter	 the	smoothed	curve.	Second,	even	with	a	 large
averaging	 window,	 a	 moving	 average	 is	 not	 necessarily	 that	 smooth.	 It	 may
exhibit	 small	bumps	and	wiggles	even	 though	 larger-scale	 smoothing	has	been
achieved	(Figure	14.2).	These	wiggles	are	caused	by	individual	data	points	that
enter	 or	 exit	 the	 averaging	 window.	 Since	 all	 data	 points	 in	 the	 window	 are
weighted	 equally,	 individual	 data	 points	 at	 the	 window	 boundaries	 can	 have
visible	impact	on	the	average.

Statisticians	 have	 developed	 numerous	 approaches	 to	 smoothing	 that	 alleviate
the	downsides	of	moving	averages.	These	approaches	are	much	more	complex
and	 computationally	 costly,	 but	 they	 are	 readily	 available	 in	modern	 statistical
computing	environments.	One	widely	used	method	is	LOESS	(locally	estimated
scatterplot	 smoothing,	 W.	 S.	 Cleveland	 (1979)),	 which	 fits	 low-degree
polynomials	to	subsets	of	the	data.	Importantly,	the	points	in	the	center	of	each
subset	 are	 weighted	 more	 heavily	 than	 points	 at	 the	 boundaries,	 and	 this
weighting	 scheme	yields	a	much	smoother	 result	 than	we	get	 from	a	weighted
average	(Figure	14.3).	The	LOESS	curve	shown	here	 looks	similar	 to	 the	100-
day	average,	but	this	similarity	should	not	be	overinterpreted.	The	smoothness	of
a	LOESS	curve	can	be	tuned	by	adjusting	a	parameter,	and	different	parameter
choices	would	 have	 produced	LOESS	 curves	 looking	more	 like	 the	 20-day	 or
50-day	average.



Figure	14.3:	Comparison	of	LOESS	fit	to	100-day	moving	average	for	the	Dow
Jones	data	of	Figure	14.2.	The	overall	trend	shown	by	the	LOESS	smooth	is
nearly	identical	to	the	100-day	moving	average,	but	the	LOESS	curve	is	much
smoother	and	it	extends	to	the	entire	range	of	the	data.	Data	source:	Yahoo!

Finance

Importantly,	LOESS	is	not	 limited	 to	 time	series.	 It	can	be	applied	 to	arbitrary
scatter	 plots,	 as	 is	 apparent	 from	 its	 name,	 locally	 estimated	 scatterplot
smoothing.	 For	 example,	 we	 can	 use	 LOESS	 to	 look	 for	 trends	 in	 the
relationship	between	a	car's	 fuel-tank	capacity	and	 its	price	 (Figure	14.4).	 The
LOESS	 line	 shows	 that	 tank	 capacity	 grows	 approximately	 linearly	with	 price
for	cheap	cars	(below	$20,000)	but	it	levels	off	for	more	expensive	cars.	Above	a
price	of	approximately	$20,000,	buying	a	more	expensive	car	will	not	get	you
one	with	a	larger	fuel	tank.



Figure	14.4:	Fuel-tank	capacity	versus	price	of	93	cars	released	for	the	1993
model	year.	Each	dot	corresponds	to	one	car.	The	solid	line	represents	a	LOESS
smooth	of	the	data.	We	see	that	fuel-tank	capacity	increases	approximately

linearly	with	price,	up	to	a	price	of	approximately	$20,000,	and	then	it	levels	off.
Data	source:	Robin	H.	Lock,	St.	Lawrence	University

LOESS	is	a	very	popular	smoothing	approach	because	it	tends	to	produce	results
that	 look	 right	 to	 the	 human	 eye.	 However,	 it	 requires	 the	 fitting	 of	 many
separate	 regression	 models.	 This	 makes	 it	 slow	 for	 large	 datasets,	 even	 on
modern	computing	equipment.

As	 a	 faster	 alternative	 to	 LOESS,	 we	 can	 use	 spline	 models.	 A	 spline	 is	 a
piecewise	polynomial	 function	 that	 is	highly	flexible	yet	always	 looks	smooth.
When	working	with	 splines,	 we	will	 encounter	 the	 term	 knot.	 The	 knots	 in	 a
spline	are	the	endpoints	of	the	individual	spline	segments.	If	we	fit	a	spline	with
k	 segments,	 we	 need	 to	 specify	 k	 +	 1	 knots.	 While	 spline	 fitting	 is
computationally	 efficient,	 in	 particular	 if	 the	number	of	 knots	 is	 not	 too	 large,
splines	have	their	own	downsides.	Most	importantly,	there	is	a	bewildering	array
of	 different	 types	 of	 splines,	 including	 cubic	 splines,	 B-splines,	 thin-plate
splines,	Gaussian	process	splines,	and	many	others,	and	which	one	to	pick	may
not	be	obvious.	The	 specific	 choice	of	 the	 type	of	 spline	and	number	of	knots
used	can	result	in	widely	different	smoothing	functions	for	the	same	data	(Figure



14.5).

Figure	14.5:	Different	smoothing	models	display	widely	different	behaviors,	in
particular	near	the	boundaries	of	the	data.	(a)	LOESS	smoother,	as	in	Figure

14.4.	(b)	Cubic	regression	splines	with	5	knots.	(c)	Thin-plate	regression	spline
with	3	knots.	(d)	Gaussian	process	spline	with	6	knots.	Data	source:	Robin	H.

Lock,	St.	Lawrence	University

Most	 data	 visualization	 software	 will	 provide	 smoothing	 features,	 likely
implemented	as	either	a	 type	of	 local	 regression	(such	as	LOESS)	or	a	 type	of
spline.	 The	 smoothing	 method	 may	 be	 referred	 to	 as	 a	 GAM,	 a	 generalized
additive	 model,	 which	 is	 a	 superset	 of	 all	 these	 types	 of	 smoothers.	 It	 is
important	 to	 be	 aware	 that	 the	 output	 of	 the	 smoothing	 feature	 is	 highly
dependent	on	the	specific	GAM	model	that	is	fit.	Unless	you	try	out	a	number	of
different	choices	you	may	never	realize	to	what	extent	the	results	you	see	depend
on	the	specific	default	choices	made	by	your	statistical	software.



Be	careful	when	 interpreting	 the	 results	 from	a	 smoothing	 function.	The	 same
dataset	can	be	smoothed	in	many	different	ways.

14.2	Showing	trends	with	a	defined	functional	form

As	we	can	see	in	Figure	14.5,	the	behavior	of	general-purpose	smoothers	can	be
somewhat	 unpredictable	 for	 any	 given	 dataset.	 These	 smoothers	 also	 do	 not
provide	 parameter	 estimates	 that	 have	 a	 meaningful	 interpretation.	 Therefore,
whenever	possible,	it	is	preferable	to	fit	a	curve	with	a	specific	functional	form
that	is	appropriate	for	the	data	and	that	uses	parameters	with	clear	meaning.

For	the	fuel-tank	data,	we	need	a	curve	that	initially	rises	linearly	but	then	levels
off	at	a	constant	value.	The	function	 	may	fit	that	bill.
Here,	 ,	 ,	and	 	are	the	constants	we	adjust	to	fit	the	curve	to	the	data.	The
function	 is	 approximately	 linear	 for	 small	 ,	 with	 ,	 it
approaches	a	constant	value	for	large	 ,	 ,	and	it	is	strictly	increasing	for
all	values	of	 .	Figure	14.6	shows	that	this	equation	fits	the	data	at	least	as	well
as	any	of	the	smoothers	we	considered	previously	(Figure	14.5).

Figure	14.6:	Fuel-tank	data	represented	with	an	explicit	analytical	model.	The
solid	line	corresponds	to	a	least-squares	fit	of	the	formula	

	to	the	data.	Fitted	parameters	are	 ,	



,	 .	Data	source:	Robin	H.	Lock,	St.	Lawrence
University

A	 functional	 form	 that	 is	 applicable	 in	 many	 different	 contexts	 is	 the	 simple
straight	 line,	 .	 Approximately	 linear	 relationships	 between	 two
variables	 are	 surprisingly	 common	 in	 real-world	 datasets.	 For	 example,	 in
Chapter	12,	I	discussed	the	relationship	between	head	length	and	body	mass	in
blue	 jays.	 This	 relationship	 is	 approximately	 linear,	 for	 both	 female	 and	male
birds,	and	drawing	linear	trend	lines	on	top	of	the	points	in	a	scatter	plot	helps
the	reader	perceive	the	trends	(Figure	14.7).

Figure	14.7:	Head	length	versus	body	mass	for	123	blue	jays.	The	birds'	sex	is
indicated	by	color.	This	figure	is	equivalent	to	Figure	12.2,	except	that	now	we
have	drawn	linear	trend	lines	on	top	of	the	individual	data	points.	Data	source:

Keith	Tarvin,	Oberlin	College

When	 the	 data	 display	 a	 non-linear	 relationship,	 we	 need	 to	 guess	 what	 an
appropriate	functional	form	might	be.	In	this	case,	we	can	assess	the	accuracy	of
our	 guess	 by	 transforming	 the	 axes	 in	 such	 a	 way	 that	 a	 linear	 relationship
emerges.	To	demonstrate	this	principle,	let's	return	to	the	monthly	submissions	to
the	 preprint	 server	 bioRxiv,	 discussed	 in	 Chapter	 12.	 If	 the	 increase	 in



submissions	in	each	month	is	proportional	to	the	number	of	submissions	in	the
previous	month,	i.e.,	if	submissions	grow	by	a	fixed	percentage	each	month,	then
the	 resulting	 curve	 is	 exponential.	 This	 assumption	 seems	 to	 be	 met	 for	 the
bioRxiv	data,	because	a	curve	with	exponential	form,	 ,	fits	the
bioRxiv	submission	data	well	(Figure	14.8).

Figure	14.8:	Monthly	submissions	to	the	preprint	server	bioRxiv.	The	solid	blue
line	represents	the	actual	monthly	preprint	counts	and	the	dashed	black	line

represents	an	exponential	fit	to	the	data,	 .	Data
source:	Jordan	Anaya,	http://www.prepubmed.org/

If	 the	 original	 curve	 is	 exponential,	 ,	 then	 a	 log-
transformation	 of	 the	 y	 values	 will	 turn	 it	 into	 a	 linear	 relationship,	

.	 Therefore,	 plotting	 the	 data	 with	 log-transformed	 y
values	 (or	 equivalently,	 with	 a	 logarithmic	 y	 axis)	 and	 looking	 for	 a	 linear
relationship	is	a	good	way	of	determining	whether	a	dataset	exhibits	exponential
growth.	 For	 the	 bioRxiv	 submission	 numbers,	 we	 indeed	 obtain	 a	 linear
relationship	when	using	a	logarithmic	y	axis	(Figure	14.9).

http://www.prepubmed.org/


Figure	14.9:	Monthly	submissions	to	the	preprint	server	bioRxiv,	shown	on	a	log
scale.	The	solid	blue	line	represents	the	actual	monthly	preprint	counts,	the

dashed	black	line	represents	the	exponential	fit	from	Figure	14.8,	and	the	solid
black	line	represents	a	linear	fit	to	log-transformed	data,	corresponding	to	

.	Data	source:	Jordan	Anaya,
http://www.prepubmed.org/

In	Figure	14.9,	 in	addition	 to	 the	actual	 submission	counts,	 I	 am	also	 showing
the	exponential	fit	from	Figure	14.8	and	a	linear	fit	to	the	log-transformed	data.
These	two	fits	are	similar	but	not	identical.	In	particular,	the	slope	of	the	dashed
line	seems	somewhat	off.	The	line	systematically	falls	above	the	individual	data
points	for	half	the	time	series.	This	is	a	common	problem	with	exponential	fits:
The	square	deviations	from	the	data	points	to	the	fitted	curve	are	so	much	larger
for	the	largest	data	values	than	for	the	smallest	data	values	that	the	deviations	of
the	 smallest	 data	values	 contribute	 little	 to	 the	overall	 sum	 squares	 that	 the	 fit
minimizes.	As	a	 result,	 the	 fitted	 line	systematically	overshoots	or	undershoots
the	smallest	data	values.	For	this	reason,	I	generally	advise	to	avoid	exponential
fits	and	instead	use	linear	fits	on	log-transformed	data.

It	is	usually	better	to	fit	a	straight	line	to	transformed	data	than	to	fit	a	nonlinear
curve	to	untransformed	data.

A	plot	 such	as	Figure	14.9	 is	 commonly	 referred	 to	 as	 log--linear,	 since	 the	y

http://www.prepubmed.org/


axis	is	logarithmic	and	the	x	axis	is	linear.	Other	plots	we	may	encounter	include
log--log,	where	both	the	y	and	the	x	axis	are	logarithmic,	or	linear--log,	where	y
is	linear	and	x	is	logarithmic.	In	a	log--log	plot,	power	laws	of	the	form	
appear	as	straight	lines	(see	Figure	8.7	for	an	example),	and	in	a	linear--log	plot,
logarithmic	 relationships	 of	 the	 form	 	 appear	 as	 a	 straight	 lines.
Other	 functional	 forms	 can	 be	 turned	 into	 linear	 relationships	 with	 more
specialized	 coordinate	 transformations,	 but	 these	 three	 (log--linear,	 log--log,
linear--log)	cover	a	wide	range	of	real-world	applications.

14.3	Detrending	and	time-series	decomposition

For	any	time	series	with	a	prominent	long-term	trend,	it	may	be	useful	to	remove
this	 trend	 to	 specifically	 highlight	 any	 notable	 deviations.	 This	 technique	 is
called	detrending,	and	I	will	demonstrate	it	here	with	house	prices.	In	the	U.S.,
the	mortgage	lender	Freddie	Mac	publishes	a	monthly	index,	called	the	Freddie
Mac	House	Price	Index,	 that	 tracks	 the	change	 in	house	prices	over	 time.	The
index	attempts	to	capture	the	state	of	the	entire	house	market	in	a	given	region,
such	that	an	increase	in	the	index	by,	for	example,	10%	can	be	interpreted	as	an
average	 house	 price	 increase	 of	 10%	 in	 the	 respective	 market.	 The	 index	 is
arbitrarily	set	to	a	value	of	100	in	December	2000.

Over	long	periods	of	time,	house	prices	tend	to	display	consistent	annual	growth,
approximately	in	line	with	inflation.	However,	overlaid	on	top	of	this	trend	are
housing	bubbles	 that	 lead	 to	severe	boom	and	bust	cycles.	Figure	14.10	shows
the	actual	house	price	 index	and	 its	 long-term	 trend	for	 four	select	U.S.	states.
We	see	that	between	1980	and	2017,	California	underwent	two	bubbles,	one	in
1990	 and	 one	 in	 the	mid-2000s.	During	 the	 same	 period,	Nevada	 experienced
only	one	bubble,	in	the	mid-2000s,	and	house	prices	in	Texas	and	West	Virginia
closely	 followed	 their	 long-term	 trends	 the	 entire	 time.	 Because	 house	 prices
tend	 to	 grow	 in	 percent	 increments,	 i.e.,	 exponentially,	 I	 have	 chosen	 a
logarithmic	 y	 axis	 in	 Figure	 14.10.	 The	 straight	 lines	 correspond	 to	 a	 4.7%
annual	 price	 increase	 in	 California	 and	 a	 2.8%	 annual	 price	 increase	 each	 in
Nevada,	Texas,	and	West	Virginia.



Figure	14.10:	Freddie	Mac	House	Price	Index	from	1980	through	2017,	for	four
selected	states	(California,	Nevada,	Texas,	and	West	Virginia).	The	House	Price

Index	is	a	unitless	number	that	tracks	relative	house	prices	in	the	chosen
geographic	region	over	time.	The	index	is	scaled	arbitrarily	such	that	it	equals
100	in	December	of	the	year	2000.	The	blue	lines	show	the	monthly	fluctuations
in	the	index	and	the	straight	gray	lines	show	the	long-term	price	trends	in	the
respective	states.	Note	that	the	y	axes	are	logarithmic,	so	that	the	straight	gray
lines	represent	consistent	exponential	growth.	Data	source:	Freddie	Mac	House

Prices	Index

We	detrend	housing	prices	by	dividing	the	actual	price	index	at	each	time	point
by	 the	 respective	value	 in	 the	 long-term	 trend.	Visually,	 this	division	will	 look
like	 we	 are	 subtracting	 the	 gray	 lines	 from	 the	 blue	 lines	 in	 Figure	 14.10,
because	a	division	of	the	untransformed	values	is	equivalent	to	a	subtraction	of
the	 log-transformed	 values.	 The	 resulting	 detrended	 house	 prices	 show	 the
housing	bubbles	more	clearly	 (Figure	14.11),	as	 the	detrending	emphasizes	 the
unexpected	movements	in	a	time	series.	For	example,	in	the	original	time	series,
the	decline	in	home	prices	in	California	from	1990	to	about	1998	looks	modest
(Figure	14.10).	However,	during	that	same	time	period,	on	the	basis	of	the	long-
term	trend	we	would	have	expected	prices	to	rise.	Relative	to	the	expected	rise



the	drop	in	prices	was	substantial,	amounting	to	25%	at	the	lowest	point	(Figure
14.11).

Figure	14.11:	Detrended	version	of	the	Freddie	Mac	House	Price	Index	shown	in
Figure	14.10.	The	detrended	index	was	calculated	by	dividing	the	actual	index
(blue	lines	in	Figure	14.10)	by	the	expected	value	based	on	the	long-term	trend
(straight	gray	lines	in	Figure	14.10).	This	visualization	shows	that	California

experienced	two	housing	bubbles,	around	1990	and	in	the	mid-2000s,
identifiable	from	a	rapid	rise	and	subsequent	decline	in	the	actual	housing	prices
relative	to	what	would	have	been	expected	from	the	long-term	trend.	Similarly,
Nevada	experienced	one	housing	bubble,	in	the	mid-2000s,	and	neither	Texas

nor	West	Virginia	experienced	much	of	a	bubble	at	all.	Data	source:	Freddie	Mac
House	Prices	Index

Beyond	 simple	 detrending,	 we	 can	 also	 separate	 a	 time	 series	 into	 multiple
distinct	 components,	 such	 that	 their	 sum	 recovers	 the	 original	 time	 series.	 In
general,	in	addition	to	a	long-term	trend,	there	are	three	distinct	components	that
may	shape	a	time	series.	First,	there	is	random	noise,	which	causes	small,	erratic
movements	up	and	down.	This	noise	is	visible	in	all	the	time	series	shown	in	this
chapter,	but	maybe	the	most	clearly	in	Figure	14.9.	Second,	there	can	be	unique
external	 events	 that	 leave	 their	 mark	 in	 the	 time	 series,	 such	 as	 the	 distinct



housing	bubbles	seen	in	Figure	14.10.	Third,	there	can	be	cyclical	variations.	For
example,	 outside	 temperatures	 show	 daily	 cyclical	 variations.	 The	 highest
temperatures	are	 reached	 in	 the	early	afternoon	and	 the	 lowest	 temperatures	 in
the	 early	 morning.	 Outside	 temperatures	 also	 show	 yearly	 cyclical	 variations.
They	 tend	 to	 rise	 in	 the	 spring,	 reach	 their	maximum	 in	 the	 summer,	 and	 then
decline	in	fall	and	reach	their	minimum	in	the	winter	(Figure	3.2).

To	 demonstrate	 the	 concept	 of	 distinct	 time-series	 components,	 I	 will	 here
decompose	 the	 Keeling	 curve,	 which	 shows	 changes	 in	 CO2	 abundance	 over
time	(Figure	14.12).	CO2	is	measured	in	parts	per	million	(ppm).	We	see	a	long-
term	 increase	 in	CO2	 abundance	 that	 is	 slightly	 faster	 than	 linear,	 from	below
325	 ppm	 in	 the	 1960s	 to	 above	 400	 in	 the	 second	 decade	 of	 the	 21st	 century
(Figure	 14.12).	 CO2	 abundance	 also	 fluctuates	 anually,	 following	 a	 consistent
up-and-down	 pattern	 overlaid	 on	 top	 of	 the	 overall	 increase.	 The	 annual
fluctuation	 are	 driven	 by	 plant	 growth	 in	 the	 northern	 hemisphere.	 Plants
consume	CO2	 during	photosynthesis.	Because	most	 of	 the	globe's	 land	masses
are	 located	 in	 the	northern	hemisphere,	 and	plant	 growth	 is	most	 active	 in	 the
spring	 and	 summer,	we	 see	 an	 annual	 global	 decline	 in	 atmospheric	CO2	 that
coincides	with	the	summer	months	in	the	northern	hemisphere.

Figure	14.12:	The	Keeling	curve.	The	Keeling	curve	shows	the	change	of	CO2



abundance	in	the	atmosphere	over	time.	Since	1958,	CO2	abundance	has	been
continuously	monitored	at	the	Mauna	Loa	Observatory	in	Hawaii,	initially	under
the	direction	of	Charles	Keeling.	Shown	here	are	monthly	average	CO2	readings,
expressed	in	parts	per	million	(ppm).	The	CO2	readings	fluctuate	anually	with
the	seasons	but	show	a	consistent	long-term	trend	of	increase.	Data	source:	Dr.

Pieter	Tans,	NOAA/ESRL,	and	Dr.	Ralph	Keeling,	Scripps	Institution	of
Oceanography

We	 can	 decompose	 the	 Keeling	 curve	 into	 its	 long-term	 trend,	 seasonal
fluctuations,	and	remainder	(Figure	14.13).	The	specific	method	I	am	using	here
is	 called	 STL	 (Seasonal	 decomposition	 of	 Time	 series	 by	 LOESS,	 R.	 B.
Cleveland	et	al.	(1990)),	but	there	are	many	other	methods	that	achieve	similar
goals.	The	decomposition	shows	that	over	the	last	three	decades,	CO2	abundance
has	increased	by	over	50	ppm.	By	comparison,	seasonal	fluctuations	amount	to
less	than	8	ppm	(they	never	cause	an	increase	or	a	decrease	in	more	than	4	ppm
relative	to	the	long-term	trend),	and	the	remainder	amounts	to	less	than	1.6	ppm
(Figure	14.13).	The	remainder	is	the	difference	between	the	actual	readings	and
the	 sum	 of	 the	 long-term	 trend	 and	 the	 seasonal	 fluctuations,	 and	 here	 it
corresponds	 to	 random	 noise	 in	 the	 monthly	 CO2	 readings.	 More	 generally,
however,	the	remainder	could	also	capture	unique	external	events.	For	example,
if	 a	 massive	 volcano	 erruption	 released	 substantial	 amounts	 of	 CO2,	 such	 an
event	might	be	visible	as	a	sudden	spike	 in	 the	remainder.	Figure	14.13	shows
that	no	such	unique	external	events	have	had	a	major	effect	on	the	Keeling	curve
in	recent	decades.



Figure	14.13:	Time-series	decomposition	of	the	Keeling	curve,	showing	the
monthly	average	(as	in	Figure	14.12),	the	long-term	trend,	seasonal	fluctuations,
and	the	remainder.	The	remainder	is	the	difference	between	the	actual	readings

and	the	sum	of	the	long-term	trend	and	the	seasonal	fluctuations,	and	it
represents	random	noise.	I	have	zoomed	into	the	most	recent	30	years	of	data	to
more	clearly	show	the	shape	of	the	annual	fluctuations.	Data	source:	Dr.	Pieter
Tans,	NOAA/ESRL,	and	Dr.	Ralph	Keeling,	Scripps	Institution	of	Oceanography



15	Visualizing	geospatial	data
Many	datasets	contain	information	linked	to	locations	in	the	physical	world.	For
example,	 in	 an	 ecological	 study,	 a	 dataset	 may	 list	 where	 specific	 plants	 or
animals	 have	been	 found.	Similarly,	 in	 a	 socioeconomic	or	 political	 context,	 a
dataset	 may	 contain	 information	 about	 where	 people	 with	 specific	 attributes
(such	 as	 income,	 age,	 or	 educational	 attainment)	 live,	 or	 where	 man-made
objects	(e.g.,	bridges,	roads,	buildings)	have	been	constructed.	In	all	these	cases,
it	can	be	helpful	 to	visualize	 the	data	 in	 their	proper	geospatial	context,	 i.e.,	 to
show	the	data	on	a	realistic	map	or	alternatively	as	a	map-like	diagram.

Maps	 tend	 to	be	 intuitive	 to	 readers	but	 they	can	be	challenging	 to	design.	We
need	 to	 think	 about	 concepts	 such	 as	 map	 projections	 and	 whether	 for	 our
specific	 application	 the	 accurate	 representation	 of	 angles	 or	 areas	 is	 more
critical.	 A	 common	 mapping	 technique,	 the	 choropleth	 map,	 consists	 of
representing	 data	 values	 as	 differently	 colored	 spatial	 areas.	 Choropleth	 maps
can	 at	 times	 be	 very	 useful	 and	 at	 other	 times	 highly	 misleading.	 As	 an
alternative,	we	can	construct	map-like	diagrams	called	cartograms,	which	may
purposefully	distort	map	areas	or	represent	them	in	stylized	form,	for	example	as
equal-sized	squares.

15.1	Projections

The	earth	is	approximately	a	sphere	(Figure	15.1),	and	more	precisely	an	oblate
spheroid	 that	 is	 slightly	 flattened	 along	 its	 axis	 of	 rotation.	 The	 two	 locations
where	the	axis	of	rotation	intersects	with	the	spheroid	are	called	the	poles	(north
pole	 and	 south	 pole).	 We	 separate	 the	 spheroid	 into	 two	 hemispheres,	 the
northern	 and	 the	 southern	 hemisphere,	 by	 drawing	 a	 line	 equidistant	 to	 both
poles	around	the	spheroid.	This	line	is	called	the	equator.	To	uniquely	specify	a
location	on	the	earth,	we	need	three	pieces	of	information:	where	we	are	located
along	the	direction	of	the	equator	(the	longitude),	how	close	we	are	to	either	pole
when	moving	 perpendicular	 to	 the	 equator	 (the	 latitude),	 and	 how	 far	 we	 are
from	 the	 earth's	 center	 (the	 altitude).	 Longitude,	 latitude,	 and	 altitude	 are
specified	 relative	 to	 a	 reference	 system	 called	 the	datum.	 The	 datum	 specifies
properties	such	as	the	shape	and	size	of	the	earth,	as	well	as	the	location	of	zero
longitude,	 latitude,	and	altitude.	One	widely	used	datum	is	 the	World	Geodetic



System	(WGS)	84,	which	is	used	by	the	Global	Positioning	System	(GPS).

Figure	15.1:	Orthographic	projection	of	the	world,	showing	Europe	and	Northern
Africa	as	they	would	be	visible	from	space.	The	lines	emanating	from	the	north
pole	and	runing	south	are	called	meridians,	and	the	lines	running	orthogonal	to
the	meridians	are	called	parallels.	All	meridians	have	the	same	length	but

parallels	become	shorter	the	closer	we	are	to	either	pole.

While	 altitude	 is	 an	 important	 quantity	 in	many	 geospatial	 applications,	when
visualizing	geospatial	data	in	the	form	of	maps	we	are	primarily	concerned	with
the	other	two	dimensions,	longitude	and	latitude.	Both	longitude	and	latitude	are
angles,	expressed	in	degrees.	Degrees	longitude	measure	how	far	east	or	west	a
location	 lies.	 Lines	 of	 equal	 longitude	 are	 referred	 to	 as	 meridians,	 and	 all
meridians	 terminate	 at	 the	 two	 poles	 (Figure	 15.1).	 The	 prime	 meridian,
corresponding	 to	 0°	 longitude,	 runs	 through	 the	 village	 of	 Greenwich	 in	 the



United	 Kingdom.	 The	 meridian	 opposite	 to	 the	 prime	 meridian	 lies	 at	 180°
longitude	 (also	 referred	 to	 as	 180°E),	 which	 is	 equivalent	 to	 -180°	 longitude
(also	 referred	 to	 as	 180°W),	 near	 the	 international	 date	 line.	 Degrees	 latitude
measure	how	 far	 north	or	 south	 a	 location	 lies.	The	 equator	 corresponds	 to	0°
latitude,	the	north	pole	corresponds	to	90°	latitude	(also	referred	to	as	90°N),	and
the	 south	pole	corresponds	 to	 -90°	 latitude	 (also	 referred	 to	as	90°S).	Lines	of
equal	latitude	are	referred	to	as	parallels,	since	they	run	parallel	to	the	equator.
All	 meridians	 have	 the	 same	 length,	 corresponding	 to	 half	 of	 a	 great	 circle
around	 the	 globe,	 whereas	 the	 length	 of	 parallels	 depends	 on	 their	 latitude
(Figure	15.1).	The	longest	parallel	is	the	equator,	at	0°	latitude,	and	the	shortest
parallels	lie	at	the	north	and	south	poles,	90°N	and	90°S,	and	have	length	zero.

The	challenge	in	map-making	is	that	we	need	to	take	the	spherical	surface	of	the
earth	 and	 flatten	 it	 out	 so	 we	 can	 display	 it	 on	 a	 map.	 This	 process,	 called
projection,	necessarily	introduces	distortions,	because	a	curved	surface	cannot	be
projected	 exactly	 onto	 a	 flat	 surface.	 Specifically,	 the	 projection	 can	 preserve
either	 angles	or	 areas	but	not	both.	A	projection	 that	does	 the	 former	 is	 called
conformal	 and	 a	 projection	 that	 does	 the	 latter	 is	 called	 equal-area.	 Other
projections	 may	 preserve	 neither	 angles	 nor	 areas	 but	 instead	 preserve	 other
quantities	of	interest,	such	as	distances	to	some	reference	point	or	line.	Finally,
some	projections	attempt	to	strike	a	compromise	between	preserving	angles	and
areas.	 These	 compromise	 projections	 are	 frequently	 used	 to	 display	 the	 entire
world	in	an	aesthetically	pleasing	manner,	and	they	accept	some	amount	of	both
angular	 and	 area	 distortion	 (Figure	 3.11).	 To	 systematize	 and	 keep	 track	 of
different	ways	of	projecting	parts	or	all	of	 the	earth	 for	 specific	maps,	various
standards	 bodies	 and	 organizations,	 such	 as	 the	 EPSG	 (European	 Petroleum
Survey	 Group)	 or	 the	 ESRI	 (Environmental	 Systems	 Research	 Institute),
maintain	 registries	 of	 projections.	 For	 example,	 EPSG:4326	 represents
unprojected	longitude	and	latitude	values	in	the	WGS	84	coordinate	system	used
by	 GPS.	 Several	 websites	 provide	 convenient	 access	 to	 these	 registered
projections,	including	http://spatialreference.org/	and	https://epsg.io/.

One	 of	 the	 earliest	 map	 projections	 in	 use,	 the	 Mercator	 projection,	 was
developed	 in	 the	 16th	 century	 for	 nautical	 navigation.	 It	 is	 a	 conformal
projection	 that	 accurately	 represents	 shapes	 but	 introduces	 severe	 area
distortions	near	the	poles	(Figure	15.2).	The	Mercator	projection	maps	the	globe
onto	 a	 cylinder	 and	 then	 unrolls	 the	 cylinder	 to	 arrive	 at	 a	 rectangular	 map.
Meridians	 in	 this	 projection	 are	 evenly	 spaced	vertical	 lines,	whereas	 parallels
are	horizontal	lines	whose	spacing	increases	the	further	we	move	away	from	the

http://spatialreference.org/
https://epsg.io/


equator	(Figure	15.2).	The	spacing	between	parallels	 increases	 in	proportion	 to
the	 extent	 to	 which	 they	 have	 to	 be	 stretched	 closer	 to	 the	 poles	 to	 keep
meridians	perfectly	vertical.

Figure	15.2:	Mercator	projection	of	the	world.	In	this	projection,	parallels	are
straight	horizontal	lines	and	meridians	are	straight	vertical	lines.	It	is	a

conformal	projection	preserving	local	angles,	but	it	introduces	severe	distortions
in	areas	near	the	poles.	For	example,	Greenland	appears	to	be	bigger	than	Africa
in	this	projection,	when	in	reality	Africa	is	fourteen	times	bigger	than	Greenland

(see	Figures	15.1	and	15.3).

Because	of	 the	severe	area	distortions	 it	produces,	 the	Mercator	projection	has
fallen	 out	 of	 favor	 for	 maps	 of	 the	 entire	 world.	 However,	 variants	 of	 this
projection	continue	to	live	on.	For	example,	the	transverse	Mercator	projection	is
routinely	used	for	large-scale	maps	that	show	moderately	small	areas	(spanning
less	than	a	few	degrees	in	longitude)	at	large	magnification.	Another	variant,	the
web	Mercator	 projection,	 was	 introduced	 by	 Google	 for	 Google	Maps	 and	 is
used	by	several	online	mapping	applications.

A	 whole-world	 projection	 that	 is	 perfectly	 area-preserving	 is	 the	 Goode



homolosine	(Figure	15.3).	It	is	usually	shown	in	its	interrupted	form,	which	has
one	 cut	 in	 the	northern	hemisphere	 and	 three	 cuts	 in	 the	 southern	hemisphere,
carefully	 chosen	 so	 they	 don't	 interrupt	major	 land	masses	 (Figure	 15.3).	 The
cuts	 allow	 the	 projection	 to	 both	 preserve	 areas	 and	 approximately	 preserve
angles,	 at	 the	 cost	 of	 non-contiguous	 oceans,	 a	 cut	 through	 the	 middle	 of
Greenland,	 and	 several	 cuts	 through	 Antarctica.	 While	 the	 interrupted	 Goode
homolosine	has	an	unusual	aesthetic	and	a	strange	name,	it	is	a	good	choice	for
mapping	 applications	 that	 require	 accurate	 reproduction	 of	 areas	 on	 a	 global
scale.

Figure	15.3:	Interrupted	Goode	homolosine	projection	of	the	world.	This
projection	accurately	preserves	areas	while	minimizing	angular	distortions,	at	the
cost	of	showing	oceans	and	some	land	masses	(Greenland,	Antarctica)	in	a	non-

contiguous	way.

Shape	or	area	distortions	due	to	map	projections	are	particularly	prominent	when
we're	attempting	to	make	a	map	of	the	whole	world,	but	they	can	cause	trouble
even	at	the	scale	of	individual	continents	or	countries.	As	an	example,	consider
the	 United	 States,	 which	 consist	 of	 the	 "lower	 48"	 (which	 are	 48	 contiguous
states),	 Alaska,	 and	 Hawaii	 (Figure	 15.4).	 While	 the	 lower	 48	 alone	 are
reasonably	easy	to	project	onto	a	map,	Alaska	and	Hawaii	are	so	distant	from	the
lower	48	that	projecting	all	50	states	onto	one	map	becomes	awkward.



Figure	15.4:	Relative	locations	of	Alaska,	Hawaii,	and	the	lower	48	states	shown
on	a	globe.

Figure	 15.5	 shows	 a	 map	 of	 all	 50	 states,	 made	 using	 an	 equal-area	 Albers
projection.	This	 projection	 provides	 a	 reasonable	 representation	 of	 the	 relative
shapes,	 areas,	 and	 locations	 of	 the	 50	 states,	 but	we	 notice	 some	 issues.	 First,
Alaska	 seems	weirdly	 stretched	out	compared	 to	how	 it	 looks,	 for	example,	 in
Figures	15.2	or	 15.4.	 Second,	 the	map	 is	 dominated	 by	 ocean/empty	 space.	 It
would	be	preferable	if	we	could	zoom	in	further,	so	that	the	lower	48	states	take
up	a	larger	proportion	of	the	map	area.



Figure	15.5:	Map	of	the	United	States	of	America,	using	an	area-preserving
Albers	projection	(ESRI:102003,	commonly	used	to	project	the	lower	48	states).

Alaska	and	Hawaii	are	shown	in	their	true	locations.

To	address	 the	problem	of	uninteresting	empty	space,	 it	 is	common	practice	 to
project	Alaska	and	Hawaii	 separately	 (to	minimize	 shape	distortions)	 and	 then
move	them	so	they	are	shown	underneath	the	lower	48	(Figure	15.6).	You	may
notice	 in	 Figure	 15.6	 that	Alaska	 looks	much	 smaller	 relative	 to	 the	 lower	 48
than	it	does	in	Figure	15.5.	The	reason	for	this	discrepancy	is	that	Alaska	has	not
only	been	moved,	it	also	has	been	scaled	so	it	looks	comparable	in	size	to	typical
midwestern	 or	 western	 states.	 This	 scaling,	 while	 common	 practice,	 is	 highly
misleading,	and	therefore	I	have	labeled	the	figure	as	"bad."



Figure	15.6:	Visualization	of	the	United	States,	with	the	states	of	Alaska	and
Hawaii	moved	to	lie	underneath	the	lower	48	states.	Alaska	also	has	been	scaled
so	its	linear	extent	is	only	35%	of	the	state's	true	size.	(In	other	words,	the	state's
area	has	been	reduced	to	approximately	12%	of	its	true	size.)	Such	a	scaling	is
frequently	applied	to	Alaska,	to	make	it	visually	appear	to	be	of	similar	size	as
typical	midwestern	or	western	states.	However,	the	scaling	is	highly	misleading,

and	therefore	the	figure	has	been	labeled	as	"bad".

Instead	 of	 both	 moving	 and	 scaling	 Alaska,	 we	 could	 just	 move	 it	 without
changing	its	scale	(Figure	15.7).	This	visualization	clearly	shows	that	Alaska	is
the	largest	state,	over	twice	the	size	of	Texas.	We	are	not	used	to	seeing	the	U.S.
shown	in	this	way,	but	in	my	mind	it	is	a	much	more	reasonable	representation
of	the	50	states	than	is	Figure	15.6.



Figure	15.7:	Visualization	of	the	United	States,	with	the	states	of	Alaska	and
Hawaii	moved	to	lie	underneath	the	lower	48	states.

15.2	Layers

To	 visualize	 geospatial	 data	 in	 the	 proper	 context,	 we	 usually	 create	 maps
consisting	 of	 multiple	 layers	 showing	 different	 types	 of	 information.	 To
demonstrate	 this	 concept,	 I	will	 visualize	 the	 locations	of	wind	 turbines	 in	 the
San	 Francisco	 Bay	 area.	 In	 the	 Bay	 Area,	 wind	 turbines	 are	 clustered	 in	 two
locations.	One	location,	which	I	will	refer	to	as	the	Shiloh	Wind	Farm,	lies	near
Rio	Vista	and	the	other	lies	east	of	Hayward	near	Tracy	(Figure	15.8).



Figure	15.8:	Wind	turbines	in	the	San	Francisco	Bay	Area.	Individual	wind
turbines	are	shown	as	purple-colored	dots.	Two	regions	with	a	high

concentration	of	wind	turbines	are	highlighted	with	black	rectangles.	I	refer	to
the	wind	turbines	near	Rio	Vista	collectively	as	the	Shiloh	Wind	Farm.	Map	tiles

by	Stamen	Design,	under	CC	BY	3.0.	Map	data	by	OpenStreetMap,	under
ODbL.	Wind	turbine	data:	United	States	Wind	Turbine	Database

Figure	15.8	consists	of	four	separate	layers.	At	the	bottom,	we	have	the	terrain
layer,	 which	 shows	 hills,	 valleys,	 and	 water.	 The	 next	 layer	 shows	 the	 road
network.	On	top	of	the	road	layer,	I	have	placed	a	layer	indicating	the	location	of
individual	wind	turbines.	This	layer	also	contains	the	two	rectangles	highlighting
the	majority	of	 the	wind	 turbines.	Finally,	 the	 top	 layer	 adds	 the	 locations	and
names	of	cities.	These	four	layers	are	shown	separately	in	Figure	15.9.	For	any
given	 map	 we	 want	 to	 make,	 we	 may	 want	 to	 add	 or	 remove	 some	 of	 these
layers.	For	example,	 if	we	wanted	 to	draw	a	map	of	voting	districts,	we	might
consider	terrain	information	to	be	irrelevant	and	distracting.	Alternatively,	if	we
wanted	 to	draw	a	map	of	exposed	or	covered	 roof	areas	 to	assess	potential	 for



solar	 power	 generation,	 we	 might	 want	 to	 replace	 terrain	 information	 with
satellite	 imagery	 that	 shows	 individual	 roofs	 and	 actual	 vegetation.	 You	 can
interactively	try	these	different	types	of	layers	in	most	online	map	applications,
such	as	Google	Maps.	I	would	like	to	emphasize	that	regardless	of	which	layers
we	decide	to	keep	or	remove,	it	is	generally	recommended	to	add	a	scale	bar	and
a	 north	 arrow.	 The	 scale	 bar	 helps	 readers	 understand	 the	 size	 of	 the	 spatial
features	shown	in	the	map,	while	the	north	arrow	clarifies	the	map's	orientation.

Figure	15.9:	The	individual	layers	of	Figure	15.8.	From	bottom	to	top,	the	figure
consists	of	a	terrain	layer,	a	roads	layer,	a	layer	showning	the	wind	turbines,	and

a	layer	labeling	cities	and	adding	a	scale	bar	and	north	arrow.	Map	tiles	by
Stamen	Design,	under	CC	BY	3.0.	Map	data	by	OpenStreetMap,	under	ODbL.

Wind	turbine	data	source:	United	States	Wind	Turbine	Database

All	 the	 concepts	 discussed	 in	Chapter	 2	 of	mapping	data	 onto	 aesthetics	 carry
over	to	maps.	We	can	place	data	points	into	their	geographic	context	and	show
other	data	dimensions	via	aesthetics	such	as	color	or	shape.	For	example,	Figure



15.10	provides	a	zoomed-in	view	of	the	rectangle	labeled	"Shiloh	Wind	Farm"	in
Figure	15.8.	 Individual	wind	 turbines	 are	 shown	as	 dots,	with	 the	 color	 of	 the
dots	 representing	when	a	 specific	 turbine	was	built	 and	 the	 shape	 representing
the	 project	 to	 which	 the	 wind	 turbine	 belongs.	 A	 map	 such	 as	 this	 one	 can
provide	a	quick	overview	of	how	an	area	was	developed.	E.g.,	here	we	see	that
EDF	Renewables	is	a	relatively	small	project	built	before	2000,	High	Winds	is	a
moderately	sized	project	build	between	2000	and	2004,	and	Shiloh	and	Solano
are	 the	 largest	 two	 projects	 in	 the	 area,	 both	 built	 over	 an	 extended	 period	 of
time.

Figure	15.10:	Location	of	individual	wind	turbines	in	the	Shiloh	Wind	Farm.
Each	dot	highlights	the	location	of	one	wind	turbine.	The	map	area	corresponds
to	the	rectangle	in	Figure	15.8.	Dots	are	colored	by	when	the	wind	turbine	was
built,	and	the	shape	of	the	dots	represents	the	various	projects	to	which	the

individual	wind	turbines	belong.	Map	tiles	by	Stamen	Design,	under	CC	BY	3.0.
Map	data	by	OpenStreetMap,	under	ODbL.	Wind	turbine	data	source:	United

States	Wind	Turbine	Database

15.3	Choropleth	mapping



We	frequently	want	to	show	how	some	quantity	varies	across	locations.	We	can
do	so	by	coloring	 individual	 regions	 in	a	map	according	 to	 the	data	dimension
we	want	to	display.	Such	maps	are	called	choropleth	maps.

As	 a	 simple	 example,	 consider	 the	 population	 density	 (persons	 per	 square
kilometer)	 across	 the	 United	 States.	We	 take	 the	 population	 number	 for	 each
county	in	the	U.S.,	divide	it	by	the	county's	surface	area,	and	then	draw	a	map
where	 the	 color	 of	 each	 county	 corresponds	 to	 the	 ratio	 between	 population
number	and	area	(Figure	15.11).	We	can	see	how	the	the	major	cities	on	the	east
and	the	west	coast	are	the	most	populated	areas	of	the	U.S.,	the	great	plains	and
western	states	have	low	population	densities,	and	the	state	of	Alaska	is	the	least
populated	of	all.

Figure	15.11:	Population	density	in	every	U.S.	county,	shown	as	a	choropleth
map.	Population	density	is	reported	as	persons	per	square	kilometer.	Data

source:	2015	Five-Year	American	Community	Survey

Figure	 15.11	 uses	 light	 colors	 to	 represent	 low	 population	 densities	 and	 dark
colors	 to	represent	high	densities,	so	that	high-density	metropolitan	areas	stand
out	as	dark	colors	on	a	background	of	light	colors.	We	tend	to	associate	darker



colors	with	higher	 intensities	when	 the	background	color	of	 the	 figure	 is	 light.
However,	we	can	also	pick	a	color	 scale	where	high	values	 light	up	on	a	dark
background	(Figure	15.12).	As	longs	as	the	lighter	colors	fall	into	the	red-yellow
spectrum,	 so	 that	 they	 appear	 to	 be	 glowing,	 they	 can	 be	 perceived	 as
representing	higher	intensities.	As	a	general	principle,	when	figures	are	meant	to
be	 printed	 on	 white	 paper	 then	 light-colored	 background	 areas	 (as	 in	 Figure
15.11)	will	 typically	work	better.	For	online	viewing	or	on	a	dark	background,
dark-colored	background	areas	(as	in	Figure	15.12)	may	be	preferable.

Figure	15.12:	Population	density	in	every	U.S.	county,	shown	as	a	choropleth
map.	This	map	is	identical	to	Figure	15.11	except	that	now	the	color	scale	uses
light	colors	for	high	population	densities	and	dark	colors	for	low	population

densities.	Data	source:	2015	Five-Year	American	Community	Survey

Choropleths	 work	 best	 when	 the	 coloring	 represents	 a	 density	 (i.e.,	 some
quantity	 divided	 by	 surface	 area,	 as	 in	Figures	 15.11	 and	15.12).	We	 perceive
larger	areas	as	corresponding	to	larger	amounts	than	smaller	areas	(see	also	the
chapter	on	proportional	ink,	Chapter	17),	and	shading	by	density	corrects	for	this
effect.	However,	in	practice,	we	often	see	choropleths	colored	according	to	some
quantity	that	is	not	a	density.	For	example,	in	Figure	4.4	I	showed	a	choropleth



of	 median	 annual	 income	 in	 Texas	 counties.	 Such	 choropleth	 maps	 can	 be
appropriate	when	they	are	prepared	with	caution.	There	are	two	conditions	under
which	 we	 can	 color-map	 quantities	 that	 are	 not	 densities:	 First,	 if	 all	 the
individual	areas	we	color	have	approximately	the	same	size	and	shape,	then	we
don't	have	to	worry	about	some	areas	drawing	disproportionate	attention	solely
due	 to	 their	 size.	 Second,	 if	 the	 individual	 areas	we	 color	 are	 relatively	 small
compared	to	the	overall	size	of	the	map	and	if	the	quantity	that	color	represents
changes	on	a	scale	larger	than	the	individual	colored	areas,	then	again	we	don't
have	to	worry	about	some	areas	drawing	disproportionate	attention	solely	due	to
their	size.	Both	of	these	conditions	are	approximately	met	in	Figure	4.4.

It	 is	 also	 important	 to	 consider	 the	 effect	 of	 continuous	 versus	 discrete	 color
scales	 in	 choropleth	 mapping.	 While	 continuous	 color	 scales	 tend	 to	 look
visually	appealing	(e.g.,	Figures	15.11	and	15.12),	they	can	be	difficult	to	read.
We	 are	 not	 very	 good	 at	 recognizing	 a	 specific	 color	 value	 and	 matching	 it
against	 a	 continuous	 scale.	 Therefore,	 it	 is	 often	 appropriate	 to	 bin	 the	 data
values	into	discrete	groups	that	are	represented	with	distinct	colors.	On	the	order
of	four	to	six	bins	is	a	good	choice.	The	binning	sacrifices	some	information,	but
on	 the	 flip	 side	 the	binned	colors	can	be	uniquely	 recognized.	As	an	example,
Figure	15.13	expands	the	map	of	median	income	in	Texas	counties	(Figure	4.4)
to	 all	 counties	 in	 the	U.S.,	 and	 it	 uses	 a	 color	 scale	 consisting	 of	 five	 distinct
income	bins.



Figure	15.13:	Median	income	in	every	U.S.	county,	shown	as	a	choropleth	map.
The	median	income	values	have	been	binned	into	five	distinct	groups,	because
binned	color	scales	are	generally	easier	to	read	than	continuous	color	scales.

Data	source:	2015	Five-Year	American	Community	Survey

Even	 though	 counties	 are	 not	 quite	 as	 equal-sized	 and	 even-shaped	 across	 the
entire	U.S.	 as	 they	 are	 just	within	Texas,	 I	 think	Figure	15.13	 still	works	 as	 a
choropleth	map.	 No	 individidual	 county	 overly	 dominates	 the	map.	 However,
things	look	different	when	we	draw	a	comparable	map	at	the	state	level	(Figure
15.14).	Then	Alaska	dominates	the	choropleth	and,	because	of	its	size,	suggests
that	median	 incomes	 above	 $70,000	 are	 common.	Yet	Alaska	 is	 very	 sparsely
populated	(see	Figures	15.11	and	15.12),	 and	 thus	 the	 income	 levels	 in	Alaska
apply	only	to	a	small	portion	of	the	U.S.	population.	The	vast	majority	of	U.S.
counties,	 which	 are	 nearly	 all	more	 populous	 than	 counties	 in	Alaska,	 have	 a
median	income	of	below	$60,000.



Figure	15.14:	Median	income	in	every	U.S.	state,	shown	as	a	choropleth	map.
This	map	is	visually	dominated	by	the	state	of	Alaska,	which	has	a	high	median
income	but	very	low	population	density.	At	the	same	time,	the	densely	populated
high-income	states	on	the	East	Coast	do	not	appear	very	prominent	on	this	map.
In	aggregate,	this	map	provides	a	poor	visualization	of	the	income	distribution	in
the	U.S.,	and	therefore	I	have	labeled	it	as	"bad."	Data	source:	2015	Five-Year

American	Community	Survey

15.4	Cartograms

Not	every	map-like	visualization	has	to	be	geographically	accurate	to	be	useful.
For	 example,	 the	 problem	 with	 Figure	 15.14	 is	 that	 some	 states	 take	 up	 a
comparatively	large	area	but	are	sparsely	populated	while	others	take	up	a	small
area	yet	have	a	large	number	of	inhabitants.	What	if	we	deformed	the	states	so
their	size	was	proportional	to	their	number	of	inhabitants?	Such	a	modified	map
is	 called	 a	 cartogram,	 and	 Figure	 15.15	 shows	 what	 it	 can	 look	 like	 for	 the
median	income	dataset.	We	can	still	recognize	individual	states,	yet	we	also	see
how	 the	 adjustment	 for	 population	 numbers	 has	 introduced	 important
modifications.	The	east	coast	states,	Florida,	and	California	have	grown	a	lot	in



size,	whereas	the	other	western	states	and	Alaska	have	collapsed.

Figure	15.15:	Median	income	in	every	U.S.	state,	shown	as	a	cartogram.	The
shapes	of	individual	states	have	been	modified	such	that	their	area	is

proportional	to	their	number	of	inhabitants.	Data	source:	2015	Five-Year
American	Community	Survey

As	an	alternative	to	a	cartogram	with	distorted	shapes,	we	can	also	draw	a	much
simpler	cartogram	heatmap,	where	each	state	is	represented	by	a	colored	square
(Figure	 15.16).	 While	 this	 representation	 does	 not	 correct	 for	 the	 population
number	 in	 each	 state,	 and	 thus	 underrepresents	 more	 populous	 states	 and
overrepresents	less	populous	states,	at	least	it	treats	all	states	equally	and	doesn't
weigh	them	arbitrarily	by	their	shape	or	size.



Figure	15.16:	Median	income	in	every	U.S.	state,	shown	as	a	cartogram
heatmap.	Each	state	is	represented	by	an	equally	sized	square,	and	the	squares
are	arranged	according	to	the	approximate	position	of	each	state	relative	to	the
other	states.	This	representation	gives	the	same	visual	weight	to	each	state.	Data

source:	2015	Five-Year	American	Community	Survey

Finally,	we	can	draw	more	complex	cartograms	by	placing	individual	plots	at	the
location	of	each	state.	For	example,	if	we	want	to	visualize	the	evolution	of	the
unemployment	 rate	 over	 time	 for	 each	 state,	 it	 can	help	 to	 draw	an	 individual
graph	 for	 each	 state	 and	 then	 arrange	 the	 graphs	 based	 on	 the	 approximate
relative	position	of	the	states	to	each	other	(Figure	15.17).	For	somebody	who	is
familiar	with	the	geography	of	the	United	States,	this	arrangement	may	make	it
easier	to	find	the	graphs	for	specific	states	than	arranging	them,	for	example,	in
alphabetical	order.	Furthermore,	one	would	expect	neighboring	states	to	display
similar	patterns,	and	Figure	15.17	shows	that	this	is	indeed	the	case.



Figure	15.17:	Unemployment	rate	leading	up	to	and	following	the	2008	financial
crisis,	by	state.	Each	panel	shows	the	unemployment	rate	for	one	state,	including
the	District	of	Columbia	(DC),	from	January	2007	through	May	2013.	Vertical
grid	lines	mark	January	of	2008,	2010,	and	2012.	States	that	are	geographically
close	tend	to	show	similar	trends	in	the	unemployment	rate.	Data	source:	U.S.

Bureau	of	Labor	Statistics



16	Visualizing	uncertainty
One	of	the	most	challenging	aspects	of	data	visualization	is	the	visualization	of
uncertainty.	When	we	see	a	data	point	drawn	in	a	specific	 location,	we	tend	 to
interpret	 it	 as	 a	 precise	 representation	 of	 the	 true	 data	 value.	 It	 is	 difficult	 to
conceive	that	a	data	point	could	actually	lie	somewhere	it	hasn't	been	drawn.	Yet
this	scenario	is	ubiquitous	in	data	visualization.	Nearly	every	data	set	we	work
with	 has	 some	 uncertainty,	 and	whether	 and	 how	we	 choose	 to	 represent	 this
uncertainty	 can	 make	 a	 major	 difference	 in	 how	 accurately	 our	 audience
perceives	the	meaning	of	the	data.

Two	 commonly	 used	 approaches	 to	 indicate	 uncertainty	 are	 error	 bars	 and
confidence	bands.	These	approaches	were	developed	in	the	context	of	scientific
publications,	 and	 they	 require	 some	 amount	 of	 expert	 knowledge	 to	 be
interpreted	 correctly.	 Yet	 they	 are	 precise	 and	 space	 efficient.	 By	 using	 error
bars,	 for	 example,	we	 can	 show	 the	 uncertainties	 of	many	 different	 parameter
estimates	in	a	single	graph.	For	a	lay	audience,	however,	visualization	strategies
that	 create	 a	 strong	 intuitive	 impression	 of	 the	 uncertainty	 will	 be	 preferable,
even	 if	 they	 come	 at	 the	 cost	 of	 either	 reduced	 visualization	 accuracy	 or	 less
data-dense	 displays.	 Options	 here	 include	 frequency	 framing,	 where	 we
explicitly	 draw	 different	 possible	 scenarios	 in	 approximate	 proportions,	 or
animations	that	cycle	through	different	possible	scenarios.

16.1	Framing	probabilities	as	frequencies

Before	we	can	discuss	how	 to	visualize	uncertainty,	we	need	 to	define	what	 it
actually	is.	We	can	intuitively	grasp	the	concept	of	uncertainty	most	easily	in	the
context	of	future	events.	If	I	am	going	to	flip	a	coin	I	don't	know	ahead	of	time
what	 the	 outcome	 will	 be.	 The	 eventual	 outcome	 is	 uncertain.	 I	 can	 also	 be
uncertain	 about	 events	 in	 the	 past,	 however.	 If	 yesterday	 I	 looked	 out	 of	 my
kitchen	window	exactly	twice,	once	at	8am	and	once	at	4pm,	and	I	saw	a	red	car
parked	across	the	street	at	8am	but	not	at	4pm,	then	I	can	conclude	the	car	left	at
some	 point	 during	 the	 eight-hour	 window	 but	 I	 don't	 know	 exactly	 when.	 It
could	 have	 been	 8:01am,	 9:30am,	 2pm,	 or	 any	 other	 time	 during	 those	 eight
hours.



Mathematically,	 we	 deal	 with	 uncertainty	 by	 employing	 the	 concept	 of
probability.	A	precise	definition	of	probability	is	complicated	and	far	beyond	the
scope	of	 this	book.	Yet	we	can	 successfully	 reason	about	probabilities	without
understanding	all	 the	mathematical	 intricacies.	For	many	problems	of	practical
relevance	it	is	sufficient	to	think	about	relative	frequencies.	Assume	you	perform
some	 sort	 of	 random	 trial,	 such	 as	 a	 coin	 flip	 or	 rolling	 a	 die,	 and	 look	 for	 a
particular	 outcome	 (e.g.,	 heads	 or	 rolling	 a	 six).	 You	 can	 call	 this	 outcome
success,	 and	 any	 other	 outcome	 failure.	 Then,	 the	 probability	 of	 success	 is
approximately	 given	 by	 the	 fraction	 of	 times	 you'd	 see	 that	 outcome	 if	 you
repeated	 the	 random	 trial	 over	 and	 over	 again.	 For	 instance,	 if	 a	 particular
outcome	 occurs	 with	 a	 probability	 of	 10%,	 then	 we	 expect	 that	 among	many
repeated	trials	that	outcome	will	be	seen	in	approximately	one	out	of	ten	cases.

Visualizing	a	single	probability	is	difficult.	How	would	you	visualize	the	chance
of	winning	in	the	lottery,	or	 the	chance	of	rolling	a	six	with	a	fair	die?	In	both
cases,	 the	 probability	 is	 a	 single	 number.	 We	 could	 treat	 that	 number	 as	 an
amount	and	display	it	using	any	of	the	techniques	discussed	in	Chapter	6,	such
as	a	bar	graph	or	a	dot	plot,	but	the	result	would	not	be	very	useful.	Most	people
lack	 an	 intuitive	 understanding	 of	 how	 a	 probability	 value	 translates	 into
experienced	reality.	Showing	the	probability	value	as	a	bar	or	as	a	dot	placed	on
a	line	does	not	help	with	this	problem.

We	 can	 make	 the	 concept	 of	 probability	 tangible	 by	 creating	 a	 graph	 that
emphasizes	both	the	frequency	aspect	and	the	unpredictability	of	a	random	trial,
for	example	by	drawing	squares	of	different	colors	in	a	random	arrangement.	In
Figure	16.1,	 I	use	 this	 technique	 to	visualize	 three	different	probabilities,	a	1%
chance	of	success,	a	10%	chance	of	success,	and	a	40%	chance	of	success.	To
read	 this	 figure,	 imagine	 you	 are	 given	 the	 task	 of	 picking	 a	 dark	 square	 by
choosing	 a	 square	 before	 you	 can	 see	 which	 of	 the	 squares	 will	 be	 dark	 and
which	 ones	will	 be	 light.	 (If	 you	will,	 you	 can	 think	 of	 picking	 a	 square	with
your	 eyes	 closed.)	 Intuitively,	 you	 will	 probably	 understand	 that	 it	 would	 be
unlikely	to	select	the	one	dark	square	in	the	1%-chance	case.	Similarly,	it	would
still	be	fairly	unlikely	to	select	a	dark	square	in	the	10%-chance	case.	However,
in	 the	40%-chance	case	 the	odds	don't	 look	so	bad.	This	style	of	visualization,
where	 we	 show	 specific	 potential	 outcomes,	 is	 called	 a	 discrete	 outcome
visualization,	 and	 the	 act	 of	 visualizing	 a	 probability	 as	 a	 frequency	 is	 called
frequency	framing.	We	are	framing	the	probabilistic	nature	of	a	result	in	terms	of
easily	understood	frequencies	of	outcomes.



Figure	16.1:	Visualizing	probability	as	frequency.	There	are	100	squares	in	each
grid,	and	each	square	represents	either	success	of	failure	in	some	random	trial.	A

1%	chance	of	success	corresponds	to	one	dark	and	99	light	squares,	a	10%
chance	of	success	corresponds	to	ten	dark	and	90	light	squares,	and	a	40%
chance	of	success	corresponds	to	40	dark	and	60	light	squares.	By	randomly
placing	the	dark	squares	among	the	light	squares,	we	can	create	a	visual

impression	of	randomness	that	emphasizes	the	uncertainty	of	the	outcome	of	a
single	trial.

If	 we	 are	 only	 interested	 in	 two	 discrete	 outcomes,	 success	 or	 failure,	 then	 a
visualization	such	as	Figure	16.1	works	fine.	However,	often	we	are	dealing	with
more	 complex	 scenarios	 where	 the	 outcome	 of	 a	 random	 trial	 is	 a	 numeric
variable.	 One	 common	 scenario	 is	 that	 of	 election	 predictions,	 where	 we	 are
interested	 not	 only	 in	 who	 will	 win	 but	 also	 by	 how	 much.	 Let's	 consider	 a
hypothetical	example	of	an	upcoming	election	with	two	parties,	the	yellow	party
and	the	blue	party.	Assume	you	hear	on	the	radio	that	the	blue	party	is	predicted
to	have	a	one	percentage	point	advantage	over	the	yellow	party,	with	a	margin	of
error	 of	 1.76	 percentage	 points.	What	 does	 this	 information	 tell	 you	 about	 the
likely	outcome	of	 the	 election?	 It	 is	human	nature	 to	hear	 "the	blue	party	will
win,"	 but	 reality	 is	 more	 complicated.	 First,	 and	 most	 importantly,	 there	 is	 a
range	of	different	possible	outcomes.	The	blue	party	could	end	up	winning	with
a	lead	of	two	percentage	points	or	the	yellow	party	could	end	up	winning	with	a
lead	 of	 half	 a	 percentage	 point.	 The	 range	 of	 possible	 outcomes	 with	 their
associated	likelihoods	is	called	a	probability	distribution,	and	we	can	draw	it	as	a
smooth	 curve	 that	 rises	 and	 then	 falls	 over	 the	 range	 of	 possible	 outcomes
(Figure	16.2).	The	higher	the	curve	for	a	specific	outcome,	the	more	likely	that
outcome	 is.	 Probability	 distributions	 are	 closely	 related	 to	 the	 histograms	 and



kernel	densities	discussed	in	Chapter	7,	and	you	may	want	to	re-read	that	chapter
to	refresh	your	memory.

Figure	16.2:	Hypothetical	prediction	of	an	election	outcome.	The	blue	party	is
predicted	to	win	over	the	yellow	party	by	approximately	one	percentage	point

(labeled	"best	estimate"),	but	that	prediction	has	a	margin	of	error	(here	drawn	so
it	covers	95%	of	the	likely	outcomes,	1.76	percentage	points	in	either	direction
from	the	best	estimate).	The	area	shaded	in	blue,	corresponding	to	87.1%	of	the
total,	represents	all	outcomes	under	which	blue	would	win.	Likewise,	the	area
shaded	in	yellow,	corresponding	to	12.9%	of	the	total,	represents	all	outcomes
under	which	yellow	would	win.	In	this	example,	blue	has	an	87%	chance	of

winning	the	election.

By	doing	some	math,	we	can	calculate	that	for	our	made-up	example,	the	chance
of	the	yellow	party	winning	is	12.9%.	So	the	chance	of	yellow	winning	is	a	tad
better	than	the	10%	chance	scenario	shown	in	Figure	16.1.	If	you	favor	the	blue
party,	 you	 may	 not	 be	 overly	 worried,	 but	 the	 yellow	 party	 has	 enough	 of	 a
chance	of	winning	that	they	might	just	be	successful.	If	you	compare	Figure	16.2
to	Figure	16.1,	you	may	find	that	Figure	16.1	creates	a	much	better	sense	of	the
uncertainty	in	outcome,	even	though	the	shaded	areas	in	Figure	16.2	accurately
represent	 the	 probabilities	 of	 blue	 or	 yellow	 winning.	 This	 is	 the	 power	 of	 a
discrete	outcome	visualization.	Research	in	human	perception	shows	that	we	are
much	 better	 at	 perceiving,	 counting,	 and	 judging	 the	 relative	 frequencies	 of
discrete	objects---as	long	as	their	 total	number	is	not	 too	large---than	we	are	at
judging	the	relative	sizes	of	different	areas.



We	can	combine	 the	discrete	outcome	nature	of	Figure	16.1	with	a	continuous
distribution	as	in	Figure	16.2	by	drawing	a	quantile	dotplot	(Kay	et	al.	2016).	In
the	quantile	dotplot,	we	subdivide	the	total	area	under	the	curve	into	evenly	sized
units	 and	 draw	 each	 unit	 as	 a	 circle.	We	 then	 stack	 the	 circles	 such	 that	 their
arrangement	 approximately	 represents	 the	 original	 distribution	 curve	 (Figure
16.3).

Figure	16.3:	Quantile	dotplot	representations	of	the	election	outcome	distribution
of	Figure	16.2.	(a)	The	smooth	distribution	is	approximated	with	50	dots

representing	a	2%	chance	each.	The	six	yellow	dots	thus	correspond	to	a	12%
chance,	reasonably	close	to	the	true	value	of	12.9%.	(b)	The	smooth	distribution
is	approximated	with	10	dots	representing	a	10%	chance	each.	The	one	yellow
dot	thus	corresponds	to	a	10%	chance,	still	close	to	the	true	value.	Quantile	dot
plots	with	a	smaller	number	of	dots	tend	to	be	easier	to	read,	so	in	this	example,

the	10-dot	version	might	be	preferable	to	the	50-dot	version.

As	a	general	principle,	quantile	dotplots	should	use	a	small	to	moderate	number
of	dots.	If	there	are	too	many	dots,	then	we	tend	to	perceive	them	as	a	continuum
rather	 than	 as	 individual,	 discrete	 units.	 This	 negates	 the	 advantages	 of	 the
discrete	plots.	Figure	16.3	shows	variants	with	50	dots	(Figure	16.3a)	and	with



ten	dots	(Figure	16.3b).	While	the	version	with	50	dots	more	accurately	captures
the	 true	 probability	 distribution,	 the	 number	 of	 dots	 is	 too	 large	 to	 easily
discriminate	 individual	 ones.	 The	 version	 with	 ten	 dots	 more	 immediately
conveys	the	relative	chances	of	blue	or	yellow	winning.	One	objection	to	the	ten-
dot	 version	might	 be	 that	 it	 is	 not	 very	 precise.	We	 are	 underrepresenting	 the
chance	 of	 yellow	 winning	 by	 2.9	 percentage	 points.	 However,	 it	 is	 often
worthwhile	 to	 trade	 some	 mathematical	 precision	 for	 more	 accurate	 human
perception	of	the	resulting	visualization,	in	particular	when	communicating	to	a
lay	 audience.	 A	 visualization	 that	 is	 mathematically	 correct	 but	 not	 properly
perceived	is	not	that	useful	in	practice.

16.2	Visualizing	the	uncertainty	of	point	estimates

In	Figure	16.2,	I	showed	a	"best	estimate"	and	a	"margin	of	error,"	but	I	didn't
explain	 what	 exactly	 these	 quantities	 are	 or	 how	 they	 might	 be	 obtained.	 To
understand	 them	better,	we	 need	 to	 take	 a	 quick	 detour	 into	 basic	 concepts	 of
statistical	 sampling.	 In	 statistics,	 our	 overarching	 goal	 is	 to	 learn	 something
about	the	world	by	looking	at	a	small	portion	of	it.	To	continue	with	the	election
example,	assume	 there	are	many	different	electoral	districts	and	 the	citizens	of
each	district	are	going	to	vote	for	either	the	blue	or	the	yellow	party.	We	might
want	 to	 predict	 how	 each	 district	 is	 going	 to	 vote,	 as	well	 as	 the	 overall	 vote
average	across	districts	(the	mean).	To	make	a	prediction	before	the	election,	we
cannot	poll	each	individual	citizen	in	each	district	about	how	they	are	going	to
vote.	Instead,	we	have	to	poll	a	subset	of	citizens	in	a	subset	of	districts	and	use
that	data	to	arrive	at	a	best	guess.	In	statistical	language,	the	total	set	of	possible
votes	 of	 all	 citizens	 in	 all	 districts	 is	 called	 the	 population,	 and	 the	 subset	 of
citizens	 and/or	 districts	 we	 poll	 is	 the	 sample.	 The	 population	 represents	 the
underlying,	true	state	of	the	world	and	the	sample	is	our	window	into	that	world.

We	 are	 normally	 interested	 in	 specific	 quantities	 that	 summarize	 important
properties	of	 the	population.	 In	 the	 election	 example,	 these	 could	be	 the	mean
vote	outcome	across	districts	or	the	standard	deviation	among	district	outcomes.
Quantities	 that	 describe	 the	 population	 are	 called	 parameters,	 and	 they	 are
generally	not	knowable.	However,	we	can	use	a	sample	 to	make	a	guess	about
the	 true	 parameter	 values,	 and	 statisticians	 refer	 to	 such	 guesses	 as	 estimates.
The	sample	mean	(or	average)	is	an	estimate	for	the	population	mean,	which	is	a
parameter.	 The	 estimates	 of	 individual	 parameter	 values	 are	 also	 called	 point
estimates,	since	each	can	be	represented	by	a	point	on	a	line.



Figure	16.4	shows	how	these	key	concepts	are	related	to	each	other.	The	variable
of	 interest	 (e.g.,	 vote	 outcome	 in	 each	 district)	 has	 some	 distribution	 in	 the
population,	 with	 a	 population	 mean	 and	 a	 population	 standard	 deviation.	 A
sample	 will	 consist	 of	 a	 set	 of	 specific	 observations.	 The	 number	 of	 the
individual	observations	in	the	sample	is	called	the	sample	size.	From	the	sample
we	can	calculate	a	sample	mean	and	a	sample	standard	deviation,	and	these	will
generally	 differ	 from	 the	 population	mean	 and	 standard	 deviation.	 Finally,	we
can	 define	 a	 sampling	 distribution,	 which	 is	 the	 distribution	 of	 estimates	 we
would	obtain	if	we	repeated	the	sampling	process	many	times.	The	width	of	the
sampling	distribution	is	called	the	standard	error,	and	it	tells	us	how	precise	our
estimates	 are.	 In	 other	 words,	 the	 standard	 error	 provides	 a	 measure	 of	 the
uncertainty	associated	with	our	parameter	estimate.	As	a	generaly	rule,	the	larger
the	 sample	 size,	 the	 smaller	 the	 standard	 error	 and	 thus	 the	 less	 uncertain	 the
estimate.

Figure	16.4:	Key	concepts	of	statistical	sampling.	The	variable	of	interest	that
we	are	studying	has	some	true	distribution	in	the	population,	with	a	true

population	mean	and	standard	deviation.	Any	finite	sample	of	that	variable	will
have	a	sample	mean	and	standard	deviation	that	differ	from	the	population



parameters.	If	we	sampled	repeatedly	and	calculated	a	mean	each	time,	then	the
resulting	means	would	be	distributed	according	to	the	sampling	distribution	of
the	mean.	The	standard	error	provides	information	about	the	width	of	the

sampling	distribution,	which	informs	us	about	how	precisely	we	are	estimating
the	parameter	of	interest	(here,	the	population	mean).

It	is	critical	that	we	don't	confuse	the	standard	deviation	and	the	standard	error.
The	 standard	 deviation	 is	 a	 property	 of	 the	 population.	 It	 tells	 us	 how	 much
spread	 there	 is	among	 individual	observations	we	could	make.	For	example,	 if
we	consider	the	population	of	voting	districts,	the	standard	deviation	tells	us	how
different	different	districts	are	from	one	another.	By	contrast,	the	standard	error
tells	us	how	precisely	we	have	determined	a	parameter	estimate.	If	we	wanted	to
estimate	 the	mean	 voting	 outcome	 over	 all	 districts,	 the	 standard	 error	 would
tells	us	how	accurate	our	estimate	for	the	mean	is.

All	 statisticians	 use	 samples	 to	 calculate	 parameter	 estimates	 and	 their
uncertainties.	 However,	 they	 are	 divided	 in	 how	 they	 approach	 these
calculations,	 into	Bayesians	 and	 frequentists.	Bayesians	 assume	 that	 they	have
some	prior	knowledge	about	 the	world,	and	 they	use	 the	sample	 to	update	 this
knowledge.	By	 contrast,	 frequentists	 attempt	 to	make	precise	 statements	 about
the	 world	 without	 having	 any	 prior	 knowledge	 in	 hand.	 Fortunately,	 when	 it
comes	 to	 visualizing	 uncertainty,	 Bayesians	 and	 frequentists	 can	 generally
employ	 the	 same	 types	 of	 strategies.	 Here,	 I	 will	 first	 discuss	 the	 frequentist
approach	and	then	describe	a	few	specific	issues	unique	to	the	Bayesian	context.

Frequentists	most	 commonly	visualize	uncertainty	with	 error	bars.	While	 error
bars	 can	 be	 useful	 as	 a	 visualization	 of	 uncertainty,	 they	 are	 not	 without
problems,	 as	 I	 already	 alluded	 to	 in	Chapter	 9	 (see	 Figure	 9.1).	 It	 is	 easy	 for
readers	 to	 be	 confused	 about	 what	 an	 error	 bar	 represents.	 To	 highlight	 this
problem,	 in	 Figure	 16.5	 I	 show	 five	 different	 uses	 of	 error	 bars	 for	 the	 same
dataset.	The	 dataset	 contains	 expert	 ratings	 of	 chocolate	 bars,	 rated	 on	 a	 scale
from	1	to	5,	for	chocolate	bars	manufactured	in	a	number	of	different	countries.
For	Figure	16.5	I	have	extracted	all	 ratings	for	chocolate	bars	manufactured	 in
Canada.	Underneath	the	sample,	which	is	shown	as	a	strip	chart	of	jittered	dots,
we	 see	 the	 sample	mean	 plus/minus	 the	 standard	 deviation	 of	 the	 sample,	 the
sample	mean	plus/minus	the	standard	error,	and	80%,	95%,	and	99%	confidence
intervals.	All	 five	 error	 bars	 are	 derived	 from	 the	 variation	 in	 the	 sample,	 and
they	are	all	mathematically	related,	but	they	have	different	meanings.	And	they
are	also	visually	quite	distinct.



Figure	16.5:	Relationship	between	sample,	sample	mean,	standard	deviation,
standard	error,	and	confidence	intervals,	in	an	example	of	chocolate	bar	ratings.

The	observations	(shown	as	jittered	green	dots)	that	make	up	the	sample
represent	expert	ratings	of	125	chocolate	bars	from	manufacturers	in	Canada,
rated	on	a	scale	from	1	(unpleasant)	to	5	(elite).	The	large	orange	dot	represents

the	mean	of	the	ratings.	Error	bars	indicate,	from	top	to	bottom,	twice	the
standard	deviation,	twice	the	standard	error	(standard	deviation	of	the	mean),
and	80%,	95%,	and	99%	confidence	intervals	of	the	mean.	Data	source:	Brady

Brelinski,	Manhattan	Chocolate	Society

Whenever	 you	 visualize	 uncertainty	 with	 error	 bars,	 you	 must	 specify	 what
quantity	and/or	confidence	level	the	error	bars	represent.

The	 standard	 error	 is	 approximately	 given	 by	 the	 sample	 standard	 deviation
divided	 by	 the	 square	 root	 of	 the	 sample	 size,	 and	 confidence	 intervals	 are
calculated	 by	 multiplying	 the	 standard	 error	 with	 small,	 constant	 values.	 For
example,	 a	 95%	 confidence	 interval	 extends	 approximately	 two	 times	 the
standard	error	in	either	direction	from	the	mean.	Therefore,	larger	samples	tend
to	have	narrower	standard	errors	and	confidence	intervals,	even	if	their	standard
deviation	 is	 the	 same.	 We	 can	 see	 this	 effect	 when	 we	 compare	 ratings	 for
chocolate	bars	from	Canada	to	ones	from	Switzerland	(Figure	16.6).	The	mean
rating	 and	 sample	 standard	 deviation	 are	 comparable	 between	 Canadian	 and
Swiss	 chocolate	 bars,	 but	we	 have	 ratings	 for	 125	Canadian	 bars	 and	 only	 38
Swiss	bars,	and	consequently	the	confidence	intervals	around	the	mean	are	much



wider	in	the	case	of	Swiss	bars.

Figure	16.6:	Confidence	intervals	widen	with	smaller	sample	size.	Chocolate
bars	from	Canada	and	Switzerland	have	comparable	mean	ratings	and
comparable	standard	deviations	(indicated	with	simple	black	error	bars).

However,	over	three	times	as	many	Canadian	bars	were	rated	as	Swiss	bars,	and
therefore	the	confidence	intervals	(indicated	with	error	bars	of	different	colors
and	thickness	drawn	on	top	of	one	another)	are	substantially	wider	for	the	mean
of	the	Swiss	ratings	than	for	the	mean	of	the	Canadian	ratings.	Data	source:

Brady	Brelinski,	Manhattan	Chocolate	Society

In	 Figure	 16.6,	 I	 am	 showing	 three	 different	 confidence	 intervals	 at	 the	 same
time,	 using	darker	 colors	 and	 thicker	 lines	 for	 the	 intervals	 representing	 lower
confidence	 levels.	 I	 refer	 to	 these	 visualizations	 as	 graded	 error	 bars.	 The
grading	helps	the	reader	perceive	that	there	is	a	range	of	different	possibilities.	If
I	showed	simple	error	bars	(without	grading)	to	a	group	of	people,	chances	are	at
least	some	of	them	would	perceive	the	error	bars	deterministically,	for	example
as	 representing	minimum	 and	maximum	of	 the	 data.	Alternatively,	 they	might
think	the	error	bars	delineate	the	range	of	possible	parameter	estimates,	i.e.,	the
estimate	could	never	fall	outside	the	error	bars.	These	types	of	misperception	are
called	 deterministic	 construal	 errors.	 The	 more	 we	 can	 minimize	 the	 risk	 of
deterministic	construal	error,	the	better	our	visualization	of	uncertainty.

Error	 bars	 are	 convenient	 because	 they	 allow	us	 to	 show	many	 estimates	with
their	uncertainties	all	 at	once.	Therefore,	 they	are	commonly	used	 in	 scientific



publications,	 where	 the	 primary	 goal	 is	 usually	 to	 convey	 a	 large	 amount	 of
information	 to	 an	 expert	 audience.	As	 an	 example	 of	 this	 type	 of	 application,
Figure	16.7	 shows	mean	 chocolate	 ratings	 and	 associated	 confidence	 intervals
for	chocolate	bars	manufactured	in	six	different	countries.

Figure	16.7:	Mean	chocolate	flavor	ratings	and	associated	confidence	intervals
for	chocolate	bars	from	manufacturers	in	six	different	countries.	Data	source:

Brady	Brelinski,	Manhattan	Chocolate	Society

When	 looking	 at	 Figure	 16.7,	 you	 may	 wonder	 what	 it	 tells	 us	 about	 the
differences	in	mean	ratings.	The	mean	ratings	of	Canadian,	Swiss,	and	Austrian
bars	are	higher	 than	 the	mean	 rating	of	U.S.	bars,	but	given	 the	uncertainty	 in
these	 mean	 ratings,	 are	 the	 differences	 in	 means	 significant?	 The	 word
"significant"	here	 is	a	 technical	 term	used	by	statisticians.	We	call	a	difference
significant	if	with	some	level	of	confidence	we	can	reject	the	assumption	that	the
observed	difference	was	caused	by	random	sampling.	Since	only	a	finite	number
of	 Canadian	 and	 U.S.	 bars	 was	 rated,	 the	 raters	 could	 have	 accidentally
considered	more	of	 the	better	Canadian	bars	and	fewer	of	 the	better	U.S.	bars,
and	 this	 random	 chance	 might	 look	 like	 a	 systematic	 rating	 advantage	 of
Canadian	over	U.S.	bars.

Assessing	 significance	 from	 Figure	 16.7	 is	 difficult,	 because	 both	 the	 mean
Canadian	 rating	 and	 the	mean	U.S.	 rating	 have	 uncertainty.	Both	 uncertainties
matter	to	the	question	whether	the	means	are	different.	Statistics	textbooks	and



online	tutorials	sometimes	publish	rules	of	 thumb	of	how	to	judge	significance
from	the	extent	to	which	error	bars	do	or	don't	overlap.	However,	these	rules	of
thumb	are	not	reliable	and	should	be	avoided.	The	correct	way	to	assess	whether
there	are	differences	 in	mean	 rating	 is	 to	calculate	confidence	 intervals	 for	 the
differences.	 If	 those	 confidence	 intervals	 exclude	 zero,	 then	 we	 know	 the
difference	 is	 significant	 at	 the	 respective	 confidence	 level.	 For	 the	 chocolate
ratings	dataset,	we	see	that	only	bars	from	Canada	are	significantly	higher	rated
than	 bars	 from	 the	 U.S.	 (Figure	 16.8).	 For	 bars	 from	 Switzerland,	 the	 95%
confidence	 interval	on	 the	difference	 just	barely	 includes	 the	value	zero.	Thus,
the	 difference	 between	 the	 mean	 ratings	 of	 U.S.	 and	 Swiss	 chocolate	 bars	 is
barely	 not	 significant	 at	 the	 5%	 level.	 Finally,	 there	 is	 no	 evidence	 at	 all	 that
Austrian	bars	have	systematically	higher	mean	ratings	that	U.S.	bars.

Figure	16.8:	Mean	chocolate	flavor	ratings	for	manufacturers	from	five	different
countries,	relative	to	the	mean	rating	of	U.S.	chocolate	bars.	Canadian	chocolate
bars	are	significantly	higher	rated	that	U.S.	bars.	For	the	other	four	countries

there	is	no	significant	difference	in	mean	rating	to	the	U.S.	at	the	95%
confidence	level.	Confidence	levels	have	been	adjusted	for	multiple	comparisons
using	Dunnett's	method.	Data	source:	Brady	Brelinski,	Manhattan	Chocolate

Society

In	the	preceding	figures,	I	have	used	two	different	types	of	error	bars,	graded	and
simple.	More	variations	are	possible.	For	example,	we	can	draw	error	bars	with
or	without	a	cap	at	 the	end	(Figure	16.9a,	c	versus	Figure	16.9b,	d).	There	are



advantages	 and	disadvantages	 to	 all	 these	 choices.	Graded	 error	 bars	 highlight
the	 existence	 of	 different	 ranges	 corresponding	 to	 different	 confidence	 levels.
However,	 the	 flip	 side	 of	 this	 additional	 information	 is	 added	 visual	 noise.
Depending	on	how	complex	and	information-dense	a	figure	is	otherwise,	simple
error	bars	may	be	preferable	to	graded	ones.	Whether	to	draw	error	bars	with	or
without	 cap	 is	 primarily	 a	 question	 of	 personal	 taste.	 A	 cap	 highlights	 where
exactly	an	error	bar	ends	(Figure	16.9a,	c),	whereas	an	error	bar	without	cap	puts
equal	emphasis	on	the	entire	range	of	the	interval	(Figure	16.9b,	d).	Also,	again,
caps	add	visual	noise,	so	in	a	figure	with	many	error	bars	omitting	caps	may	be
preferable.

Figure	16.9:	Mean	chocolate	flavor	ratings	for	manufacturers	from	four	different
countries,	relative	to	the	mean	rating	of	U.S.	chocolate	bars.	Each	panel	uses	a
different	approach	to	visualizing	the	same	uncertainty	information.	(a)	Graded
error	bars	with	cap.	(b)	Graded	error	bars	without	cap.	(c)	Single-interval	error
bars	with	cap.	(d)	Single-interval	error	bars	without	cap.	(e)	Confidence	strips.

(f)	Confidence	distributions.



As	 an	 alternative	 to	 error	 bars	we	 could	 draw	 confidence	 strips	 that	 gradually
fade	into	nothing	(Figure	16.9e).	Confidence	strips	better	convey	how	probable
different	 values	 are,	 but	 they	 are	 difficult	 to	 read.	We	would	 have	 to	 visually
integrate	the	different	shadings	of	color	to	determine	where	a	specific	confidence
level	 ends.	 From	 Figure	 16.9e	 we	 might	 conclude	 that	 the	 mean	 rating	 for
Peruvian	chocolate	bars	 is	 significantly	 lower	 than	 that	of	U.S.	chocolate	bars,
and	 yet	 this	 is	 not	 the	 case.	 Similar	 problems	 arise	 when	 we	 show	 explicit
confidence	 distributions	 (Figure	 16.9f).	 It	 is	 difficult	 to	 visually	 integrate	 the
area	under	the	curve	and	to	determine	where	exactly	a	given	confidence	level	is
reached.	This	 issue	 can	be	 somewhat	 alleviated,	 however,	 by	drawing	quantile
dotplots	as	in	Figure	16.3.

For	 simple	 2D	 figures,	 error	 bars	 have	 one	 important	 advantage	 over	 more
complex	displays	of	uncertainty:	They	can	be	combined	with	many	other	types
of	plots.	For	nearly	any	visualization	we	may	have,	we	can	add	some	indication
of	 uncertainty	 by	 adding	 error	 bars.	 For	 example,	we	 can	 show	 amounts	with
uncertainty	 by	 drawing	 a	 bar	 plot	with	 error	 bars	 (Figure	 16.10).	This	 type	 of
visualization	is	commonly	used	in	scientific	publications.	We	can	also	draw	error
bars	along	both	the	x	and	the	y	direction	in	a	scatter	plot	(Figure	16.11).

Figure	16.10:	Mean	butterfat	contents	in	the	milk	of	four	cattle	breeds.	Error
bars	indicate	+/-	one	standard	error	of	the	mean.	Visualizations	of	this	type	are
frequently	seen	in	the	scientific	literature.	While	they	are	technically	correct,
they	represent	neither	the	variation	within	each	category	nor	the	uncertainty	of
the	sample	means	particularly	well.	See	Figure	7.11	for	the	variation	in	butterfat



contents	within	individual	breeds.	Data	Source:	Canadian	Record	of
Performance	for	Purebred	Dairy	Cattle

Figure	16.11:	Median	income	versus	median	age	for	67	counties	in
Pennsylvania.	Error	bars	represent	90%	confidence	intervals.	Data	source:	2015

Five-Year	American	Community	Survey

Let's	 return	 to	 the	 topic	 of	 frequentists	 and	 Bayesians.	 Frequentists	 assess
uncertainty	 with	 confidence	 intervals,	 whereas	 Bayesians	 calculate	 posterior
distributions	and	credible	intervals.	The	Bayesian	posterior	distribution	 tells	us
how	 likely	 specific	 parameter	 estimates	 are	 given	 the	 input	 data.	 The	 credible
interval	 indicates	 a	 range	 of	 values	 in	 which	 the	 parameter	 value	 is	 expected
with	 a	 given	 probability,	 as	 calculated	 from	 the	 posterior	 distribution.	 For
example,	a	95%	credible	interval	corresponds	to	the	center	95%	of	the	posterior
distribution.	 The	 true	 parameter	 value	 has	 a	 95%	 chance	 of	 lying	 in	 the	 95%
credible	interval.

If	you	are	not	a	statistician	you	may	be	surprised	by	my	definition	of	a	credible
interval.	You	may	have	thought	that	it	was	actually	the	definition	of	a	confidence
interval.	 It	 is	 not.	A	Bayesian	 credible	 interval	 tells	 you	 about	where	 the	 true
parameter	 likely	 is	 and	 a	 frequentist	 confidence	 interval	 tells	 you	 about	where
the	true	parameter	likely	not	is.	While	this	distinction	may	seem	like	semantics,
there	 are	 important	 conceptual	differences	between	 the	 two	approaches.	Under



the	 Bayesian	 approach,	 you	 use	 the	 data	 and	 your	 prior	 knowledge	 about	 the
system	under	study	(called	the	prior)	to	calculate	a	probability	distribution	(the
posterior)	that	tells	you	where	you	can	expect	the	true	parameter	value	to	lie.	By
contrast,	under	the	frequentist	approach,	you	first	make	an	assumption	that	you
intend	to	disprove.	This	assumption	is	called	the	null	hypothesis,	and	it	is	often
simply	the	assumption	that	the	parameter	equals	zero	(e.g.,	there	is	no	difference
between	 two	 conditions).	 You	 then	 calculate	 the	 probability	 that	 random
sampling	 would	 generate	 data	 similar	 to	 what	 was	 observed	 if	 the	 null
hypothesis	 were	 true.	 The	 confidence	 interval	 is	 a	 representation	 of	 this
probability.	If	a	given	confidence	interval	excludes	the	parameter	value	under	the
null	hypothesis	 (i.e.,	 the	value	zero),	 then	you	can	reject	 the	null	hypothesis	at
that	confidence	level.	Alternatively,	you	can	think	of	a	confidence	interval	as	an
interval	 that	 captures	 the	 true	 parameter	 value	 with	 the	 specified	 likelihood
under	repeated	sampling	(Figure	16.12).	Thus,	if	 the	true	parameter	value	were
zero,	a	95%	confidence	interval	would	only	exclude	zero	in	5%	of	the	samples
analyzed.



Figure	16.12:	Frequency	interpretation	of	a	confidence	interval.	Confidence
intervals	(CIs)	are	best	understood	in	the	context	of	repeated	sampling.	For	each

sample,	a	specific	confidence	interval	either	includes	or	excludes	the	true
parameter,	here	the	mean.	However,	if	we	sample	repeatedly,	then	the	confidence
intervals	(shown	here	are	68%	confidence	intervals,	corresponding	to	sample
mean	+/-	standard	error)	include	the	true	mean	approximately	68%	of	the	time.

To	 summarize,	 a	 Bayesian	 credible	 interval	 makes	 a	 statement	 about	 the	 true
parameter	value	and	a	 frequentist	 confidence	 interval	makes	a	 statement	 about
the	null	hypothesis.	In	practice,	however,	Bayesian	and	frequentist	estimates	are
often	quite	 similar	 (Figure	16.13).	Once	conceptual	 advantage	of	 the	Bayesian
approach	 is	 that	 it	 emphasizes	 thinking	 about	 the	 magnitude	 of	 an	 effect,
whereas	 the	 frequentist	 thinking	 emphasizes	 a	 binary	 perspective	 of	 an	 effect



either	existing	or	not.

(ref:bayes-vs-ols)	Comparison	of	 frequentist	confidence	 intervals	and	Bayesian
credible	intervals	for	mean	chocolate	ratings.	We	see	that	both	approaches	yield
similar	 but	 not	 exactly	 identical	 results.	 In	 particular,	 the	 Bayesian	 estimates
display	a	small	amount	of	shrinkage,	which	is	an	adjustment	of	the	most	extreme
parameter	estimates	towards	the	overall	mean.	(Note	how	the	Bayesian	estimate
for	Switzerland	is	slightly	moved	to	the	left	and	the	Bayesian	estimate	for	Peru	is
slightly	moved	to	the	right	relative	to	the	respective	frequentist	estimates.)	The
frequentist	 estimates	 and	 confidence	 intervals	 shown	 here	 are	 identical	 to	 the
results	for	95%	confidence	shown	in	Figure	16.7.

Figure	16.13:	(ref:bayes-vs-ols)

A	Bayesian	credible	interval	answers	the	question:	"Where	do	we	expect	the	true
parameter	value	to	lie?"	A	frequentist	confidence	interval	answers	the	question:
"How	certain	are	we	that	the	true	parameter	value	is	not	zero?"

The	 central	 goal	 of	Bayesian	 estimation	 is	 to	 obtain	 the	 posterior	 distribution.
Therefore,	 Bayesians	 commonly	 visualize	 the	 entire	 distribution	 rather	 than
simplifying	it	into	a	credible	interval.	In	terms	of	data	visualization,	therefore,	all



the	approaches	to	visualizing	distributions	discussed	in	Chapters	7,	8,	and	9	are
applicable.	 Specifically,	 histograms,	 density	 plots,	 boxplots,	 violins,	 and
ridgeline	 plots	 are	 all	 commonly	 used	 to	 visualize	 Bayesian	 posterior
distributions.	 Since	 these	 approaches	 have	 been	 discussed	 at	 length	 in	 their
specific	chapters,	 I	will	here	 show	only	one	example,	using	a	 ridgeline	plot	 to
show	Bayesian	posterior	distributions	of	mean	chocolate	ratings	(Figure	16.14).
In	 this	 specific	 case,	 I	have	added	 shading	under	 the	curve	 to	 indicate	defined
regions	 of	 posterior	 probabilities.	As	 alternative	 to	 shading,	 I	 could	 also	 have
drawn	quantile	dotplots,	or	I	could	have	added	graded	error	bars	underneath	each
distribution.	Ridgeline	plots	with	error	bars	underneath	are	called	half	eyes,	and
violin	plots	with	error	bars	are	called	eye	plots	(Chapter	5.6).

Figure	16.14:	Bayesian	posterior	distributions	of	mean	chocolate	bar	ratings,
shown	as	a	ridgeline	plot.	The	red	dots	represent	the	medians	of	each	posterior
distribution.	Because	it	is	difficult	to	convert	a	continuous	distribution	into
specific	confidence	regions	by	eye,	I	have	added	shading	under	each	curve	to

indicate	the	center	80%,	95%,	and	99%	of	each	posterior	distribution.

16.3	Visualizing	the	uncertainty	of	curve	fits



In	Chapter	14,	we	discussed	how	to	show	a	trend	in	a	dataset	by	fitting	a	straight
line	or	curve	 to	 the	data.	These	 trend	estimates	also	have	uncertainty,	and	 it	 is
customary	to	show	the	uncertainty	in	a	trend	line	with	a	confidence	band	(Figure
16.15).	The	confidence	band	provides	us	with	a	range	of	different	fit	 lines	 that
would	be	compatible	with	the	data.	When	students	encounter	a	confidence	band
for	 the	 first	 time,	 they	are	often	 surprised	 that	even	a	perfectly	 straight	 line	 fit
produces	a	confidence	band	that	 is	curved.	The	reason	for	 the	curvature	 is	 that
the	straight	line	fit	can	move	in	two	distinct	directions:	it	can	move	up	and	down
(i.e.,	have	different	 interepts),	and	 it	can	rotate	(i.e.,	have	different	slopes).	We
can	visually	show	how	the	confidence	band	arises	by	drawing	a	set	of	alternative
fit	lines	randomly	generated	from	the	posterior	distribution	of	the	fit	parameters.
This	is	done	in	Figure	16.16,	which	shows	15	randomly	chosen	alternative	fits.
We	 see	 that	 even	 though	 each	 line	 is	 perfectly	 straight,	 the	 combination	 of
different	slopes	and	intercepts	of	each	line	generates	an	overall	shape	that	looks
just	like	the	confidence	band.

Figure	16.15:	Head	length	versus	body	mass	for	male	blue	jays,	as	in	Figure
14.7.	The	straight	blue	line	represents	the	best	linear	fit	to	the	data,	and	the	gray

band	around	the	line	shows	the	uncertainty	in	the	linear	fit.	The	gray	band
represents	a	95%	confidence	level.	Data	source:	Keith	Tarvin,	Oberlin	College



Figure	16.16:	Head	length	versus	body	mass	for	male	blue	jays.	In	contrast	to
Figure	16.15,	the	straight	blue	lines	now	represent	equally	likely	alternative	fits
randomly	drawn	from	the	posterior	distribution.	Data	source:	Keith	Tarvin,

Oberlin	College

To	draw	a	confidence	band,	we	need	to	specify	a	confidence	level,	and	just	as	we
saw	 for	 error	 bars	 and	 posterior	 probabilities,	 it	 can	 be	 useful	 to	 highlight
different	 levels	 of	 confidence.	 This	 leads	 us	 to	 the	 graded	 confidence	 band,
which	 shows	 several	 confidence	 levels	 at	 once	 (Figure	 16.17).	 A	 graded
confidence	band	enhances	the	sense	of	uncertainty	in	the	reader,	and	it	forces	the
reader	to	confront	the	possibility	that	the	data	might	support	different	alternative
trend	lines.



Figure	16.17:	Head	length	versus	body	mass	for	male	blue	jays.	As	in	the	case	of
error	bars,	we	can	draw	graded	confidence	bands	to	highlight	the	uncertainty	in

the	estimate.	Data	source:	Keith	Tarvin,	Oberlin	College

We	can	also	draw	confidence	bands	 for	non-linear	 curve	 fits.	Such	confidence
bands	 look	 nice	 but	 can	 be	 difficult	 to	 interpret	 (Figure	 16.18).	 If	we	 look	 at
Figure	16.18a,	we	may	think	that	the	confidence	band	arises	by	moving	the	blue
line	up	and	down	and	maybe	deforming	 it	 slightly.	However,	as	Figure	16.18b
reveals,	the	confidence	band	represents	a	family	of	curves	that	are	all	quite	a	bit
more	wiggly	than	the	overall	best	fit	shown	in	part	(a).	This	is	a	general	principle
of	non-linear	curve	fits.	Uncertainty	corresponds	not	just	to	a	movement	of	the
curve	up	and	down	but	also	to	increased	wiggliness.



Figure	16.18:	Fuel	efficiency	versus	displacement,	for	32	cars	(1973–74
models).	Each	dot	represents	one	car,	and	the	smooth	lines	were	obtained	by
fitting	a	cubic	regression	spline	with	5	knots.	(a)	Best	fit	spline	and	confidence
band.	(b)	Equally	likely	alternative	fits	drawn	from	the	posterior	distribution.

Data	source:	Motor	Trend,	1974.

16.4	Hypothetical	outcome	plots

All	static	visualizations	of	uncertainty	suffer	from	the	problem	that	viewers	may
interpret	 some	aspect	of	 the	uncertainty	visualization	as	a	deterministic	 feature
of	 the	 data	 (deterministic	 construal	 error).	 We	 can	 avoid	 this	 problem	 by
visualizing	 uncertainty	 through	 animation,	 by	 cycling	 through	 a	 number	 of
different	 but	 equally	 likely	 plots.	 This	 kind	 of	 a	 visualization	 is	 called	 a
hypothetical	outcome	plot	 (Hullman,	Resnick,	 and	Adar	 2015)	 or	HOP.	While
HOPs	are	not	possible	 in	a	print	medium,	 they	can	be	very	effective	 in	online
settings	where	animated	visualizations	can	be	provided	 in	 the	 form	of	GIFs	or
MP4	videos.	HOPs	can	also	work	well	in	the	context	of	an	oral	presentation.

To	 illustrate	 the	 concept	 of	 a	 HOP,	 let's	 go	 back	 once	 more	 to	 chocolate	 bar
ratings.	When	you	are	standing	in	the	grocery	store	thinking	about	buying	some
chocolate,	you	probably	don't	care	about	 the	mean	flavor	 rating	and	associated
uncertainty	 for	 certain	 groups	 of	 chocolate	 bars.	 Instead,	 you	 might	 want	 to
know	 the	 answer	 to	 a	 simpler	 question,	 such	 as:	 If	 I	 randomly	 pick	 up	 a
Canadian	and	a	U.S.	manufactured	chocolate	bar,	which	one	of	the	two	should	I
expect	to	taste	better?	To	arrive	at	an	answer	to	this	question,	we	could	randomly
select	a	Canadian	and	a	U.S.	bar	from	the	dataset,	compare	their	ratings,	record
the	outcome,	and	then	repeat	this	process	many	times.	If	we	did	this,	we	would



find	 that	 in	 approximately	 53%	 of	 the	 cases	 the	 Canadian	 bar	 will	 be	 ranked
higher,	and	in	47%	of	the	cases	either	 the	U.S.	bar	 is	ranked	higher	or	 the	two
bars	are	 tied.	We	can	show	this	process	visually	by	cycling	between	several	of
these	 random	draws	and	showing	 the	 relative	 ranking	of	 the	 two	bars	 for	each
draw	(Figure	16.19/Figure	16.20).

Figure	16.19:	(for	print	edition)	Schematic	of	a	hypothetical	outcome	plot	for
chocolate	bar	ratings	of	Canadian	and	U.S.	manufactured	bars.	Each	vertical
green	bar	represents	the	rating	for	one	bar,	and	each	panel	shows	a	comparison
of	two	randomly	chosen	bars,	one	each	from	a	Canadian	manufacturer	and	a
U.S.	manufacturer.	In	an	actual	hypothetical	outcome	plot,	the	display	would
cycle	between	the	distinct	plot	panels	instead	of	showing	them	side-by-side.



Figure	16.20:	(for	online	edition)	Hypothetical	outcome	plot	for	chocolate	bar
ratings	of	Canadian	and	U.S.	manufactured	bars.	Each	vertical	green	bar

represents	the	rating	for	one	bar.	The	animation	cycles	through	different	cases	of
two	randomly	chosen	bars,	one	each	from	a	Canadian	manufacturer	and	a	U.S.

manufacturer.

As	a	second	example,	consider	 the	variation	in	shapes	among	equally	probable
trendlines	 in	 Figure	 16.18b.	 Because	 all	 trendlines	 are	 plotted	 on	 top	 of	 one
another,	 we	 primarily	 perceive	 the	 overall	 area	 that	 is	 covered	 by	 trendlines,
which	 is	 similar	 to	 the	 confidence	 band.	 Perceiving	 individual	 trendlines	 is
difficult.	 By	 turning	 this	 figure	 into	 a	 HOP,	 we	 can	 highlight	 individual
trendlines	one	at	a	time	(Figure	16.21/Figure	16.22).



Figure	16.21:	(for	print	edition)	Schematic	of	a	hypothetical	outcome	plot	for
fuel	efficiency	versus	displacement.	Each	dot	represents	one	car,	and	the	smooth
lines	were	obtained	by	fitting	a	cubic	regression	spline	with	5	knots.	Each	line	in

each	panel	represents	one	alternative	fit	outcome,	drawn	from	the	posterior
distribution	of	the	fit	parameters.	In	an	actual	hypothetical	outcome	plot,	the
display	would	cycle	between	the	distinct	plot	panels	instead	of	showing	them

side-by-side.



Figure	16.22:	(for	online	edition)	Hypothetical	outcome	plot	for	fuel	efficiency
versus	displacement.	Each	dot	represents	one	car,	and	the	smooth	lines	were

obtained	by	fitting	a	cubic	regression	spline	with	5	knots.	The	animation	cycles
through	different	alternative	fit	outcomes	drawn	from	the	posterior	distribution

of	the	fit	parameters.

When	 preparing	 a	HOP,	 you	may	wonder	whether	 it	 is	 better	 to	make	 a	 hard
switch	 between	 different	 outcomes	 (as	 in	 a	 slide	 projector)	 or	 rather	 smoothly
animate	from	one	outcome	to	the	next	(e.g.,	slowly	deform	the	trendline	for	one
outcome	until	 it	 looks	 like	 the	 trendline	 for	another	outcome).	While	 this	 is	 to
some	 extent	 an	 open	 question	 that	 continues	 to	 be	 researched,	 some	 evidence
indicates	that	smooth	transitions	make	it	harder	to	judge	about	the	probabilities
represented	(Kale	et	al.	2018).	If	you	consider	animating	between	outcomes,	you
may	want	 to	 at	 least	make	 these	 animations	very	 fast,	 or	 choose	 an	 animation
style	where	outcomes	fade	in	and	out	rather	than	deform	from	one	to	the	other.

There	is	one	critical	aspect	we	need	to	pay	attention	to	when	preparing	a	HOP:
We	need	 to	make	sure	 that	 the	outcomes	we	do	show	are	 representative	of	 the
true	 distribution	 of	 possible	 outcomes.	 Otherwise,	 our	 HOP	 could	 be	 rather
misleading.	 For	 example,	 going	 back	 to	 the	 case	 of	 chocolate	 ratings,	 if	 I
randomly	selected	ten	outcome	pairs	of	chocolate	bars	and	among	those	the	U.S.



bar	was	rated	higher	than	the	Canadian	bar	in	seven	cases,	then	the	HOP	would
erroneously	 create	 the	 impression	 that	 U.S.	 bars	 tend	 to	 be	 higher	 rated	 than
Canadian	bars.	We	can	prevent	this	issue	either	by	choosing	a	very	large	number
of	outcomes,	so	sampling	biases	are	unlikely,	or	by	verifying	in	some	form	that
the	outcomes	that	are	shown	are	appropriate.	When	making	Figure	16.19/Figure
16.20,	I	verified	that	the	number	of	times	the	Canadian	bar	was	shown	winning
was	close	to	the	true	percentage	of	53%.
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17	The	principle	of	proportional	ink
In	many	different	visualization	scenarios,	we	represent	data	values	by	the	extent
of	a	graphical	element.	For	example,	in	a	bar	plot,	we	draw	bars	that	begin	at	0
and	end	at	the	data	value	they	represent.	In	this	case,	the	data	value	is	not	only
encoded	in	the	end	point	of	the	bar	but	also	in	the	height	or	length	of	the	bar.	If
we	drew	a	bar	that	started	at	a	different	value	than	0,	then	the	length	of	the	bar
and	the	bar	endpoint	would	convey	contradicting	information.	Such	figures	are
internally	 inconsistent,	 because	 they	 show	 two	 different	 values	 with	 the	 same
graphical	element.	Contrast	this	to	a	scenario	where	we	visualize	the	data	value
with	a	dot.	In	this	case,	the	value	is	only	encoded	in	the	location	of	the	dot	but
not	in	the	size	or	shape	of	the	dot.

Similar	 issues	 will	 arise	 whenever	 we	 use	 graphical	 elements	 such	 as	 bars,
rectangles,	 shaded	 areas	 of	 arbitrary	 shape,	 or	 any	 other	 elements	 that	 have	 a
clear	visual	 extent	which	can	be	either	 consistent	or	 inconsistent	with	 the	data
value	 shown.	 In	 all	 these	 cases,	 we	 need	 to	 make	 sure	 that	 there	 is	 no
inconsistency.	 This	 concept	 has	 been	 termed	 by	 Bergstrom	 and	 West	 as	 the
principle	of	proportional	ink	(Bergstrom	and	West	2016):

The	 principle	 of	 proportional	 ink:	 The	 sizes	 of	 shaded	 areas	 in	 a
visualization	need	to	be	proportional	to	the	data	values	they	represent.

(It	 is	 common	 practice	 to	 use	 the	 word	 "ink"	 to	 refer	 to	 any	 part	 of	 a
visualization	that	deviates	from	the	background	color.	This	includes	lines,	points,
shared	areas,	and	 text.	 In	 this	chapter,	however,	we	are	 talking	primarily	about
shaded	areas.)	Violations	of	this	principle	are	quite	common,	in	particular	in	the
popular	press	and	in	the	world	of	finance.

17.1	Visualizations	along	linear	axes

We	first	consider	 the	most	common	scenario,	visualization	of	amounts	along	a
linear	scale.	Figure	17.1	shows	the	median	income	in	the	five	counties	that	make
up	the	state	of	Hawaii.	It	is	a	typical	figure	one	might	encounter	in	a	newspaper
article.	 A	 quick	 glance	 at	 the	 figure	 suggests	 that	 the	 county	 of	 Hawaii	 is
incredibly	 poor	 while	 the	 county	 of	 Honolulu	 is	 much	 richer	 than	 the	 other



counties.	 However,	 Figure	 17.1	 is	 quite	 misleading,	 because	 all	 bars	 begin	 at
$50,000	 median	 income.	 Thus,	 while	 the	 endpoint	 of	 each	 bar	 correctly
represents	the	actual	median	income	in	each	county,	the	bar	height	represents	the
extent	 to	 which	 median	 incomes	 exceed	 $50,000,	 an	 arbitrary	 number.	 And
human	 perception	 is	 such	 that	 the	 bar	 height	 is	 the	 key	 quantity	 we	 perceive
when	looking	at	this	figure,	not	the	location	of	the	bar	endpoint	relative	to	the	y
axis.

Figure	17.1:	Median	income	in	the	five	counties	of	the	state	of	Hawaii.	This
figure	is	misleading,	because	the	y	axis	scale	starts	at	$50,000	instead	of	$0.	As	a
result,	the	bar	heights	are	not	proportional	to	the	values	shown,	and	the	income
differential	between	the	county	of	Hawaii	and	the	other	four	counties	appears

much	bigger	than	it	actually	is.	Data	source:	2015	Five-Year	American
Community	Survey.

An	appropriate	visualization	of	these	data	makes	for	a	less	exciting	story	(Figure
17.2).	While	there	are	differences	in	median	income	between	the	counties,	they
are	nowhere	near	as	big	as	Figure	17.1	suggested.	Overall,	the	median	incomes
in	the	different	counties	are	somewhat	comparable.



Figure	17.2:	Median	income	in	the	five	counties	of	the	state	of	Hawaii.	Here,	the
y	axis	scale	starts	at	$0	and	therefore	the	relative	magnitudes	of	the	median

incomes	in	the	five	counties	are	accurately	shown.	Data	source:	2015	Five-Year
American	Community	Survey.

Bars	on	a	linear	scale	should	always	start	at	0.

Similar	 visualization	 problems	 frequently	 arise	 in	 the	 visualization	 of	 time
series,	such	as	those	of	stock	prices.	Figure	17.3	suggests	a	massive	collapse	in
the	stock	price	of	Facebook	occurred	around	Nov.	1,	2016.	In	reality,	 the	price
decline	was	moderate	relative	to	the	total	price	of	the	stock	(Figure	17.4).	The	y-
axis	 range	 in	 Figure	 17.3	 would	 be	 questionable	 even	 without	 the	 shading
undearneath	 the	 curve.	 But	 with	 the	 shading,	 the	 figure	 becomes	 particularly
problematic.	The	shading	emphasizes	the	distance	from	the	location	of	the	x	axis
to	the	specific	y	values	shown,	and	thus	it	creates	the	visual	impression	that	the
height	of	 the	shaded	area	at	a	given	day	represents	 the	stock	price	of	 that	day.
Instead,	it	only	represents	the	difference	in	stock	price	from	the	baseline,	which
is	$110	in	Figure	17.3.



Figure	17.3:	Stock	price	of	Facebook	(FB)	from	Oct.	22,	2016	to	Jan.	21,	2017.
This	figure	seems	to	imply	that	the	Facebook	stock	price	collapsed	around	Nov.
1,	2016.	However,	this	is	misleading,	because	the	y	axis	starts	at	$110	instead	of

$0.

Figure	17.4:	Stock	price	of	Facebook	(FB)	from	Oct.	22,	2016	to	Jan.	21,	2017.



By	showing	the	stock	price	on	a	y	scale	from	$0	to	$150,	this	figure	more
accurately	relays	the	magnitude	of	the	FB	price	drop	around	Nov.	1,	2016.

The	 examples	 of	 Figures	 17.2	 and	 Figure	 17.4	 could	 suggest	 that	 bars	 and
shaded	areas	are	not	useful	 to	represent	small	changes	over	time	or	differences
between	conditions,	since	we	always	have	to	draw	the	whole	bar	or	area	starting
from	0.	However,	this	is	not	the	case.	It	is	perfectly	valid	to	use	bars	or	shaded
areas	 to	 show	 differences	 between	 conditions,	 as	 long	 as	 we	make	 it	 explicit
which	differences	we	are	showing.	For	example,	we	can	use	bars	to	visualize	the
change	in	median	income	in	Hawaiian	counties	from	2010	to	2015	(Figure	17.5).
For	 all	 counties	 except	 Kalawao,	 this	 change	 amounts	 to	 less	 than	 $5000.
(Kalawao	 is	 an	 unusual	 county,	 with	 fewer	 than	 100	 inhabitants,	 and	 it	 can
experience	 large	 swings	 in	 median	 income	 from	 a	 small	 number	 of	 people
moving	 into	 or	 out	 of	 the	 county.)	 And	 for	 Hawaii	 County,	 the	 change	 is
negative,	 i.e.,	 the	median	 income	 in	 2015	was	 lower	 than	 it	was	 in	 2010.	We
represent	negative	values	by	drawing	bars	that	go	in	the	opposite	direction,	i.e.,
that	extend	from	0	down	rather	than	up.

Figure	17.5:	Change	in	median	income	in	Hawaiian	counties	from	2010	to	2015.
Data	source:	2010	and	2015	Five-Year	American	Community	Surveys.

Similarly,	 we	 can	 draw	 the	 change	 in	 Facebook	 stock	 price	 over	 time	 as	 the
difference	 from	 its	 temporary	 high	 point	 on	 Oct.	 22,	 2016	 (Figure	 17.6).	 By



shading	 an	 area	 that	 represents	 the	 distance	 from	 the	 high	 point,	 we	 are
accurately	representing	the	absolute	magnitude	of	the	price	drop	without	making
any	implicit	statement	about	the	magnitude	of	the	price	drop	relative	to	the	total
stock	price.

Figure	17.6:	Loss	in	Facebook	(FB)	stock	price	relative	to	the	price	of	Oct.	22,
2016.	Between	Nov.	1,	2016	and	Jan.	1,	2017,	the	price	remained	approximately

$15	lower	than	it	was	at	its	high	point	on	Oct.	22,	2016.	But	then	the	price
started	to	recover	in	Jan.	2017.

17.2	Visualizations	along	logarithmic	axes

When	we	are	visualizing	data	along	a	linear	scale,	the	areas	of	bars,	rectangles,
or	other	shapes	are	automatically	proportional	to	the	data	values.	The	same	is	not
true	 if	 we	 are	 using	 a	 logarithmic	 scale,	 because	 data	 values	 are	 not	 linearly
spaced	along	the	axis.	Therefore,	one	could	argue	that,	for	example,	bar	graphs
on	a	log	scale	are	inherently	flawed.	On	the	flip	side,	the	area	of	each	bar	will	be
proportional	to	the	logarithm	of	the	data	value,	and	thus	bar	graphs	on	a	log	scale
satisfy	 the	 principle	 of	 proportional	 ink	 in	 log-transformed	 coordinates.	 In
practice,	I	think	neither	of	these	two	arguments	can	resolve	whether	log-scale	bar
graphs	 are	 appropriate.	 Instead,	 the	 relevant	 question	 is	 whether	 we	 want	 to
visualize	amounts	or	ratios.



In	Chapter	3,	 I	have	explained	 that	a	 log	 scale	 is	 the	natural	 scale	 to	visualize
ratios,	because	a	unit	step	along	a	log	scale	corresponds	to	multiplication	with	or
division	by	a	constant	factor.	In	practice,	however,	log	scales	are	often	used	not
specifically	 to	visualize	 ratios	but	 rather	 just	because	 the	numbers	 shown	vary
over	 many	 orders	 of	 magnitude.	 As	 an	 example,	 consider	 the	 gross	 domestic
products	(GDPs)	of	countries	in	Oceania.	In	2007,	these	varied	from	less	than	a
billion	U.S.	 dollars	 (USD)	 to	 over	 300	 billion	USD	 (Figure	 17.7).	Visualizing
these	numbers	on	a	linear	scale	would	not	work,	because	the	two	countries	with
the	largest	GDPs	(New	Zealand	and	Australia)	would	dominate	the	figure.

Figure	17.7:	GDP	in	2007	of	countries	in	Oceania.	The	lengths	of	the	bars	do	not
accurately	reflect	the	data	values	shown,	since	bars	start	at	the	arbitrary	value	of

0.3	billion	USD.	Data	source:	Gapminder.

However,	the	visualization	with	bars	on	a	log	scale	(Figure	17.7)	does	not	work
either.	The	bars	start	at	an	arbitrary	value	of	0.3	billion	USD,	and	at	a	minimum
the	figure	suffers	from	the	same	problem	of	Figure	17.1,	that	the	bar	lengths	are
not	 representative	 of	 the	 data	 values.	 The	 added	 difficulty	 with	 a	 log	 scale,
though,	is	that	we	cannot	simply	let	the	bars	start	at	0.	In	Figure	17.7,	the	value	0
would	lie	 infinitely	far	 to	 the	 left.	Therefore,	we	could	make	our	bars	arbitrary
long	by	pushing	 their	origin	further	and	further	way,	see	e.g.	Figure	17.8.	This
problem	always	arises	when	we	try	to	visualize	amounts	(which	is	what	the	GDP
values	are)	on	a	log	scale.



Figure	17.8:	GDP	in	2007	of	countries	in	Oceania.	The	lengths	of	the	bars	do	not
accurately	reflect	the	data	values	shown,	since	bars	start	at	the	arbitrary	value	of

10-9	billion	USD.	Data	source:	Gapminder.

For	the	data	of	Figure	17.7,	I	think	bars	are	inappropriate.	Instead,	we	can	simply
place	 a	 dot	 at	 the	 appropriate	 location	 along	 the	 scale	 for	 each	 country's	GDP
and	 avoid	 the	 issue	 of	 bar	 lengths	 altogether	 (Figure	 17.9).	 Importantly,	 by
placing	the	country	names	right	next	to	the	dots	rather	than	along	the	y	axis,	we
avoid	generating	the	visual	perception	of	a	magnitude	conveyed	by	the	distance
from	the	country	name	to	the	dot.

Figure	17.9:	GDP	in	2007	of	countries	in	Oceania.	Data	source:	Gapminder.



If	we	want	to	visualize	ratios	rather	than	amounts,	however,	bars	on	a	log	scale
are	 a	 perfectly	 good	 option.	 In	 fact,	 they	 are	 preferable	 over	 bars	 on	 a	 linear
scale	in	that	case.	As	an	example,	let's	visualize	the	GDP	values	of	countries	in
Oceania	relative	to	the	GDP	of	Papua	New	Guinea.	The	resulting	figure	does	a
good	 job	 highlighting	 the	 key	 relationships	 between	 the	 GDPs	 of	 the	 various
countries	(Figure	17.10).	We	can	see	that	New	Zealand	has	over	eight	times	the
GDP	of	Papua	New	Guinea	 and	Australia	over	64	 times,	while	Tonga	and	 the
Federated	States	of	Micronesia	have	less	than	one-sixteenth	of	the	GDP	of	Papua
New	Guinea.	French	Polynesia	and	New	Caledonia	are	close	but	have	a	slightly
smaller	GDPs	than	Papua	New	Guinea	does.

Figure	17.10:	GDP	in	2007	of	countries	in	Oceania,	relative	to	the	GDP	of	Papua
New	Guinea.	Data	source:	Gapminder.

Figure	17.10	also	highlights	 that	 the	natural	midpoint	of	 a	 log	 scale	 is	1,	with
bars	representing	numbers	above	1	going	in	one	direction	and	bars	representing
numbers	below	one	going	 in	 the	other	direction.	Bars	on	 a	 log	 scale	 represent
ratios	and	must	always	start	at	1,	and	bars	on	a	 linear	 scale	 represent	amounts
and	must	always	start	at	0.

When	bars	are	drawn	on	a	log	scale,	they	represent	ratios	and	need	to	be	drawn
starting	from	1,	not	0.

17.3	Direct	area	visualizations



All	preceding	examples	visualized	data	along	one	 linear	dimension,	so	 that	 the
data	value	was	encoded	both	by	area	and	by	 location	along	 the	x	or	y	 axis.	 In
these	cases,	we	can	consider	the	area	encoding	as	incidental	and	secondary	to	the
location	 encoding	 of	 the	 data	 value.	 Other	 visualization	 approaches,	 however,
represent	 the	data	value	primarily	or	directly	by	area,	without	 a	 corresponding
location	mapping.	The	most	common	one	 is	 the	pie	chart	 (Figure	17.11).	Even
though	 technically	 the	 data	 values	 are	 mapped	 onto	 angles,	 which	 are
represented	 by	 location	 along	 a	 circular	 axis,	 in	 practice	 we	 are	 typically	 not
judging	the	angles	of	a	pie	chart.	Instead,	the	dominant	visual	property	we	notice
is	the	size	of	the	areas	of	each	pie	wedge.

Figure	17.11:	Number	of	inhabitants	in	Rhode	Island	counties,	shown	as	a	pie
chart.	Both	the	angle	and	the	area	of	each	pie	wedge	are	proportional	to	the
number	of	inhabitants	in	the	respective	county.	Data	source:	2010	Decennial

U.S.	Census.

Because	 the	 area	 of	 each	 pie	 wedge	 is	 proportional	 to	 its	 angle	 which	 is
proportional	 to	 the	 data	 value	 the	 wedge	 represents,	 pie	 charts	 satisfy	 the
principle	 of	 proportional	 ink.	 However,	 we	 perceive	 the	 area	 in	 a	 pie	 chart
differently	 from	 the	 same	 area	 in	 a	 bar	 plot.	 The	 fundamental	 reason	 is	 that
human	perception	primarily	judges	distances	and	not	areas.	Thus,	if	a	data	value
is	 encoded	 entirely	 as	 a	 distance,	 as	 is	 the	 case	 with	 the	 length	 of	 a	 bar,	 we
perceive	 it	 more	 accurately	 than	 when	 the	 data	 value	 is	 encoded	 through	 a



combination	 of	 two	 or	 more	 distances	 that	 jointly	 create	 an	 area.	 To	 see	 this
difference,	compare	Figure	17.11	to	Figure	17.12,	which	shows	the	same	data	as
bars.	 The	 difference	 in	 the	 number	 of	 inhabitants	 between	 Providence	County
and	the	other	counties	appears	larger	in	Figure	17.12	than	in	Figure	17.11.

Figure	17.12:	Number	of	inhabitants	in	Rhode	Island	counties,	shown	as	bars.
The	length	of	each	bar	is	proportional	to	the	number	of	inhabitants	in	the

respective	county.	Data	source:	2010	Decennial	U.S.	Census.

The	problem	that	human	perception	is	better	at	judging	distances	than	at	judging
areas	also	arises	in	treemaps	(Figure	17.13),	which	can	be	thought	of	as	a	square
versions	of	pie	charts.	Again,	in	comparison	to	Figure	17.12,	the	differences	in
the	number	of	inhabitants	among	the	counties	appears	less	pronounced	in	Figure
17.13.



Figure	17.13:	Number	of	inhabitants	in	Rhode	Island	counties,	shown	as	a
treemap.	The	area	of	each	rectangle	is	proportional	to	the	number	of	inhabitants

in	the	respective	county.	Data	source:	2010	Decennial	U.S.	Census.
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18	Handling	overlapping	points
When	we	want	to	visualize	large	or	very	large	datasets,	we	often	experience	the
challenge	 that	 simple	 x--y	 scatter	 plots	 do	 not	 work	 very	 well	 because	 many
points	 lie	 on	 top	 of	 each	 other	 and	 partially	 or	 fully	 overlap.	 And	 similar
problems	can	arise	even	in	small	datasets	if	data	values	were	recorded	with	low
precision	 or	 rounded,	 such	 that	 multiple	 observations	 have	 exactly	 the	 same
numeric	values.	The	technical	term	commonly	used	to	describe	this	situation	is
"overplotting",	 i.e.,	 plotting	many	points	 on	 top	of	 each	other.	Here	 I	 describe
several	strategies	you	can	pursue	when	encountering	this	challenge.

18.1	Partial	transparency	and	jittering

We	first	consider	a	scenario	with	only	a	moderate	number	of	data	points	but	with
extensive	rounding.	Our	dataset	contains	 fuel	economy	during	city	driving	and
engine	 displacement	 for	 234	 popular	 car	 models	 released	 between	 1999	 and
2008	(Figure	18.1).	In	this	dataset,	fuel	economy	is	measured	in	miles	per	gallon
(mpg)	 and	 is	 rounded	 to	 the	 nearest	 integer	 value.	 Engine	 displacement	 is
measured	in	 liters	and	is	rounded	to	 the	nearest	deciliter.	Due	to	 this	rounding,
many	car	models	have	exactly	 identical	values.	For	example,	 there	are	21	cars
total	 with	 2.0	 liter	 engine	 displacement,	 and	 as	 a	 group	 they	 have	 only	 four
different	fuel	economy	values,	19,	20,	21,	or	22	mpg.	Therefore,	in	Figure	18.1
these	21	cars	are	represented	by	only	four	distinct	points,	so	that	2.0	liter	engines
appear	much	less	popular	than	they	actually	are.	Moreover,	the	dataset	contains
two	four-wheel	drive	cars	with	2.0	liter	engines,	which	are	represented	by	black
dots.	 However,	 these	 black	 dots	 are	 fully	 occluded	 by	 yellow	 dots,	 so	 that	 it
looks	like	there	are	no	four-wheel	drive	cars	with	a	2.0	liter	engine.

(ref:mpg-cty-displ-solid)	 City	 fuel	 economy	 versus	 engine	 displacement,	 for
popular	cars	released	between	1999	and	2008.	Each	point	represents	one	car.	The
point	color	encodes	 the	drive	 train:	 front-wheel	drive	 (FWD),	 rear-wheel	drive
(RWD),	or	four-wheel	drive	(4WD).	The	figure	 is	 labeled	"bad"	because	many
points	are	plotted	on	top	of	others	and	obscure	them.



Figure	18.1:	(ref:mpg-cty-displ-solid)

One	way	 to	ameliorate	 this	problem	 is	 to	use	partial	 transparency.	 If	we	make
individual	points	partially	 transparent,	 then	overplotted	points	appear	as	darker
points	 and	 thus	 the	 shade	 of	 the	 points	 reflects	 the	 density	 of	 points	 in	 that
location	of	the	graph	(Figure	18.2).

(ref:mpg-cty-displ-transp)	 City	 fuel	 economy	 versus	 engine	 displacement.
Because	 points	 have	 been	made	 partially	 transparent,	 points	 that	 lie	 on	 top	 of
other	points	can	now	be	identified	by	their	darker	shade.



Figure	18.2:	(ref:mpg-cty-displ-transp)

However,	making	points	partially	transparent	is	not	always	sufficient	to	solve	the
issue	of	overplotting.	For	example,	even	though	we	can	see	in	Figure	18.2	 that
some	points	have	a	darker	shade	than	others,	it	is	difficult	to	estimate	how	many
points	were	plotted	on	top	of	each	other	in	each	location.	In	addition,	while	the
differences	in	shading	are	clearly	visible,	they	are	not	self-explanatory.	A	reader
who	 sees	 this	 figure	 for	 the	 first	 time	will	 likely	wonder	why	 some	points	 are
darker	than	others	and	will	not	realize	that	those	points	are	in	fact	multiple	points
stacked	on	top	of	each	other.	A	simple	trick	that	helps	in	this	situation	is	to	apply
a	small	amount	of	jitter	to	the	points,	i.e.,	to	displace	each	point	randomly	by	a
small	 amount	 in	 either	 the	 x	 or	 the	 y	 direction	 or	 both.	 With	 jitter,	 it	 is
immediately	apparent	that	the	darker	areas	arise	from	points	that	are	plotted	on
top	 of	 each	 other	 (Figure	 18.3).	 Also,	 now,	 for	 the	 first	 time	 the	 black	 dots
representing	four-wheel	drive	cars	with	2.0	liter	engines	are	clearly	visible.



Figure	18.3:	City	fuel	economy	versus	engine	displacement.	By	adding	a	small
amount	of	jitter	to	each	point,	we	can	make	the	overplotted	points	more	clearly

visible	without	substantially	distorting	the	message	of	the	plot.

One	downside	of	jittering	is	that	it	does	change	the	data	and	therefore	has	to	be
performed	with	care.	If	we	jitter	too	much,	we	end	up	placing	points	in	locations
that	are	not	 representative	of	 the	underlying	dataset.	The	result	 is	a	misleading
visualization	of	the	data.	See	Figure	18.4	as	an	example.



Figure	18.4:	City	fuel	economy	versus	engine	displacement.	By	adding	too	much
jitter	to	the	points,	we	have	created	a	visualization	that	does	not	accurately

reflect	the	underlying	dataset.

18.2	2D	histograms

When	the	number	of	individual	points	gets	very	large,	partial	transparency	(with
or	without	jittering)	will	not	be	sufficient	to	resolve	the	overplotting	issue.	What
will	typically	happen	is	that	areas	with	high	point	density	will	appear	as	uniform
blobs	of	dark	color	while	 in	areas	with	 low	point	density	 the	 individual	points
are	 barely	 visible	 (Figure	 18.5).	 And	 changing	 the	 transparency	 level	 of
individual	points	will	either	ameliorate	one	or	the	other	of	these	problems	while
worsening	the	other;	no	transparency	setting	can	address	both	at	the	same	time.



Figure	18.5:	Departure	delay	in	minutes	versus	the	flight	departure	time,	for	all
flights	departing	Newark	airport	(EWR)	in	2013.	Each	dot	represents	one

departure.

Figure	 18.5	 shows	 departure	 delays	 for	 over	 100,000	 individual	 flights,	 with
each	 dot	 representing	 one	 flight	 departure.	 Even	 though	 we	 have	 made	 the
individual	dots	fairly	 transparent,	 the	majority	of	 them	just	 forms	a	black	band
between	0	 and	300	minutes	departure	delay.	This	band	obscures	whether	most
flights	depart	approximately	on	time	or	with	substantial	delay	(say	50	minutes	or
more).	At	the	same	time,	the	most	delayed	flights	(with	delays	of	400	minutes	or
more)	are	barely	visible	due	to	the	transparency	of	the	dots.

In	such	cases,	instead	of	plotting	individual	points,	we	can	make	a	2D	histogram.
A	 2D	 histogram	 is	 conceptually	 similar	 to	 a	 1D	 histogram	 as	 discussed	 in
Chapter	7,	but	now	we	bin	the	data	in	two	dimensions.	We	subdivide	the	entire
x--y	plane	into	small	rectangles,	count	how	many	observations	fall	into	each	one,
and	then	color	the	rectangles	by	that	count.	Figure	18.6	shows	the	result	of	this
approach	 for	 the	 departure-delay	 data.	 This	 visualization	 clearly	 highlights
several	important	features	of	the	flight-departure	data.	First,	the	vast	majority	of



departures	during	 the	day	(6am	to	about	9pm)	actually	depart	without	delay	or
even	 early	 (negative	 delay).	 However,	 a	 modest	 number	 of	 departures	 has	 a
substantial	 delay.	Moreover,	 the	 later	 a	plane	departs	 in	 the	day	 the	more	of	 a
delay	it	can	have.	Importantly,	the	departure	time	is	the	actual	time	of	departure,
not	 the	 scheduled	 time	of	departure.	So	 this	 figure	does	not	necessarily	 tell	us
that	planes	scheduled	to	depart	early	never	experience	delay.	What	it	does	tell	us,
though,	 is	 that	 if	 a	plane	departs	 early	 it	 either	has	 little	delay	or,	 in	very	 rare
cases,	a	delay	of	around	900	minutes.

Figure	18.6:	Departure	delay	in	minutes	versus	the	flight	departure	time.	Each
colored	rectangle	represents	all	flights	departing	at	that	time	with	that	departure
delay.	Coloring	represents	the	number	of	flights	represented	by	that	rectangle.

As	 an	 alternative	 to	 binning	 the	 data	 into	 rectangle,	 we	 can	 also	 bin	 into
hexagons.	This	approach,	first	proposed	by	Carr	et	al.	(1987),	has	the	advantage
that	 the	points	 in	a	hexagon	are,	on	average,	closer	 to	 the	hexagon	center	 than
the	points	in	an	equal-area	square	are	to	the	center	of	the	square.	Therefore,	the
colored	 hexagon	 represents	 the	 data	 slightly	more	 accurately	 than	 the	 colored
rectangle	does.	Figure	18.7	shows	the	flight	departure	data	with	hexagon	binning



rather	than	rectangular	binning.

Figure	18.7:	Departure	delay	in	minutes	versus	the	flight	departure	time.	Each
colored	hexagon	represents	all	flights	departing	at	that	time	with	that	departure
delay.	Coloring	represents	the	number	of	flights	represented	by	that	hexagon.

18.3	Contour	lines

Instead	of	binning	data	points	into	rectangles	or	hexagons,	we	can	also	estimate
the	 point	 density	 across	 the	 plot	 area	 and	 indicate	 regions	 of	 different	 point
densities	with	contour	 lines.	This	 technique	works	well	when	 the	point	density
changes	slowly	across	both	the	x	and	the	y	dimensions.

As	an	example	for	this	approach,	we	return	to	the	blue	jays	dataset	from	Chapter
12.	Figure	12.1	showed	the	relationship	between	head	length	and	body	mass	for
123	blue	jays,	and	there	was	some	amount	of	overlap	among	the	points.	We	can
highlight	 the	 distribution	 of	 points	more	 clearly	 by	making	 the	 points	 smaller
and	partially	transparent	and	plotting	them	on	top	of	contour	lines	that	delineate
regions	 of	 similar	 point	 density	 (Figure	 18.8).	 We	 can	 further	 enhance	 the



perception	of	changes	in	the	point	density	by	shading	the	regions	enclosed	by	the
contour	lines,	using	darker	colors	for	regions	representing	higher	point	densities
(Figure	18.9).

Figure	18.8:	Head	length	versus	body	mass	for	123	blue	jays,	as	in	Figure	12.1.
Each	dot	corresponds	to	one	bird,	and	the	lines	indicate	regions	of	similar	point
density.	The	point	density	increases	towards	the	center	of	the	plot,	near	a	body
mass	of	75g	and	a	head	length	between	55mm	and	57.5mm.	Data	source:	Keith

Tarvin,	Oberlin	College



Figure	18.9:	Head	length	versus	body	mass	for	123	blue	jays.	This	figure	is
nearly	identical	to	Figure	12.1,	but	now	the	areas	enclosed	by	the	contour	lines
are	shaded	with	increasingly	darker	shades	of	gray.	This	shading	creates	a

stronger	visual	impression	of	increasing	point	density	towards	the	center	of	the
point	cloud.	Data	source:	Keith	Tarvin,	Oberlin	College

In	Chapter	12,	we	also	looked	at	the	relationship	between	head	length	and	body
mass	 separately	 for	male	 and	 female	birds	 (Figure	12.2).	We	 can	 do	 the	 same
with	 contour	 lines,	 by	 drawing	 separately	 colored	 contour	 lines	 for	 male	 and
female	birds	(Figure	18.10).



Figure	18.10:	Head	length	versus	body	mass	for	123	blue	jays.	As	in	Figure
12.2,	we	can	also	indicate	the	birds'	sex	by	color	when	drawing	contour	lines.

This	figure	highlights	how	the	point	distribution	is	different	for	male	and	female
birds.	In	particular,	male	birds	are	more	densely	clustered	in	one	region	of	the
plot	area	whereas	female	birds	are	more	spread	out.	Data	source:	Keith	Tarvin,

Oberlin	College

Drawing	 multiple	 sets	 of	 contour	 lines	 in	 different	 colors	 can	 be	 a	 powerful
strategy	for	showing	the	distributions	of	several	point	clouds	at	once.	However,
this	technique	needs	to	be	employed	with	care.	It	only	works	when	the	number
of	groups	with	distinct	colors	is	small	(two	to	three)	and	the	groups	are	clearly
separated.	Otherwise,	we	may	end	up	with	a	hairball	of	differently	colored	lines
all	crisscrossing	each	other	and	not	showing	any	particular	pattern	at	all.

To	 illustrate	 this	potential	problem,	 I	will	 employ	 the	diamonds	dataset,	which
contains	information	for	53,940	diamonds,	including	their	price,	weight	(carat),
and	cut.	Figure	18.11	shows	this	dataset	as	a	scatter	plot.	We	see	clear	problems
with	 overplotting.	 There	 are	 so	 many	 different-colored	 points	 on	 top	 of	 one
another	that	it	is	impossible	to	discern	anything	beyond	the	overall	broad	outline



of	where	diamonds	fall	on	the	price--carat	spectrum.

Figure	18.11:	Price	of	diamonds	versus	their	carat	value,	for	53,940	individual
diamonds.	Each	diamond's	cut	is	indicated	by	color.	The	plot	is	labeled	as	"bad"
because	the	extensive	overplotting	makes	it	impossible	to	discern	any	patterns
among	the	different	diamond	cuts.	Data	source:	Hadley	Wickham,	ggplot2

We	could	try	to	draw	colored	contour	lines	for	the	different	qualities	of	cut,	as	in
Figure	18.10.	However,	in	the	diamonds	dataset,	we	have	five	distinct	colors	and
the	 groups	 strongly	 overlap.	 Therefore,	 the	 contour	 plot	 (Figure	 18.12)	 is	 not
much	better	than	the	original	scatter	plot	(Figure	18.11).



Figure	18.12:	Price	of	diamonds	versus	their	carat	value.	As	Figure	18.11,	but
now	individual	points	have	been	replaced	by	contour	lines.	The	resulting	plot	is
still	labeled	"bad",	because	the	contour	lines	all	lie	on	top	of	each	other.	Neither
the	point	distribution	for	individual	cuts	nor	the	overall	point	distribution	can	be

discerned.	Data	source:	Hadley	Wickham,	ggplot2

What	helps	here	is	to	draw	the	contour	lines	for	each	cut	quality	in	its	own	plot
panel	(Figure	18.13).	The	purpose	of	drawing	them	all	in	one	panel	might	be	to
enable	visual	comparison	between	the	groups,	but	Figure	18.12	is	so	busy	that	a
comparison	isn't	possible.	Instead,	in	Figure	18.13,	the	background	grid	enables
us	 to	 make	 comparisons	 across	 cut	 qualities,	 by	 paying	 attention	 to	 where
exactly	 the	 contour	 lines	 fall	 relative	 to	 the	 grid	 lines.	 (A	 similar	 effect	 could
have	been	achieved	by	plotting	partially	transparent	individual	points	instead	of
contour	lines	in	each	panel.)



Figure	18.13:	Price	of	diamonds	versus	their	carat	value.	Here,	we	have	taken
the	density	contours	from	Figure	18.12	and	drawn	them	separately	for	each	cut.
We	can	now	see	that	better	cuts	(very	good,	premium,	ideal)	tend	to	have	lower
carat	values	than	the	poorer	cuts	(fair,	good)	but	command	a	higher	price	per

carat.	Data	source:	Hadley	Wickham,	ggplot2

We	can	make	out	 two	main	 trends.	First,	 the	better	 cuts	 (very	good,	premium,
ideal)	 tend	 to	have	 lower	 carat	values	 than	 the	poorer	 cuts	 (fair,	 good).	Recall
that	carat	is	a	measure	of	diamond	weight	(1	carat	=	0.2	gram).	Better	cuts	tend
to	 result	 (on	 average)	 in	 lighter	 diamonds	 because	more	material	 needs	 to	 be
removed	 to	 create	 them.	 Second,	 at	 the	 same	 carat	 value,	 better	 cuts	 tend	 to
command	 higher	 prices.	 To	 see	 this	 pattern,	 look	 for	 example	 at	 the	 price
distribution	for	0.5	carat.	The	distribution	is	shifted	upwards	for	better	cuts,	and
in	 particular	 it	 is	 substantially	 higher	 for	 diamonds	 with	 ideal	 cut	 than	 for
diamonds	with	fair	or	good	cut.
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19	Common	pitfalls	of	color	use
Color	can	be	an	 incredibly	effective	 tool	 to	enhance	data	visualizations.	At	 the
same	 time,	 poor	 color	 choices	 can	 ruin	 an	 otherwise	 excellent	 visualization.
Color	needs	 to	be	applied	 to	serve	a	purpose,	 it	must	be	clear,	and	 it	must	not
distract.

19.1	Encoding	too	much	or	irrelevant	information

One	common	mistake	is	trying	to	give	color	a	job	that	is	too	big	for	it	to	handle,
by	 encoding	 too	 many	 different	 items	 in	 different	 colors.	 As	 an	 example,
consider	Figure	19.1.	It	shows	population	growth	versus	population	size	for	all
50	U.S.	 states	 and	 the	District	 of	Columbia.	 I	 have	 attempted	 to	 identify	 each
state	 by	 giving	 it	 its	 own	 color.	 However,	 the	 result	 is	 not	 very	 useful.	 Even
though	we	can	guess	which	state	is	which	by	looking	at	the	colored	points	in	the
plot	and	in	 the	legend,	 it	 takes	a	 lot	of	effort	 to	go	back	and	forth	between	the
two	 to	 try	 to	match	 them	up.	There	 are	 simply	 too	many	different	 colors,	 and
many	of	them	are	quite	similar	to	each	other.	Even	if	with	a	lot	of	effort	we	can
figure	out	exactly	which	state	is	which,	this	visualization	defeats	the	purpose	of
coloring.	We	should	use	color	to	enhance	figures	and	make	them	easier	to	read,
not	to	obscure	the	data	by	creating	visual	puzzles.



Figure	19.1:	Population	growth	from	2000	to	2010	versus	population	size	in
2000,	for	all	50	U.S.	states	and	the	Discrict	of	Columbia.	Every	state	is	marked
in	a	different	color.	Because	there	are	so	many	states,	it	is	very	difficult	to	match
the	colors	in	the	legend	to	the	dots	in	the	scatter	plot.	Data	source:	U.S.	Census

Bureau

As	 a	 rule	 of	 thumb,	 qualitative	 color	 scales	work	best	when	 there	 are	 three	 to



five	 different	 categories	 that	 need	 to	 be	 colored.	 Once	 we	 reach	 eight	 to	 ten
different	categories	or	more,	 the	task	of	matching	colors	to	categories	becomes
too	burdensome	to	be	useful,	even	if	the	colors	remain	sufficiently	different	to	be
distinguishable	in	principle.	For	the	dataset	of	Figure	19.1,	it	is	probably	best	to
use	 color	 only	 to	 indicate	 the	 geographic	 region	 of	 each	 state	 and	 to	 identify
individual	 states	 by	 direct	 labeling,	 i.e.,	 by	 placing	 appropriate	 text	 labels
adjacent	 to	 the	 data	 points	 (Figure	 19.2).	 Even	 though	 we	 cannot	 label	 every
individual	 state	 without	 making	 the	 figure	 too	 crowded,	 direct	 labeling	 is	 the
right	choice	for	this	figure.	In	general,	for	figures	such	as	this	one,	we	don't	need
to	 label	every	single	data	point.	 It	 is	 sufficient	 to	 label	a	 representative	subset,
for	example	a	set	of	states	we	specifically	want	 to	call	out	 in	 the	 text	 that	will
accompany	the	figure.	We	always	have	the	option	to	also	provide	the	underlying
data	as	a	table	if	we	want	to	make	sure	the	reader	has	access	to	it	in	its	entirety.

Figure	19.2:	Population	growth	from	2000	to	2010	versus	population	size	in
2000.	In	contrast	to	Figure	19.1,	I	have	now	colored	states	by	region	and	have

directly	labeled	a	subset	of	states.	The	majority	of	states	have	been	left	unlabeled
to	keep	the	figure	from	overcrowding.	Data	source:	U.S.	Census	Bureau

Use	direct	labeling	instead	of	colors	when	you	need	to	distinguish	between	more
than	about	eight	categorical	items.



A	second	common	problem	is	coloring	for	the	sake	of	coloring,	without	having	a
clear	 purpose	 for	 the	 colors.	As	 an	 example,	 consider	 Figure	 19.3,	which	 is	 a
variation	of	Figure	4.2.	However,	now	instead	of	coloring	the	bars	by	geographic
regions,	I	have	given	each	bar	its	own	color,	so	that	in	aggregate	the	bars	create	a
rainbow	 effect.	 This	 may	 look	 like	 an	 interesting	 visual	 effect,	 but	 it	 is	 not
creating	any	new	insight	into	the	data	or	making	the	figure	easier	to	read.

Figure	19.3:	Population	growth	in	the	U.S.	from	2000	to	2010.	The	rainbow



coloring	of	states	serves	no	purpose	and	is	distracting.	Furthermore,	the	colors
are	overly	saturated.	Data	source:	U.S.	Census	Bureau

Besides	 the	 gratuitous	 use	 of	 different	 colors,	 Figure	 19.3	 has	 a	 second	 color-
related	 problem:	 The	 chosen	 colors	 are	 too	 saturated	 and	 intense.	 This	 color
intensity	makes	the	figure	difficult	to	look	at.	For	example,	it	is	difficult	to	read
the	 names	 of	 the	 states	 without	 having	 our	 eyes	 drawn	 to	 the	 large,	 strongly
colored	areas	 right	next	 to	 the	state	names.	Similarly,	 it	 is	difficult	 to	compare
the	endpoints	of	the	bars	to	the	underlying	grid	lines.

Avoid	large	filled	areas	of	overly	saturated	colors.	They	make	it	difficult	for	your
reader	to	carefully	inspect	your	figure.

19.2	Using	non-monotonic	color	scales	to	encode	data
values

In	Chapter	4,	I	listed	two	critical	conditions	for	designing	sequential	color	scales
that	 can	 represent	 data	 values:	 The	 colors	 need	 to	 clearly	 indicate	which	 data
values	are	larger	or	smaller	than	which	other	ones,	and	the	differences	between
colors	 need	 to	 visualize	 the	 corresponding	 differences	 between	 data	 values.
Unfortunately,	 several	 existing	 color	 scales---including	 very	 popular	 ones---
violate	 one	 or	 both	 of	 these	 conditions.	 The	 most	 popular	 such	 scale	 is	 the
rainbow	 scale	 (Figure	 19.4).	 It	 runs	 through	 all	 possible	 colors	 in	 the	 color
spectrum.	This	means	the	scale	is	effectively	circular;	the	colors	at	the	beginning
and	 the	end	are	nearly	 the	 same	 (dark	 red).	 If	 these	 two	colors	end	up	next	 to
each	other	in	a	plot,	we	do	not	instinctively	perceive	them	as	representing	data
values	that	are	maximally	apart.	In	addition,	the	scale	is	highly	non-monotonic.
It	has	regions	where	colors	change	very	slowly	and	others	when	colors	change
rapidly.	This	 lack	of	monotonicity	becomes	particularly	 apparent	 if	we	 look	at
the	color	scale	in	grayscale	(Figure	19.4).	The	scale	goes	from	medium	dark	to
light	to	very	dark	and	back	to	medium	dark,	and	there	are	large	stretches	where
lightness	 changes	very	 little	 followed	by	 relatively	narrow	stretches	with	 large
changes	in	lightness.



Figure	19.4:	The	rainbow	colorscale	is	highly	non-monotonic.	This	becomes
clearly	visible	by	converting	the	colors	to	gray	values.	From	left	to	right,	the
scale	goes	from	moderately	dark	to	light	to	very	dark	and	back	to	moderately
dark.	In	addition,	the	changes	in	lightness	are	very	non-uniform.	The	lightest

part	of	the	scale	(corresponding	to	the	colors	yellow,	light	green,	and	cyan)	takes
up	almost	a	third	of	the	entire	scale	while	the	darkest	part	(corresponding	to	dark

blue)	is	concentrated	in	a	narrow	region	of	the	scale.

In	a	visualization	of	actual	data,	the	rainbow	scale	tends	to	obscure	data	features
and/or	 highlight	 arbitrary	 aspects	 of	 the	 data	 (Figure	 19.5).	 As	 an	 aside,	 the
colors	in	the	rainbow	scale	are	also	overly	saturated.	Looking	at	Figure	19.5	for
any	extended	period	of	time	can	be	quite	uncomfortable.



Figure	19.5:	Percentage	of	people	identifying	as	white	in	Texas	counties.	The
rainbow	color	scale	is	not	an	appropriate	scale	to	visualize	continuous	data

values,	because	it	tends	to	place	emphasis	on	arbitrary	features	of	the	data.	Here,
it	emphasizes	counties	in	which	approximately	75%	of	the	population	identify	as

white.	Data	source:	2010	Decennial	U.S.	Census

19.3	Not	designing	for	color-vision	deficiency

Whenever	we	are	choosing	colors	for	a	visualization,	we	need	to	keep	in	mind
that	 a	 good	 proportion	 of	 our	 readers	 may	 have	 some	 form	 of	 color-vision
deficiency	 (i.e.,	 are	 colorblind).	 These	 readers	may	 not	 be	 able	 to	 distinguish
colors	 that	 look	 clearly	 different	 to	 most	 other	 people.	 People	 with	 impaired
color	vision	are	not	literally	unable	to	see	any	colors,	however.	Instead,	they	will
typically	have	difficulty	 to	distinguish	certain	 types	of	 colors,	 for	 example	 red
and	green	 (red--green	 color-vision	deficiency)	or	 blue	 and	green	 (blue--yellow
color-vision	 deficiency).	 The	 technical	 terms	 for	 these	 deficiencies	 are
deuteranomaly/deuteranopia	 and	 protanomaly/protanopia	 for	 the	 red--green
variant	 (where	 people	 have	 difficulty	 perceiving	 either	 green	 or	 red,



respectively)	 and	 tritanomaly/tritanopia	 for	 the	 blue--yellow	 variant	 (where
people	have	difficulty	perceiving	blue).	The	terms	ending	in	"anomaly"	refer	to
some	impairment	in	the	perception	of	the	respective	color,	and	the	terms	ending
in	"anopia"	refer	to	complete	absence	of	perception	of	that	color.	Approximately
8%	 of	 males	 and	 0.5%	 of	 females	 suffer	 from	 some	 sort	 of	 color-vision
deficiency,	and	deuteranomaly	is	the	most	common	form	whereas	tritanomaly	is
relatively	rare.

As	discussed	in	Chapter	4,	there	are	three	fundamental	types	of	color	scales	used
in	data	visualization:	 sequential	 scales,	diverging	scales,	and	qualitative	scales.
Of	 these	 three,	 sequential	 scales	 will	 generally	 not	 cause	 any	 problems	 for
people	with	color-vision	deficiency	 (cvd),	 since	a	properly	designed	sequential
scale	should	present	a	continuous	gradient	from	dark	to	light	colors.	Figure	19.6
shows	 the	Heat	 scale	 from	Figure	4.3	 in	 simulated	versions	of	deuteranomaly,
protanomaly,	 and	 tritanomaly.	While	 none	 of	 these	 cvd-simulated	 scales	 look
like	the	original,	they	all	present	a	clear	gradient	from	dark	to	light	and	they	all
work	well	to	convey	the	magnitude	of	a	data	value.

Figure	19.6:	Color-vision	deficiency	(cvd)	simulation	of	the	sequential	color
scale	Heat,	which	runs	from	dark	red	to	light	yellow.	From	left	to	right	and	top	to
bottom,	we	see	the	original	scale	and	the	scale	as	seen	under	deuteranomaly,

protanomaly,	and	tritanomaly	simulations.	Even	though	the	specific	colors	look
different	under	the	three	types	of	cvd,	in	each	case	we	can	see	a	clear	gradient

from	dark	to	light.	Therefore,	this	color	scale	is	safe	to	use	for	cvd.

Things	 become	more	 complicated	 for	 diverging	 scales,	 because	 popular	 color
contrasts	 can	 become	 indistinguishable	 under	 cvd.	 In	 particular,	 the	 colors	 red
and	 green	 provide	 about	 the	 strongest	 contrast	 for	 people	 with	 normal	 color
vision	 but	 become	 nearly	 indistinguishable	 for	 deutans	 (people	 with
deuteranomaly)	 or	 protans	 (people	with	 protanomaly)	 (Figure	 19.7).	 Similarly,



blue-green	 contrasts	 are	 visible	 for	 deutans	 and	 protans	 but	 become
indistinguishable	for	tritans	(people	with	tritanomaly)	(Figure	19.8).

Figure	19.7:	A	red--green	contrast	becomes	indistinguishable	under	red--green
cvd	(deuteranomaly	or	protanomaly).

Figure	19.8:	A	blue--green	contrast	becomes	indistinguishable	under	blue--
yellow	cvd	(tritanomaly).

With	 these	 examples,	 it	 might	 seem	 that	 it	 is	 nearly	 impossible	 to	 find	 two
contrasting	colors	that	are	safe	under	all	forms	of	cvd.	However,	the	situation	is
not	that	dire.	It	is	often	possible	to	make	slight	modifications	to	the	colors	such
that	they	have	the	desired	character	while	also	being	safe	for	cvd.	For	example,
the	ColorBrewer	PiYG	(pink	to	yellow-green)	scale	from	Figure	4.5	looks	red--
green	to	people	with	normal	color	vision	yet	remains	distinguishable	for	people
with	cvd	(Figure	19.9).



Figure	19.9:	The	ColorBrewer	PiYG	(pink	to	yellow-green)	scale	from	Figure
4.5	looks	like	a	red--green	contrast	to	people	with	regular	color	vision	but	works
for	all	forms	of	color-vision	deficiency.	It	works	because	the	reddish	color	is
actually	pink	(a	mix	of	red	and	blue)	while	the	greenish	color	also	contains
yellow.	The	difference	in	the	blue	component	between	the	two	colors	can	be
picked	up	even	by	deutans	or	protans,	and	the	difference	in	the	red	component

can	be	picked	up	by	tritans.

Things	are	most	complicated	for	qualitative	scales,	because	there	we	need	many
different	colors	and	they	all	need	to	be	distinguishable	from	each	other	under	all
forms	 of	 cvd.	 My	 preferred	 qualitative	 color	 scale,	 which	 I	 use	 extensively
throughout	 this	 book,	 was	 developed	 specifically	 to	 address	 this	 challenge
(Figure	19.10).	By	providing	eight	different	colors,	the	palette	works	for	nearly
any	scenario	with	discrete	colors.	As	discussed	at	the	beginning	of	this	chapter,
you	 should	 probably	 not	 color-code	 more	 than	 eight	 different	 items	 in	 a	 plot
anyways.

Figure	19.10:	Qualitative	color	palette	for	all	color-vision	deficiencies	(Okabe
and	Ito	2008).	The	alphanumeric	codes	represent	the	colors	in	RGB	space,
encoded	as	hexadecimals.	In	many	plot	libraries	and	image-manipulation

programs,	you	can	just	enter	these	codes	directly.	If	your	software	does	not	take
hexadecimals	directly,	you	can	also	use	the	values	in	Table	19.1.

Table	19.1:	Colorblind-friendly	color	scale,	developed	by	Okabe	and	Ito
(2008).



Name Hex	code Hue C,	M,	Y,	K	(%) R,	G,	B	(0-255) R,	G,	B	(%)
orange #E69F00 41° 0,	50,	100,	0 230,	159,	0 90,	60,	0
sky	blue #56B4E9 202° 80,	0,	0,	0 86,	180,	233 35,	70,	90
bluish	green #009E73 164° 97,	0,	75,	0 0,	158,	115 0,	60,	50
yellow #F0E442 56° 10,	5,	90,	0 240,	228,	66 95,	90,	25
blue #0072B2 202° 100,	50,	0,	0 0,	114,	178 0,	45,	70
vermilion #D55E00 27° 0,	80,	100,	0 213,	94,	0 80,	40,	0
reddish	purple #CC79A7 326° 10,	70,	0,	0 204,	121,	167 80,	60,	70
black #000000 - 0,	0,	0,	100 0,	0,	0 0,	0,	0

While	there	are	several	good,	cvd-safe	color	scales	readily	available,	we	need	to
recognize	 that	 they	 are	 no	magic	 bullets.	 It	 is	 very	 possible	 to	 use	 a	 cvd-safe
scale	and	yet	produce	a	 figure	a	person	with	cvd	cannot	decipher.	One	critical
parameter	is	the	size	of	the	colored	graphical	elements.	Colors	are	much	easier	to
distinguish	when	they	are	applied	to	large	areas	than	to	small	ones	or	thin	lines
(Stone,	Albers	Szafir,	and	Setlur	2014).	And	this	effect	is	exacerbated	under	cvd
(Figure	19.11).	 In	addition	 to	 the	various	color-design	considerations	discussed
in	this	chapter	and	in	Chapter	4,	 I	 recommend	 to	view	color	 figures	under	cvd
simulations	 to	 get	 a	 sense	 of	what	 they	may	 look	 like	 for	 a	 person	with	 cvd.
There	are	several	online	services	and	desktop	apps	available	that	allow	users	to
run	arbitrary	figures	through	a	cvd	simulation.



Figure	19.11:	Colored	elements	become	difficult	to	distinguish	at	small	sizes.
The	top	left	panel	(labeled	"original")	shows	four	rectangles,	four	thick	lines,

four	thin	lines,	and	four	groups	of	points,	all	colored	in	the	same	four	colors.	We
can	see	that	the	colors	become	more	difficult	to	distinguish	the	smaller	or	thinner

the	visual	elements	are.	This	problem	becomes	exacerbated	in	the	cvd
simulations,	where	the	colors	are	already	more	difficult	to	distinguish	even	for

the	large	graphical	elements.

To	make	sure	your	figures	work	for	people	with	cvd,	don't	just	rely	on	specific
color	scales.	Instead,	test	your	figures	in	a	cvd	simulator.
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20	Redundant	coding
In	Chapter	 19,	 we	 have	 seen	 that	 color	 cannot	 always	 convey	 information	 as
effectively	 as	 we	 might	 wish.	 If	 we	 have	 many	 different	 items	 we	 want	 to
identify,	doing	so	by	color	may	not	work.	It	will	be	difficult	to	match	the	colors
in	the	plot	to	the	colors	in	the	legend	(Figure	19.1).	And	even	if	we	only	need	to
distinguish	 two	 to	 three	different	 items,	color	may	 fail	 if	 the	colored	 items	are
very	 small	 (Figure	 19.11)	 and/or	 the	 colors	 look	 similar	 for	 people	 suffering
from	color-vision	deficiency	(Figures	19.7	and	19.8).	The	general	solution	in	all
these	 scenarios	 is	 to	 use	 color	 to	 enhance	 the	 visual	 appearance	 of	 the	 figure
without	relying	entirely	on	color	to	convey	key	information.	I	refer	to	this	design
principle	as	redundant	coding,	because	it	prompts	us	to	encode	data	redundantly,
using	multiple	different	aesthetic	dimensions.

20.1	Designing	legends	with	redundant	coding

Scatter	 plots	 of	 several	 groups	 of	 data	 are	 frequently	 designed	 such	 that	 the
points	 representing	 different	 groups	 differ	 only	 in	 their	 color.	As	 an	 example,
consider	 Figure	 20.1,	which	 shows	 the	 sepal	width	 versus	 the	 sepal	 length	 of
three	different	 Iris	 species.	 (Sepals	 are	 the	 outer	 leafs	 of	 flowers	 in	 flowering
plants.)	 The	 points	 representing	 the	 different	 species	 differ	 in	 their	 colors,	 but
otherwise	all	points	look	exactly	the	same.	Even	though	this	figure	contains	only
three	distinct	groups	of	points,	it	is	difficult	to	read	even	for	people	with	normal
color	vision.	The	problem	arises	because	the	data	points	for	the	two	species	Iris
virginica	and	Iris	versicolor	 intermingle,	and	 their	 two	respective	colors,	green
and	blue,	are	not	particularly	distinct	from	each	other.



Figure	20.1:	Sepal	width	versus	sepal	length	for	three	different	iris	species	(Iris
setosa,	Iris	virginica,	and	Iris	versicolor).	Each	point	represents	the

measurements	for	one	plant	sample.	A	small	amount	of	jitter	has	been	applied	to
all	point	positions	to	prevent	overplotting.	The	figure	is	labeled	"bad"	because
the	virginica	points	in	green	and	the	versicolor	points	in	blue	are	difficult	to

distinguish	from	each	other.

Surprisingly,	the	green	and	blue	points	look	more	distinct	for	people	with	red--
green	 color-vision-deficiency	 (deuteranomaly	 or	 protanomaly)	 than	 for	 people
with	normal	color	vision	(compare	Figure	20.2,	top	row,	to	Figure	20.1).	On	the
other	hand,	 for	people	with	blue--yellow	deficiency	 (tritanomaly)	 the	blue	 and
green	points	look	very	similar	(Figure	20.2,	bottom	left).	And	if	we	print	out	the
figure	in	gray-scale	(i.e.,	we	desaturate	the	figure),	we	cannot	distinguish	any	of
the	iris	species	(Figure	20.2,	bottom	right).



Figure	20.2:	Color-vision-deficiency	simulation	of	Figure	20.1.

There	 are	 two	 simple	 improvements	 we	 can	 make	 to	 Figure	 20.1	 to	 alleviate
these	 issues.	 First,	 we	 can	 swap	 the	 colors	 used	 for	 Iris	 setosa	 and	 Iris
versicolor,	so	that	the	blue	is	no	longer	directly	next	to	the	green	(Figure	20.3).
Second,	 we	 can	 use	 three	 different	 symbol	 shapes,	 so	 that	 the	 points	 all	 look
different.	With	these	two	changes,	both	the	original	version	of	the	figure	(Figure
20.3)	 and	 the	 versions	 under	 color-vision-deficiency	 and	 in	 grayscale	 (Figure
20.4)	become	legible.



Figure	20.3:	Sepal	width	versus	sepal	length	for	three	different	iris	species.
Compared	to	Figure	20.1,	we	have	swapped	the	colors	for	Iris	setosa	and	Iris

versicolor	and	we	have	given	each	iris	species	its	own	point	shape.



Figure	20.4:	Color-vision-deficiency	simulation	of	Figure	20.3.	Because	of	the
use	of	different	point	shapes,	even	the	fully	desaturated	gray-scale	version	of	the

figure	is	legible.

Changing	 the	 point	 shape	 is	 a	 simple	 strategy	 for	 scatter	 plots	 but	 it	 doesn't
necessarily	work	for	other	types	of	plots.	In	line	plots,	we	could	change	the	line
type	(solid,	dashed,	dotted,	etc.,	see	also	Figure	2.1),	but	using	dashed	or	dotted
lines	often	yields	sub-optimal	results.	In	particular,	dashed	or	dotted	lines	usually
don't	 look	good	unless	 they	are	perfectly	straight	or	only	gently	curved,	and	in
either	 case	 they	 create	 visual	 noise.	 Also,	 it	 frequently	 requires	 significant
mental	effort	to	match	different	types	of	dash	or	dot--dash	patterns	from	the	plot
to	the	legend.	So	what	do	we	do	with	a	visualization	such	as	Figure	20.5,	which
uses	 lines	 to	show	the	change	 in	stock	price	over	 time	for	 four	different	major
tech	companies?

Figure	20.5:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	This
figure	is	labeled	as	"bad"	because	it	takes	considerable	mental	energy	to	match
the	company	names	in	the	legend	to	the	data	curves.	Data	source:	Yahoo	Finance

The	figure	contains	four	lines	representing	the	stock	prices	of	the	four	different
companies.	The	lines	are	color	coded	using	a	colorblind-friendly	color	scale.	So
it	 should	 be	 relatively	 straightfoward	 to	 associate	 each	 line	 with	 the



corresponding	 company.	Yet	 it	 is	 not.	 The	 problem	 here	 is	 that	 the	 data	 lines
have	a	clear	visual	order.	The	yellow	line,	representing	Facebook,	is	clearly	the
highest	 line,	 and	 the	black	 line,	 representing	Apple,	 is	 clearly	 the	 lowest,	with
Alphabet	 and	 Microsoft	 in	 between,	 in	 that	 order.	 Yet	 the	 order	 of	 the	 four
companies	 in	 the	 legend	 is	 Alphabet,	 Apple,	 Facebook,	Microsoft	 (alphabetic
order).	Thus,	 the	perceived	order	of	 the	data	 lines	differs	from	the	order	of	 the
companies	 in	 the	 legend,	 and	 it	 takes	 a	 surprising	 amount	 of	mental	 effort	 to
match	data	lines	with	company	names.

This	 problem	 arises	 commonly	 with	 plotting	 software	 that	 autogenerates
legends.	The	plotting	software	has	no	concept	of	the	visual	order	the	viewer	will
perceive.	 Instead,	 the	 software	 sorts	 the	 legend	 by	 some	 other	 order,	 most
commonly	 alphabetical.	 We	 can	 fix	 this	 problem	 by	 manually	 reordering	 the
entries	 in	 the	 legend	 so	 they	match	 the	 preceived	 ordering	 in	 the	 data	 (Figure
20.6).	The	result	is	a	figure	that	makes	it	much	easier	to	match	the	legend	to	the
data.

Figure	20.6:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	Data

source:	Yahoo	Finance

If	 there	 is	 a	 clear	 visual	 ordering	 in	 your	 data,	 make	 sure	 to	 match	 it	 in	 the
legend.



Matching	 the	 legend	order	 to	 the	data	order	 is	always	helpful,	but	 the	benefits
are	particularly	obvious	under	color-vision	deficiency	simulation	(Figure	20.7).
For	example,	it	helps	in	the	tritanomaly	version	of	the	figure,	where	the	blue	and
the	green	become	difficult	to	distinguish	(Figure	20.7,	bottom	left).	It	also	helps
in	the	grayscale	version	(Figure	20.7,	bottom	right).	Even	though	the	two	colors
for	Facebook	and	Alphabet	have	virtually	the	same	gray	value,	we	can	see	that
Microsoft	and	Apple	are	represented	by	darker	colors	and	take	 the	bottom	two
spots.	 Therefore,	 we	 correctly	 assume	 that	 the	 highest	 line	 corresponds	 to
Facebook	and	the	second-highest	line	to	Alphabet.

Figure	20.7:	Color-vision-deficiency	simulation	of	Figure	20.6.

20.2	Designing	figures	without	legends

Even	though	legend	legibility	can	be	improved	by	encoding	data	redundantly,	in
multiple	aesthetics,	legends	always	put	an	extra	mental	burden	on	the	reader.	In
reading	 a	 legend,	 the	 reader	 needs	 to	 pick	 up	 information	 in	 one	 part	 of	 the
visualization	and	then	transfer	it	over	to	a	different	part.	We	can	typically	make
our	 readers'	 lives	 easier	 if	we	 eliminate	 the	 legend	 altogether.	 Eliminating	 the



legend	 does	 not	 mean,	 however,	 that	 we	 simply	 not	 provide	 one	 and	 instead
write	sentences	such	as	"The	yellow	dots	represent	Iris	versicolor"	in	the	figure
caption.	Eliminating	 the	 legend	means	 that	we	design	 the	figure	 in	such	a	way
that	 it	 is	 immediately	 obvious	 what	 the	 various	 graphical	 elements	 represent,
even	if	no	explicit	legend	is	present.

The	general	strategy	we	can	employ	is	called	direct	labeling,	whereby	we	place
appropriate	 text	 labels	 or	 other	 visual	 elements	 that	 serve	 as	 guideposts	 to	 the
rest	of	the	figure.	We	have	previously	encountered	direct	labeling	in	Chapter	19
(Figure	19.2),	as	an	alternative	to	drawing	a	legend	with	over	50	distinct	colors.
To	apply	the	direct	labeling	concept	to	the	stock-price	figure,	we	place	the	name
of	each	company	right	next	to	the	end	of	its	respective	data	line	(Figure	20.8).

Figure	20.8:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	Data

source:	Yahoo	Finance

Whenever	possible,	design	your	figures	so	they	don't	need	a	legend.

We	can	also	apply	the	direct	labeling	concept	to	the	iris	data	from	the	beginning
of	 this	 chapter,	 specifically	 Figure	 20.3.	 Because	 it	 is	 a	 scatter	 plot	 of	 many
points	that	separate	into	three	different	groups,	we	need	to	direct	label	the	groups
rather	than	the	individual	points.	One	solution	is	to	draw	ellipses	that	enclose	the



majority	of	the	points	and	then	label	the	ellipses	(Figure	20.9).

Figure	20.9:	Sepal	width	versus	sepal	length	for	three	different	iris	species.	I
have	removed	the	background	grid	from	this	figure	because	otherwise	the	figure

was	becoming	too	busy.

For	density	plots,	we	can	similarly	direct-label	the	curves	rather	than	providing	a
color-coded	 legend	 (Figure	 20.10).	 In	 both	 Figures	 20.9	 and	 20.10,	 I	 have
colored	the	text	labels	in	the	same	colors	as	the	data.	Colored	labels	can	greatly
enhance	the	direct	labeling	effect,	but	they	can	also	turn	out	very	poorly.	If	the
text	labels	are	printed	in	a	color	that	is	too	light,	then	the	labels	become	difficult
to	read.	And,	because	text	consists	of	very	thin	lines,	colored	text	often	appears
to	 be	 lighter	 than	 an	 adjacent	 filled	 area	 of	 the	 same	 color.	 I	 generally
circumvent	these	issues	by	using	two	different	shades	of	each	color,	a	light	one
for	 filled	 areas	 and	 a	 dark	 one	 for	 lines,	 outlines,	 and	 text.	 If	 you	 carefully
inspect	Figure	20.9	or	20.10,	you	will	see	how	each	data	point	or	shaded	area	is
filled	with	a	light	color	and	has	an	outline	drawn	in	a	darker	color	of	the	same
hue.	And	the	text	labels	are	drawn	in	the	same	darker	colors.



Figure	20.10:	Density	estimates	of	the	sepal	lengths	of	three	different	iris
species.	Each	density	estimate	is	directly	labeled	with	the	respective	species

name.

We	 can	 also	 use	 density	 plots	 such	 as	 the	 one	 in	 Figure	 20.10	 as	 a	 legend
replacement,	 by	 placing	 the	 density	 plots	 into	 the	 margins	 of	 a	 scatter	 plot
(Figure	20.11).	This	 allows	 us	 to	 direct-label	 the	marginal	 density	 plots	 rather
than	 the	central	 scatter	plot	and	hence	 results	 in	a	 figure	 that	 is	 somewhat	 less
cluttered	than	Figure	20.9	with	directly-labeled	ellipses.



Figure	20.11:	Sepal	width	versus	sepal	length	for	three	different	iris	species,	with
marginal	density	estimates	of	each	variable	for	each	species.

And	 finally,	 whenever	 we	 encode	 a	 single	 variable	 in	 multiple	 aesthetics,	 we
don't	 normally	 want	 multiple	 separate	 legends	 for	 the	 different	 aesthetics.
Instead,	there	should	be	only	a	single	legend-like	visual	element	that	conveys	all
mappings	at	once.	In	the	case	where	we	map	the	same	variable	onto	a	position
along	a	major	axis	and	onto	color,	this	implies	that	the	reference	color	bar	should
run	along	and	be	integrated	into	the	same	axis.	Figure	20.12	shows	a	case	where
we	map	temperature	to	both	a	position	along	the	x	axis	and	onto	color,	and	where
we	therefore	have	integrated	the	color	legend	into	the	x	axis.



Figure	20.12:	Temperatures	in	Lincoln,	Nebraska,	in	2016.	This	figure	is	a
variation	of	Figure	9.9.	Temperature	is	now	shown	both	by	location	along	the	x
axis	and	by	color,	and	a	color	bar	along	the	x	axis	visualizes	the	scale	that

converts	temperatures	into	colors.



21	Multi-panel	figures
When	 datasets	 become	 large	 and	 complex,	 they	 often	 contain	 much	 more
information	than	can	reasonably	be	shown	in	a	single	figure	panel.	To	visualize
such	datasets,	 it	 can	be	helpful	 to	create	multi-panel	 figures.	These	are	 figures
that	consist	of	multiple	figure	panels	where	each	one	shows	some	subset	of	the
data.	 There	 are	 two	 distinct	 categories	 of	 such	 figures:	 1.	 Small	multiples	 are
plots	consisting	of	multiple	panels	arranged	in	a	regular	grid.	Each	panel	shows	a
different	subset	of	 the	data	but	all	panels	use	the	same	type	of	visualization.	2.
Compound	 figures	 consist	 of	 separate	 figure	 panels	 assembled	 in	 an	 arbitrary
arrangement	 (which	 may	 or	 may	 not	 be	 grid	 based)	 and	 showing	 entirely
different	visualizations,	or	possibly	even	different	datasets.

We	 have	 encountered	 both	 types	 of	 multi-panel	 figures	 in	 many	 places
throughout	 this	book.	In	general,	 these	figures	are	intuitive	and	straightforward
to	 interpret.	However,	when	 preparing	 such	 figures,	 there	 are	 a	 few	 issues	we
need	 to	 pay	 attention	 to,	 such	 as	 appropriate	 axis	 scaling,	 alignment,	 and
consistency	between	separate	panels.

21.1	Small	multiples

The	term	"small	multiple"	was	popularized	by	Tufte	(1990).	An	alternative	term,
"trellis	plot",	was	popularized	around	the	same	time	by	Cleveland,	Becker,	and
colleagues	 at	 Bell	 Labs	 (W.	 S.	 Cleveland	 1993;	 Becker,	 Cleveland,	 and	 Shyu
1996).	 Regardless	 of	 terminology,	 the	 key	 idea	 is	 to	 slice	 the	 data	 into	 parts
according	 to	one	or	more	data	dimensions,	visualize	each	data	slice	separately,
and	 then	 arrange	 the	 individual	 visualizations	 into	 a	 grid.	 Columns,	 rows,	 or
individual	panels	in	the	grid	are	labeled	by	the	values	of	the	data	dimensions	that
define	the	data	slices.	More	recently,	this	technique	is	also	sometimes	referred	to
as	"faceting",	named	after	the	methods	that	create	such	plots	in	the	widely	used
ggplot2	plot	library	(e.g.,	facet_grid(),	see	Wickham	(2016)).

As	 a	 first	 example,	 we	 will	 apply	 this	 technique	 to	 the	 dataset	 of	 Titanic
passengers.	We	can	subdivide	this	dataset	by	the	class	in	which	each	passenger
travelled	and	by	whether	a	passenger	survived	or	not.	Within	each	of	 these	six
slices	of	data,	there	are	both	male	and	female	passengers,	and	we	can	visualize



their	numbers	using	bars.	The	 result	 is	 six	bar	plots,	which	we	arrange	 in	 two
columns	(one	for	passengers	who	died	and	one	for	those	who	survived)	of	three
rows	(one	for	each	class)	(Figure	21.1).	The	columns	and	rows	are	labeled,	so	it
is	immediately	clear	which	of	the	six	plots	corresponds	to	which	combination	of
survival	status	and	class.

Figure	21.1:	Breakdown	of	passengers	on	the	Titanic	by	gender,	survival,	and
class	in	which	they	traveled	(1st,	2nd,	or	3rd).

This	visualization	provides	an	intuitive	and	highly	interpretable	visualization	of
the	fate	of	 the	Titanic	passengers.	We	see	clearly	that	most	men	died	and	most
women	 survived.	 Further,	 and	 among	 the	 women	 who	 died	 nearly	 all	 were
traveling	in	3rd	class.

Small	multiples	 are	 a	 powerful	 tool	 to	 visualize	 very	 large	 amounts	 of	 data	 at
once.	Figure	21.1	uses	 six	 separate	panels,	but	we	can	use	many	more.	Figure
21.2	 shows	 the	 relationship	 between	 the	 average	 ranking	 of	 a	 movie	 on	 the
Internet	 Movie	 Database	 (IMDB)	 and	 the	 number	 of	 votes	 the	 movie	 has
received,	separately	for	movies	released	over	a	100	year	time	period.	Here,	 the
dataset	 is	 sliced	by	only	one	dimension,	 the	year,	and	panels	 for	each	year	are
arranged	 in	 rows	 from	 top	 left	 to	 bottom	 right.	 This	 visualization	 shows	 that
there	 is	 an	 overall	 relationship	 between	 average	 ranking	 and	 number	 of	 votes,
such	 that	movies	with	more	 votes	 tend	 to	 have	 higher	 rankings.	However,	 the



strength	of	this	trend	varies	with	year,	and	for	movies	released	in	the	early	2000s
there	is	no	relationship	or	even	a	negative	one.

Figure	21.2:	Average	movie	rankings	versus	number	of	votes,	for	movies	from
1906	to	2005.	Dots	represent	individual	movies,	and	lines	represent	the	linear
regression	of	the	average	ranking	of	each	movie	versus	the	logarithm	of	the
number	of	votes	the	movie	has	received.	In	most	years,	movies	with	a	higher

number	of	votes	have,	on	average,	a	higher	average	ranking.	However,	this	trend
has	weakend	towards	the	end	of	the	20th	century,	and	a	negative	relationship	can
be	seen	for	movies	released	in	the	early	2000s.	Data	Source:	Internet	Movie



Database	(IMDB,	http://imdb.com/)

For	such	large	plots	 to	be	easily	understandable,	 it	 is	 important	 that	each	panel
uses	the	same	axis	ranges	and	scalings.	The	human	mind	expects	this	to	be	the
case.	When	it	is	not,	there	is	a	good	chance	that	a	reader	will	mis-interpret	what
the	 figure	 shows.	 For	 example,	 consider	 Figure	 21.3,	 which	 presents	 how	 the
proportion	of	Bachelor's	degrees	in	different	degree	areas	has	changed	over	time.
The	figure	shows	the	nine	degree	areas	that	have	represented,	on	average,	more
than	4%	of	all	degrees	between	1971	to	2015.	The	y	axis	of	panel	is	scaled	such
that	 the	 curve	 for	 each	 degree	 field	 covers	 the	 entire	 y-axis	 range.	 As	 a
consequence,	a	cursory	examination	of	Figure	21.3	suggests	that	the	nine	degree
areas	are	all	equally	popular	and	have	all	experienced	variation	in	popularity	of	a
similar	magnitude.

Figure	21.3:	Trends	in	Bachelor's	degrees	conferred	by	U.S.	institutions	of

http://imdb.com/


higher	learning.	Shown	are	all	degree	areas	that	represent,	on	average,	more	than
4%	of	all	degrees.	This	figure	is	labeled	as	"bad"	because	all	panels	use	different
y-axis	ranges.	This	choice	obscures	the	relative	sizes	of	the	different	degree	areas
and	it	over-exagerates	the	changes	that	have	happened	in	some	of	the	degree

areas.	Data	Source:	National	Center	for	Education	Statistics

Placing	all	panels	onto	the	same	y	axis	reveals,	however,	that	this	interpretation
is	highly	misleading	 (Figure	21.4).	Some	degree	 areas	 are	much	more	popular
than	 others,	 and	 similarly	 some	 areas	 have	 grown	 or	 shrunk	much	more	 than
others.	For	example,	education	has	declined	a	lot,	whereas	visual	and	performing
arts	have	remained	approximately	constant	or	maybe	seen	a	small	increase.

Figure	21.4:	Trends	in	Bachelor's	degrees	conferred	by	U.S.	institutions	of
higher	learning.	Shown	are	all	degree	areas	that	represent,	on	average,	more	than

4%	of	all	degrees.	Data	Source:	National	Center	for	Education	Statistics



I	generally	recommend	against	using	different	axis	scalings	in	separate	panels	of
a	 small	 multiples	 plot.	 However,	 on	 occasion,	 this	 problem	 truly	 cannot	 be
avoided.	If	you	encounter	such	a	scenario,	then	I	think	at	a	minimum	you	need	to
draw	the	reader's	attention	to	this	issue	in	the	figure	caption.	For	example,	you
could	add	a	sentence	such	as:	"Notice	that	 the	y-axis	scalings	differ	among	 the
different	panels	of	this	figure."

It	is	also	important	to	think	about	the	ordering	of	the	individual	panels	in	a	small
multiples	plot.	The	plot	will	be	easier	 to	 interpret	 if	 the	ordering	follows	some
logical	principle.	In	Figure	21.1,	I	arranged	the	rows	from	the	highest	class	(1st
class)	 to	 the	 lowest	 class	 (3rd	 class).	 In	 Figure	 21.2,	 I	 arranged	 the	 panels	 by
increasing	years	from	the	top	left	to	the	bottom	right.	In	Figure	21.4,	I	arranged
the	panels	by	decreasing	average	degree	popularity,	such	that	 the	most	popular
degrees	are	in	the	top	row	and/or	to	the	left	and	the	least	popular	degrees	are	in
the	bottom	row	and/or	to	the	right.

Always	arrange	the	panels	in	a	small	multiples	plot	in	a	meaningful	and	logical
order.

21.2	Compound	figures

Not	 every	 figure	 with	 multiple	 panels	 fits	 the	 pattern	 of	 small	 multiples.
Sometimes	 we	 simply	 want	 to	 combine	 several	 independent	 panels	 into	 a
combined	 figure	 that	 conveys	one	overarching	point.	 In	 this	 case,	we	can	 take
the	indivdiual	plots	and	arrange	them	in	rows,	columns,	or	other,	more	complex
arrangements,	 and	 call	 the	 entire	 arrangement	 one	 figure.	 For	 an	 example,	 see
Figure	 21.5,	 which	 continues	 the	 analysis	 of	 trends	 in	 Bachelor's	 degrees
converred	by	U.S.	institutions	of	higher	learning.	Panel	(a)	of	Figure	21.5	shows
the	growth	in	total	number	of	degrees	awarded	from	1971	to	2015,	a	time	span
during	which	the	number	of	degrees	awarded	approximately	doubled.	Panel	(b)
instead	shows	the	change	in	the	percent	of	degrees	awarded	over	the	same	time
period	 in	 the	 five	most	 popular	 degree	 areas.	We	 can	 see	 that	 social	 sciences,
history,	 and	 education	 have	 experienced	massive	 declines	 from	 1971	 to	 2015,
whereas	business	and	health	professions	have	seen	substantial	growth.

Notice	how	unlike	in	my	small	multiples	examples,	the	individual	panels	of	the
compound	 figure	 are	 labeled	 alphabetically.	 It	 is	 conventional	 to	 use	 lower	 or
upper	 case	 letters	 from	 the	Latin	 alphabet.	The	 labeling	 is	 needed	 to	 uniquely
specify	 a	 particular	 panel.	 For	 example,	when	 I	want	 to	 talk	 about	 the	 part	 of



Figure	21.5	showing	 the	changes	 in	percent	of	degrees	awarded,	 I	can	 refer	 to
panel	(b)	of	that	figure	or	simply	to	Figure	21.5b.	Without	labeling,	I	would	have
to	awkwardly	talk	about	the	"right	panel"	or	the	"left	panel"	of	Figure	21.5,	and
referring	 to	 specific	 panels	 would	 be	 even	 more	 awkward	 for	 more	 complex
panel	 arrangements.	 Labeling	 is	 not	 needed	 and	 not	 normally	 done	 for	 small
multiples	 because	 there	 each	 panel	 is	 uniquely	 specified	 by	 the	 faceting
variable(s)	that	are	provided	as	figure	labels.

Figure	21.5:	Trends	in	Bachelor's	Degrees	conferred	by	U.S.	institutions	of
higher	learning.	(a)	From	1970	to	2015,	the	total	number	of	degrees	nearly

doubled.	(b)	Among	the	most	popular	degree	areas,	social	sciences,	history,	and
education	experienced	a	major	decline,	while	business	and	health	professions

grew.	Data	Source:	National	Center	for	Education	Statistics

When	labeling	the	different	panels	of	a	compound	figure,	pay	attention	to	how
the	labels	fit	 into	 the	overall	 figure	design.	I	often	see	figures	where	 the	 labels
look	like	they	were	slapped	onto	the	figure	after	 the	fact	by	a	different	person.
It's	not	uncommon	to	see	labels	made	overly	large	and	prominent,	placed	in	an
awkward	location,	or	typeset	in	a	different	font	than	the	rest	of	the	figure.	(See
Figure	 21.6	 for	 an	 example.)	 The	 labels	 should	 not	 be	 the	 first	 thing	 you	 see
when	you	look	at	a	compound	figure.	In	fact,	they	don't	need	to	stand	out	at	all.
We	generally	know	which	figure	panel	has	which	label,	since	the	convention	is
to	start	in	the	top-left	corner	with	"a"	and	label	consecutively	left	to	right	and	top
to	 bottom.	 I	 think	 of	 these	 labels	 as	 equivalent	 to	 page	 numbers.	 You	 don't
normally	 read	 the	 page	 numbers,	 and	 there	 is	 no	 surprise	 in	 which	 page	 has
which	number,	but	on	occasion	it	can	be	helpful	to	use	page	numbers	to	refer	to
a	particular	place	in	a	book	or	article.



Figure	21.6:	Variation	of	Figure	21.5	with	poor	labeling.	The	labels	are	too	large
and	thick,	they	are	in	the	wrong	font,	and	they	are	placed	in	an	awkward
location.	Also,	while	labeling	with	capital	letters	is	fine	and	is	in	fact	quite

common,	labeling	needs	to	be	consistent	across	all	figures	in	a	document.	In	this
book,	the	convention	is	that	multi-panel	figures	use	lower	lower-case	labels,	and

thus	this	figure	is	inconsistent	with	the	other	figures	in	this	book.

We	also	need	to	pay	attention	to	how	the	individual	panels	of	a	compound	figure
fit	together.	It	is	possible	to	make	a	set	of	figure	panels	that	individually	are	fine
but	 jointly	 don't	 work.	 In	 particular,	 we	 need	 to	 employ	 a	 consistent	 visual
language.	By	"visual	language,"	I	mean	the	colors,	symbols,	fonts,	and	so	on	that
we	 use	 to	 display	 the	 data.	 And	 keeping	 the	 language	 consistent	 means,	 in	 a
nutshell,	 that	 the	 same	 things	 look	 the	 same	 or	 at	 least	 substantively	 similar
across	figures.

Let's	look	at	an	example	that	violates	this	principle.	Figure	21.7	is	a	three-panel
figure	visualizing	a	dataset	about	the	physiology	and	body-composition	of	male
and	 female	 athletes.	 Panel	 (a)	 shows	 the	 number	 of	 men	 and	 women	 in	 the
dataset,	 panel	 (b)	 shows	 the	 counts	 of	 red	 and	white	 blood	 cells	 for	men	 and
women,	and	panel	(c)	shows	the	body	fat	percentage	of	men	and	women,	broken
down	 by	 sport.	 Each	 panel	 individually	 is	 an	 acceptable	 figure.	 However,	 in
combination	 the	 three	panels	do	not	work,	because	 they	don't	 share	a	common
visual	 language.	 First,	 panel	 (a)	 uses	 the	 same	 blue	 color	 for	 both	 male	 and
female	athletes,	panel	(b)	uses	it	only	for	male	athletes,	and	panel	(c)	uses	it	for
female	 athletes.	 Moreover,	 panels	 (b)	 and	 (c)	 introduce	 additional	 colors,	 but
these	colors	differ	between	the	two	panels.	It	would	have	been	better	to	use	the
same	two	colors	consistently	for	male	and	female	athletes,	and	to	apply	the	same



coloring	scheme	to	panel	(a)	as	well.	Second,	in	panels	(a)	and	(b)	women	are	on
the	left	and	men	on	the	right,	but	in	panel	(c)	the	order	is	reversed.	The	order	of
the	boxplots	in	panel	(c)	should	be	switched	so	it	matches	panels	(a)	and	(b).

Figure	21.7:	Physiology	and	body-composition	of	male	and	female	athletes.	(a)
The	data	set	encompasses	73	female	and	85	male	professional	athletes.	(b)	Male
athletes	tend	to	have	higher	red	blood	cell	(RBC,	reported	in	units	of	 	per
liter)	counts	than	female	athletes,	but	there	are	no	such	differences	for	white
blood	cell	counts	(WBC,	reported	in	units	of	 	per	liter).	(c)	Male	athletes
tend	to	have	a	lower	body	fat	percentage	than	female	athletes	performing	in	the

same	sport.	Data	source:	Telford	and	Cunningham	(1991)

Figure	21.8	fixes	all	these	issues.	In	this	figure,	female	athletes	are	consistently
shown	in	orange	and	to	the	left	of	male	athletes,	who	are	shown	in	blue.	Notice
how	 much	 easier	 it	 is	 to	 read	 this	 figure	 than	 Figure	 21.7.	 When	 we	 use	 a
consistent	visual	language,	it	doesn't	take	much	mental	effort	to	determine	which
visual	elements	in	the	different	panels	represent	women	and	which	men.	Figure



21.7,	on	 the	other	hand,	can	be	quite	confusing.	 In	particular,	on	first	glance	 it
may	generate	the	impression	that	men	tend	to	have	higher	body	fat	percentages
than	women.	Notice	also	 that	we	need	only	a	 single	 legend	 in	Figure	21.8	but
needed	 two	 in	 Figure	 21.7.	 Since	 the	 visual	 language	 is	 consistent,	 the	 same
legend	works	for	panels	(b)	and	(c).

Figure	21.8:	Physiology	and	body-composition	of	male	and	female	athletes.	This
figure	shows	the	exact	same	data	as	Figure	21.7,	but	now	using	a	consistent
visual	language.	Data	for	female	athletes	is	always	shown	to	the	left	of	the

corresponding	data	for	male	athletes,	and	genders	are	consistently	color-coded
throughout	all	elements	of	the	figure.	Data	source:	Telford	and	Cunningham

(1991)

Finally,	we	need	to	pay	attention	to	the	alignment	of	individual	figure	panels	in	a
compound	figure.	The	axes	and	other	graphical	elements	of	the	individual	panels
should	 all	 be	 aligned	 to	 each	 other.	 Getting	 the	 alignment	 right	 can	 be	 quite
tricky,	 in	 particular	 if	 individual	 panels	 are	 prepared	 separately,	 possibly	 by



different	 people	 and/or	 in	 different	 programs,	 and	 then	 pasted	 together	 in	 an
image	manipulation	program.	To	draw	your	attention	 to	such	alignment	 issues,
Figure	21.9	shows	a	variation	of	Figure	21.8	where	now	all	figure	elements	are
slightly	out	of	alignment.	I	have	added	axis	lines	to	all	panels	of	Figure	21.9	to
emphasize	 these	 alignment	 problems.	Notice	 how	 no	 axis	 line	 is	 aligned	with
any	other	axis	line	for	any	other	panel	of	the	figure.

Figure	21.9:	Variation	of	Figure	21.8	where	all	figure	panels	are	slightly
misaligned.	Misalignments	are	ugly	and	should	be	avoided.
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22	Titles,	captions,	and	tables
A	 data	 visualization	 is	 not	 a	 piece	 of	 art	 meant	 to	 be	 looked	 at	 only	 for	 its
aesthetically	pleasing	features.	Instead,	its	purpose	is	to	convey	information	and
make	 a	 point.	 To	 reliably	 achieve	 this	 goal	when	 preparing	 visualizations,	we
have	 to	 place	 the	 data	 into	 context	 and	 provide	 accompanying	 titles,	 captions,
and	 other	 annotations.	 In	 this	 chapter,	 I	will	 discuss	 how	 to	 properly	 title	 and
label	figures.	I	will	also	discuss	how	to	present	data	in	table	form.

22.1	Figure	titles	and	captions

One	critical	component	of	every	figure	is	the	figure	title.	Every	figure	needs	the
title.	The	job	of	the	title	is	to	accurately	convey	to	the	reader	what	the	figure	is
about,	what	point	it	makes.	However,	the	figure	title	may	not	necessarily	appear
where	you	were	expecting	to	see	it.	Consider	Figure	22.1.	It's	title	is	"Corruption
and	 human	 development:	 The	 most	 developed	 countries	 experience	 the	 least
corruption."	This	title	is	not	shown	above	the	figure,	however.	Instead,	the	title	is
provided	as	the	first	part	of	the	caption	block,	underneath	the	figure	display.	This
is	the	style	I	am	using	throughout	this	book.	I	consistently	show	figures	without
integrated	titles	and	with	separate	captions.	(One	exception	are	the	stylized	plot
examples	in	Chapter	5,	which	instead	have	titles	and	no	captions.)



Figure	22.1:	Corruption	and	human	development:	The	most	developed	countries
experience	the	least	corruption.	This	figure	was	inspired	by	a	posting	in	The
Economist	online	(2011).	Data	sources:	Transparency	International	&	UN

Human	Development	Report

Alternatively,	 I	 could	 incorporate	 the	 figure	 title---as	well	as	other	elements	of
the	 caption,	 such	 as	 the	 data	 source	 statement---into	 the	main	 display	 (Figure
22.2).	 In	 a	 direct	 comparison,	 you	may	 find	 Figure	 22.2	more	 attractive	 than
Figure	22.1,	and	you	may	wonder	why	I	am	choosing	the	latter	style	throughout
this	 book.	 I	 do	 so	 because	 the	 two	 styles	 have	different	 application	 areas,	 and
figures	with	 integrated	 titles	are	not	appropriate	for	conventional	book	layouts.
The	underlying	principle	is	that	a	figure	can	have	only	one	title.	Either	the	title	is
integrated	into	 the	actual	figure	display	or	 it	 is	provided	as	 the	first	element	of
the	caption	underneath	the	figure.	And,	if	a	publication	is	laid	out	such	that	each
figure	has	a	regular	caption	block	underneath	the	display	item,	then	the	title	must
be	provided	in	that	block	of	text.	For	this	reason,	in	the	context	of	conventional
book	 or	 article	 publishing,	 we	 do	 not	 normally	 integrate	 titles	 into	 figures.
Figures	 with	 integrated	 titles,	 subtitles,	 and	 data	 source	 statements	 are



appropriate,	however,	if	they	are	meant	to	be	used	as	stand-alone	infographics	or
to	be	posted	on	social	media	or	on	a	web	page	without	accompanying	caption
text.

Figure	22.2:	Infographic	version	of	Figure	22.1.	The	title,	subtitle,	and	data
source	statements	have	been	incorporated	into	the	figure.	This	figure	could	be
posted	on	the	web	as	is	or	otherwise	used	without	separate	caption	block.

If	your	document	layout	uses	caption	blocks	underneath	each	figure,	then	place
the	 figure	 titles	 as	 the	 first	 element	 of	 each	 caption	 block,	 not	 on	 top	 of	 the
figures.

One	of	the	most	common	mistakes	I	see	in	figure	captions	is	the	omission	of	a
proper	 figure	 title	 as	 the	 first	 element	 of	 the	 caption.	 Take	 a	 look	 back	 at	 the
caption	to	Figure	22.1.	It	begins	with	"Corruption	and	human	development."	It



does	 not	 begin	 with	 "This	 figure	 shows	 how	 corruption	 is	 related	 to	 human
development."	The	first	part	of	the	caption	is	always	the	title,	not	a	description	of
the	 contents	 of	 the	 figure.	 A	 title	 does	 not	 have	 to	 be	 a	 complete	 sentence,
though	short	sentences	making	a	clear	assertion	can	serve	as	titles.	For	example,
for	 Figure	 22.1,	 a	 title	 such	 as	 "The	 most	 developed	 countries	 are	 the	 least
corrupt"	would	have	worked	fine.

22.2	Axis	and	legend	titles

Just	like	every	plot	needs	a	title,	axes	and	legends	need	titles	as	well.	(Axis	titles
are	often	colloquially	referred	to	as	axis	labels.)	Axis	and	legend	titles	and	labels
explain	what	the	displayed	data	values	are	and	how	they	map	to	plot	aesthetics.

To	 present	 an	 example	 of	 a	 plot	where	 all	 axes	 and	 legends	 are	 appropriately
labeled	and	titled,	I	have	taken	the	blue	jay	dataset	discussed	at	length	in	Chapter
12	 and	 visualized	 it	 as	 a	 bubble	 plot	 (Figure	 22.3).	 In	 this	 plot,	 the	 axis	 titles
clearly	indicate	that	the	x	axis	shows	body	mass	in	grams	and	the	y	axis	shows
head	 length	 in	milimeters.	Similarly,	 the	 legend	 titles	 show	 that	point	 coloring
indicates	the	birds'	sex	and	point	size	indicates	the	birds'	skull	size	in	milimeters.
I	emphasize	that	for	all	numerical	variables	(body	mass,	head	length,	and	skull
size)	 the	 relevant	 titles	not	only	 state	 the	variables	 shown	but	also	 the	units	 in
which	 the	 variables	 are	 measured.	 This	 is	 good	 practice	 and	 should	 be	 done
whenever	possible.	Categorical	variables	(such	as	sex)	do	not	require	units.



Figure	22.3:	Head	length	versus	body	mass	for	123	blue	jays.	The	birds'	sex	is
indicated	by	color,	and	the	birds'	skull	size	by	symbol	size.	Head-length

measurements	include	the	length	of	the	bill	while	skull-size	measurements	do
not.	Data	source:	Keith	Tarvin,	Oberlin	College

There	 are	 cases,	 however,	 when	 axis	 or	 legend	 titles	 can	 be	 omitted,	 namely
when	the	labels	themselves	are	fully	explanatory.	For	example,	a	legend	showing
two	differently	 colored	dots	 labeled	 "female"	 and	 "male"	 clearly	 indicates	 that
color	encodes	sex.	The	title	"sex"	is	not	required	to	clarify	this	fact,	and	indeed
throughout	this	book	I	have	often	omitted	the	legend	title	for	legends	indicating
sex	or	gender	(see	e.g.	Figures	6.10,	12.2,	or	21.1).	Similarly,	country	names	will
generally	not	require	a	 title	stating	what	 they	are	(Figure	6.11),	nor	will	movie
titles	(Figure	6.1)	or	years	(Figure	22.4).



Figure	22.4:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	This
figure	is	a	slightly	modified	version	of	Figure	20.6	in	Chapter	20.	Here,	the	x
axis	representing	time	does	not	have	a	title.	It	is	clear	from	the	context	that	the

numbers	2013,	2014,	etc.	refer	to	years.

However,	we	have	to	be	careful	when	omitting	axis	or	legend	titles,	because	it	is
easy	 to	misjudge	 what	 is	 and	 isn't	 obvious	 from	 the	 context.	 I	 frequently	 see
graphs	 in	 the	popular	press	 that	push	omitting	axis	 titles	 to	a	point	 that	would
make	me	uncomfortable.	For	example,	some	publications	might	produce	a	figure
such	as	Figure	22.5,	assuming	that	the	meaning	of	the	axes	is	clear	from	the	plot
title	 and	 subtitle	 (here:	 "stock	 price	 over	 time	 for	 four	major	 tech	 companies"
and	"the	stock	price	for	each	company	has	been	normalized	to	equal	100	in	June
2012").	 I	 disagree	 with	 the	 perspective	 that	 context	 clearly	 defines	 the	 axes.
Because	the	caption	typically	doesn't	include	words	such	as	"the	x/y	axis	shows",
some	amount	of	guesswork	is	always	required	to	interpret	the	figure.	In	my	own
experience,	 figures	 without	 properly	 labeled	 axes	 tend	 to	 leave	 me	 with	 a
nagging	 feeling	 of	 uncertainty---even	 if	 I'm	 95%	 certain	 I	 understand	what	 is
shown,	 I	 don't	 feel	 100%	 certain.	 As	 a	 general	 principle,	 I	 think	 it	 is	 a	 bad
practice	 to	make	your	 readers	 guess	what	 you	mean.	Why	would	you	want	 to
create	a	feeling	of	uncertainty	in	your	readers?



Figure	22.5:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	This

variant	of	Figure	22.4	has	been	labeled	as	"bad"	because	the	y	axis	now	does	not
have	a	title	either,	and	what	the	values	shown	along	the	y	axis	represent	is	not

immediately	obvious	from	the	context.

On	the	flip	side,	we	can	overdo	the	labeling.	If	the	legend	lists	the	names	of	four
well-known	companies,	the	legend	title	"company"	is	redundant	and	doesn't	add
anything	useful	(Figure	22.6).	Similarly,	even	though	we	generally	should	report
units	for	all	quantitative	variables,	if	the	x	axis	shows	a	few	recent	years	titling	it
as	"time	(years	AD)"	is	awkward	(Figure	22.6).



Figure	22.6:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	This

variant	of	Figure	22.4	has	been	labeled	as	"ugly"	because	it	is	labeled
excessively.	In	particular,	providing	a	unit	("years	AD")	for	the	values	along	the

x	axis	is	awkward.

Finally,	in	some	cases	it	is	acceptable	to	omit	not	only	the	axis	title	but	the	entire
axis.	Pie	charts	typically	don't	have	explicit	axes	(e.g.,	Figure	10.1),	and	neither
do	treemaps	(Figure	11.4).	Mosaic	plots	or	bar	charts	can	be	shown	without	one
or	both	axes	if	the	meaning	of	the	plot	is	otherwise	clear	(Figures	11.3	and	6.10).
Omitting	explicit	axes	with	axis	ticks	and	tick	labels	signals	to	the	reader	that	the
qualitative	features	of	the	graph	are	more	important	than	the	specific	data	values.

22.3	Tables

Tables	are	an	 important	 tool	 for	visualizing	data.	Yet	because	of	 their	apparent
simplicity,	they	may	not	always	receive	the	attention	they	need.	I	have	shown	a
handful	 of	 tables	 throughout	 this	 book,	 for	 example	Tables	 6.1,	7.1,	 and	 19.1.
Take	 a	 moment	 and	 locate	 these	 tables,	 look	 how	 they	 are	 formatted,	 and
compare	them	to	a	table	you	or	a	colleague	has	recently	made.	In	all	likelihood,
there	are	important	differences.	In	my	experience,	absent	proper	training	in	table
formatting,	 few	people	will	 instinctively	make	 the	 right	 formatting	 choices.	 In



self-published	documents,	poorly	formatted	tables	are	even	more	prevalent	than
poorly	 designed	 figures.	 Also,	 most	 software	 commonly	 used	 to	 create	 tables
provides	 defaults	 that	 are	 not	 recommended.	 For	 example,	 my	 version	 of
Microsoft	Word	provides	105	pre-defined	table	styles,	and	of	 these	at	 least	70-
-80	violate	 some	of	 the	 table	 rules	 I'm	going	 to	discuss	here.	So	 if	you	pick	a
Microsoft	Word	table	layout	at	random,	you	have	an	80%	chance	of	picking	one
that	 has	 issues.	 And	 if	 you	 pick	 the	 default,	 you	 will	 end	 up	 with	 a	 poorly
formatted	table	every	time.

Some	key	rules	for	table	layout	are	the	following:

1.	 Do	not	use	vertical	lines.
2.	 Do	 not	 use	 horizontal	 lines	 between	 data	 rows.	 (Horizontal	 lines	 as

separator	 between	 the	 title	 row	 and	 the	 first	 data	 row	or	 as	 frame	 for	 the
entire	table	are	fine.)

3.	 Text	columns	should	be	left	aligned.
4.	 Number	columns	should	be	right	aligned	and	should	use	the	same	number

of	decimal	digits	throughout.
5.	 Columns	containing	single	characters	are	centered.
6.	 The	 header	 fields	 are	 aligned	 with	 their	 data,	 i.e.,	 the	 heading	 for	 a	 text

column	will	be	 left	 aligned	and	 the	heading	 for	a	number	column	will	be
right	aligned.

Figure	22.7	reproduces	Table	6.1	 from	Chapter	6	 in	 four	diferent	ways,	 two	of
which	(a,	b)	violate	several	of	these	rules	and	two	of	which	(c,	d)	do	not.



Figure	22.7:	Examples	of	poorly	and	appropriately	formatted	tables,	using	the
data	from	Table	6.1	in	Chapter	6.	(a)	This	table	violates	numerous	conventions
of	proper	table	formatting,	including	using	vertical	lines,	using	horizontal	lines
between	data	rows,	and	using	centered	data	columns.	(b)	This	table	suffers	from
all	problems	of	Table	(a),	and	in	addition	it	creates	additional	visual	noise	by
alternating	between	very	dark	and	very	light	rows.	Also,	the	table	header	is	not
strongly	visually	separated	from	the	table	body.	(c)	This	is	an	appropriately
formatted	table	with	a	minimal	design.	(d)	Colors	can	be	used	effectively	to

group	data	into	rows,	but	the	color	differences	should	be	subtle.	The	table	header
can	be	set	off	by	using	a	stronger	color.	Data	source:	Box	Office	Mojo

(http://www.boxofficemojo.com/).	Used	with	permission

When	authors	draw	tables	with	horizontal	lines	between	data	rows,	the	intent	is
usually	to	help	the	eye	follow	individual	lines.	However,	unless	the	table	is	very
wide	and	sparse,	this	visual	aid	is	not	normally	needed.	We	don't	draw	horizontal
lines	between	 rows	 in	 a	piece	of	 regular	 text	 either.	The	cost	of	horizontal	 (or
vertical)	lines	is	visual	clutter.	Compare	parts	(a)	and	(c)	of	Figure	22.7.	Part	(c)
is	much	easier	to	read	than	part	(a).	If	we	feel	that	a	visual	aid	separating	table
rows	 is	necessary,	 then	alternating	 lighter	 and	darker	 shading	of	 rows	 tends	 to
work	well	without	creating	much	clutter	(Figure	22.7d).

Finally,	there	is	a	key	distinction	between	figures	and	tables	in	where	the	caption
is	 located	 relative	 to	 the	display	 item.	For	 figures,	 it	 is	 customary	 to	place	 the
caption	 underneath,	 whereas	 for	 tables	 it	 is	 customary	 to	 place	 it	 above.	 This

http://www.boxofficemojo.com/


caption	 placement	 is	 guided	 by	 the	way	 in	which	 readers	 process	 figures	 and
tables.	 For	 figures,	 readers	 tend	 to	 first	 look	 at	 the	 graphical	 display	 and	 then
read	the	caption	for	context,	hence	the	caption	makes	sense	below	the	figure.	By
contrast,	 tables	 tend	 to	be	processed	 like	 text,	 from	top	 to	bottom,	and	reading
the	 table	 contents	 before	 reading	 the	 caption	 will	 frequently	 not	 be	 useful.
Hence,	captions	are	placed	above	the	table.
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23	Balance	the	data	and	the	context
We	 can	 broadly	 subdivide	 the	 graphical	 elements	 in	 any	 visualization	 into
elements	that	represent	data	and	elements	that	do	not.	The	former	are	elements
such	 as	 the	 points	 in	 a	 scatter	 plot,	 the	 bars	 in	 a	 histogram	 or	 barplot,	 or	 the
shaded	areas	in	a	heatmap.	The	latter	are	elements	such	as	plot	axes,	axis	ticks
and	 labels,	 axis	 titles,	 legends,	 and	 plot	 annotations.	These	 elements	 generally
provide	context	for	the	data	and/or	visual	structure	to	the	plot.	When	designing	a
plot,	 it	 can	 be	 helpful	 to	 think	 about	 the	 amount	 of	 ink	 (Chapter	 17)	 used	 to
represent	data	and	context.	A	common	recommendation	is	to	reduce	the	amount
of	non-data	ink,	and	following	this	advice	can	often	yield	less	cluttered	and	more
elegant	 visualizations.	 At	 the	 same	 time,	 context	 and	 visual	 structure	 are
important,	and	overly	minimizing	the	plot	elements	that	provide	them	can	result
in	figures	that	are	difficult	to	read,	confusing,	or	simply	not	that	compelling.

23.1	Providing	the	appropriate	amount	of	context

The	 idea	 that	distinguishing	between	data	and	non-data	 ink	may	be	useful	was
popularized	 by	Edward	Tufte	 in	 his	 book	 "The	Visual	Display	 of	Quantitative
Information"	(Tufte	2001).	Tufte	introduces	the	concept	of	the	"data--ink	ratio",
which	 he	 defines	 as	 the	 "proportion	 of	 a	 graphic's	 ink	 devoted	 to	 the	 non-
redundant	display	of	data-information."	He	then	writes	(emphasis	mine):

Maximize	the	data--ink	ratio,	within	reason.

I	have	emphasized	the	phrase	"within	reason"	because	it	is	critical	and	frequently
forgotten.	 In	 fact,	 I	 think	 that	 Tufte	 himself	 forgets	 it	 in	 the	 remainder	 of	 his
book,	where	he	advocates	overly	minimalistic	designs	 that,	 in	my	opinion,	 are
neither	 elegant	 nor	 easy	 to	 decipher.	 If	we	 interpret	 the	 phrase	 "maximize	 the
data--ink	 ratio"	 to	 mean	 "remove	 clutter	 and	 strive	 for	 clean	 and	 elegant
designs,"	 then	 I	 think	 it	 is	 reasonable	 advice.	 But	 if	 we	 interpret	 it	 as	 "do
everything	 you	 can	 to	 remove	 non-data	 ink"	 then	 it	will	 result	 in	 poor	 design
choices.	 If	we	go	 too	 far	 in	 either	 direction	we	will	 end	up	with	 ugly	 figures.
However,	 away	 from	 the	 extremes	 there	 is	 wide	 range	 of	 designs	 that	 are	 all
acceptable	and	may	be	appropriate	in	different	settings.



To	explore	 the	extremes,	 let's	 consider	a	 figure	 that	clearly	has	 too	much	non-
data	 ink	(Figure	23.1).	The	colored	points	 in	 the	plot	panel	 (the	 framed	center
area	 containing	data	 points)	 are	 data	 ink.	Everything	 else	 is	 non-data	 ink.	The
non-data	ink	includes	a	frame	around	the	entire	figure,	a	frame	around	the	plot
panel,	and	a	frame	around	the	legend.	None	of	these	frames	are	needed.	We	also
see	a	prominent	and	dense	background	grid	that	draws	attention	away	from	the
actual	data	points.	By	removing	the	frames	and	minor	grid	lines	and	by	drawing
the	major	grid	lines	in	a	light	gray,	we	arrive	at	Figure	23.2.	In	this	version	of	the
figure,	the	actual	data	points	stand	out	much	more	clearly,	and	they	are	perceived
as	the	most	important	component	of	the	figure.

Figure	23.1:	Percent	body	fat	versus	height	in	professional	male	Australian
athletes.	Each	point	represents	one	athlete.	This	figure	devotes	way	too	much	ink
to	non-data.	There	are	unnecessary	frames	around	the	entire	figure,	around	the
plot	panel,	and	around	the	legend.	The	coordinate	grid	is	very	prominent,	and	its
presence	draws	attention	away	from	the	data	points.	Data	source:	Telford	and

Cunningham	(1991)



Figure	23.2:	Percent	body	fat	versus	height	in	professional	male	Australian
athletes.	This	figure	is	a	cleaned-up	version	of	Figure	23.1.	Unnecessary	frames
have	been	removed,	minor	grid	lines	have	been	removed,	and	major	grid	lines
have	been	drawn	in	light	gray	to	stand	back	relative	to	the	data	points.	Data

source:	Telford	and	Cunningham	(1991)

At	the	other	extreme,	we	might	end	up	with	a	figure	such	as	Figure	23.3,	which
is	a	minimalist	version	of	Figure	23.2.	In	this	figure,	the	axis	tick	labels	and	titles
have	been	made	so	faint	that	they	are	hard	to	see.	If	we	just	glance	at	the	figure
we	 will	 not	 immediately	 perceive	 what	 data	 is	 actually	 shown.	 We	 only	 see
points	 floating	 in	 space.	Moreover,	 the	 legend	annotations	are	 so	 faint	 that	 the
points	 in	 the	 legend	could	be	mistaken	for	data	points.	This	effect	 is	amplified
because	there	is	no	clear	visual	separation	between	the	plot	area	and	the	legend.
Notice	how	the	background	grid	in	Figure	23.2	both	anchors	the	points	in	space
and	sets	off	the	data	area	from	the	legend	area.	Both	of	these	effects	have	been
lost	in	Figure	23.3.



Figure	23.3:	Percent	body	fat	versus	height	in	professional	male	Australian
athletes.	In	this	example,	the	concept	of	removing	non-data	ink	has	been	taken
too	far.	The	axis	tick	labels	and	title	are	too	faint	and	are	barely	visible.	The	data
points	seem	to	float	in	space.	The	points	in	the	legend	are	not	sufficiently	set	off
from	the	data	points,	and	the	casual	observer	might	think	they	are	part	of	the

data.	Data	source:	Telford	and	Cunningham	(1991)

In	Figure	23.2,	I	am	using	an	open	background	grid	and	no	axis	lines	or	frame
around	 the	 plot	 panel.	 I	 like	 this	 design	 because	 it	 conveys	 to	 the	 reader	 that
range	of	possible	data	values	extends	beyond	the	axis	limits.	For	example,	even
though	Figure	23.2	 shows	no	athlete	 taller	 than	210	cm,	 such	an	athlete	 could
conceivably	 exist.	However,	 some	authors	prefer	 to	delineate	 the	 extent	 of	 the
plot	 panel,	 by	 drawing	 a	 frame	 around	 it	 (Figure	 23.4).	 Both	 options	 are
reasonable,	 and	which	 is	 preferable	 is	 primarily	 a	matter	 of	 personal	 opinion.
One	advantage	of	the	framed	version	is	that	it	clearly	separates	the	legend	from
the	plot	panel.



Figure	23.4:	Percent	body	fat	versus	height	in	professional	male	Australian
athletes.	This	figure	adds	a	frame	around	the	plot	panel	of	Figure	23.2,	and	this

frame	helps	separate	the	legend	from	the	data.	Data	source:	Telford	and
Cunningham	(1991)

Figures	with	too	little	non-data	ink	commonly	suffer	from	the	effect	that	figure
elements	 appear	 to	 float	 in	 space,	 without	 clear	 connection	 or	 reference	 to
anything.	This	problem	tends	to	be	particularly	severe	in	small	multiples	plots.
Figure	23.5	shows	a	small-multiples	plot	comparing	six	different	bar	plots,	but	it
looks	more	like	a	piece	of	modern	art	than	a	useful	data	visualization.	The	bars
are	not	anchored	to	a	clear	baseline	and	the	individual	plot	facets	are	not	clearly
delineated.	We	can	resolve	 these	 issues	by	adding	a	 light	gray	background	and
thin	horizontal	grid	lines	to	each	facet	(Figure	23.6).



Figure	23.5:	Survival	of	passengers	on	the	Titanic,	broken	down	by	gender	and
class.	This	small-multiples	plot	is	too	minimalistic.	The	individual	factes	are	not
framed,	so	it's	difficult	to	see	which	part	of	the	figure	belongs	to	which	facet.

Further,	the	individual	bars	are	not	anchored	to	a	clear	baseline,	and	they	seem	to
float.



Figure	23.6:	Survival	of	passengers	on	the	Titanic,	broken	down	by	gender	and
class.	This	is	an	improved	version	of	Figure	23.5.	The	gray	background	in	each
facet	clearly	delineates	the	six	groupings	(survived	or	died	in	first,	second,	or
third	class)	that	make	up	this	plot.	Thin	horizontal	lines	in	the	background
provide	a	reference	for	the	bar	heights	and	facility	comparison	of	bar	heights

among	facets.

23.2	Background	grids

Gridlines	 in	 the	background	of	a	plot	 can	help	 the	 reader	discern	 specific	data
values	and	compare	values	in	one	part	of	a	plot	to	values	in	another	part.	At	the
same	time,	gridlines	can	add	visual	noise,	in	particular	when	they	are	prominent
or	densely	spaced.	Reasonable	people	can	disagree	about	whether	to	use	a	grid
or	not,	and	if	so	how	to	format	it	and	how	densely	to	space	it.	Throughout	this
book	 I	 am	 using	 a	 variety	 of	 different	 grid	 styles,	 to	 highlight	 that	 there	 isn't
necessarily	one	best	choice.

The	 R	 software	 ggplot2	 has	 popularized	 a	 style	 using	 a	 fairly	 prominent
background	 grid	 of	 white	 lines	 on	 a	 gray	 background.	 Figure	 23.7	 shows	 an
example	in	this	style.	The	figure	displays	the	change	in	stock	price	of	four	major
tech	companies	over	a	five-year	window,	from	2012	to	2017.	With	apologies	to
the	ggplot2	author	Hadley	Wickham,	for	whom	I	have	the	utmost	respect,	I	don't
find	 the	white-on-gray	 background	 grid	 particularly	 attractive.	 To	my	 eye,	 the
gray	 background	 can	 detract	 from	 the	 actual	 data,	 and	 a	 grid	 with	major	 and
minor	 lines	 can	 be	 too	 dense.	 I	 also	 find	 the	 gray	 squares	 in	 the	 legend
confusing.



Figure	23.7:	Stock	price	over	time	for	four	major	tech	companies.	The	stock
price	for	each	company	has	been	normalized	to	equal	100	in	June	2012.	This

figure	mimics	the	ggplot2	default	look,	with	white	major	and	minor	grid	lines	on
a	gray	background.	In	this	particular	example,	I	think	the	grid	lines	overpower
the	data	lines,	and	the	result	is	a	figure	that	is	not	well	balanced	and	that	doesn't

place	sufficient	emphasis	on	the	data.	Data	source:	Yahoo	Finance

Arguments	in	favor	of	the	gray	background	include	that	it	(i)	helps	the	plot	to	be
perceived	as	a	single	visual	entity	and	(ii)	prevents	the	plot	to	appear	as	a	white
box	in	surrounding	dark	text	(Wickham	2016).	I	completely	agree	with	the	first
point,	 and	 it	 was	 the	 reason	 I	 used	 gray	 backgrounds	 in	 Figure	 23.6.	 For	 the
second	point,	I'd	like	to	caution	that	the	perceived	darkness	of	text	will	depend
on	 the	 font	 size,	 fontface,	 and	 line	 spacing,	 and	 the	 perceived	 darkness	 of	 a
figure	will	depend	on	 the	absolute	amount	and	color	of	 ink	used,	 including	all
data	 ink.	A	 scientific	paper	 typeset	 in	dense,	10-point	Times	New	Roman	will
look	much	darker	than	a	coffee-table	book	typeset	in	14-point	Palatino	with	one-
and-a-half	line	spacing.	Likewise,	a	scatter	plot	of	five	points	in	yellow	will	look
much	lighter	 than	a	scatter	plot	of	10,000	points	 in	black.	If	you	want	 to	use	a
gray	figure	background,	consider	 the	color	 intensity	of	your	 figure	foreground,
as	well	as	 the	expected	 layout	and	 typography	of	 the	 text	around	your	 figures,
and	adjust	the	choice	of	your	background	gray	accordingly.	Otherwise,	it	could
happen	 that	 your	 figures	 end	 up	 standing	 out	 as	 dark	 boxes	 among	 the



surrounding	lighter	text.	Also,	keep	in	mind	that	the	colors	you	use	to	plot	your
data	 need	 to	 work	 with	 the	 gray	 background.	 We	 tend	 to	 perceive	 colors
differently	against	different	backgrounds,	and	a	gray	background	requires	darker
and	more	saturated	foreground	colors	than	a	white	background.

We	can	go	all	the	way	in	the	opposite	direction	and	remove	both	the	background
and	the	grid	lines	(Figure	23.8).	In	this	case,	we	need	visible	axis	lines	to	frame
the	plot	and	keep	it	as	a	single	visual	unit.	For	this	particular	figure,	I	think	this
choice	 is	a	worse	option,	and	I	have	 labeled	 it	as	"bad".	 In	 the	absence	of	any
background	grid	whatsoever,	the	curves	seem	to	float	in	space,	and	it's	difficult
to	reference	the	final	values	on	the	right	to	the	axis	ticks	on	the	left.

Figure	23.8:	Indexed	stock	price	over	time	for	four	major	tech	companies.	In	this
variant	of	Figure	23.7,	the	data	lines	are	not	sufficiently	anchored.	This	makes	it
difficult	to	ascertain	to	what	extent	they	have	deviated	from	the	index	value	of

100	at	the	end	of	the	covered	time	interval.	Data	source:	Yahoo	Finance

At	 the	absolute	minimum,	we	need	 to	add	one	horizontal	 reference	 line.	Since
the	stock	prices	in	Figure	23.8	indexed	to	100	in	June	2012,	marking	this	value
with	a	thin	horizontal	line	at	y	=	100	helps	a	lot	(Figure	23.9).	Alternatively,	we
can	use	a	minimal	"grid"	of	horizontal	lines.	For	a	plot	where	we	are	primarily
interested	in	the	change	in	y	values,	vertical	grid	lines	are	not	needed.	Moreover,
grid	lines	positioned	at	only	the	major	axis	ticks	will	often	be	sufficient.	And,	the



axis	line	can	be	omitted	or	made	very	thin,	since	the	horzontal	lines	clearly	mark
the	extent	of	the	plot	(Figure	23.10).

Figure	23.9:	Indexed	stock	price	over	time	for	four	major	tech	companies.
Adding	a	thin	horizontal	line	at	the	index	value	of	100	to	Figure	23.8	helps

provide	an	important	reference	throughout	the	entire	time	period	the	plot	spans.
Data	source:	Yahoo	Finance



Figure	23.10:	Indexed	stock	price	over	time	for	four	major	tech	companies.
Adding	thin	horizontal	lines	at	all	major	y	axis	ticks	provides	a	better	set	of

reference	points	than	just	the	one	horizontal	line	of	Figure	23.9.	This	design	also
removes	the	need	for	prominent	x	and	y	axis	lines,	since	the	evenly	spaced
horizontal	lines	create	a	visual	frame	for	the	plot	panel.	Data	source:	Yahoo

Finance

For	such	a	minimal	grid,	we	generally	draw	the	 lines	orthogonally	 to	direction
along	which	 the	 numbers	 of	 interest	 vary.	Therefore,	 if	 instead	 of	 plotting	 the
stock	price	over	time	we	plot	the	five-year	increase,	as	horizontal	bars,	then	we
will	want	to	use	vertical	lines	instead	(Figure	23.11).



Figure	23.11:	Percent	increase	in	stock	price	from	June	2012	to	June	2017,	for
four	major	tech	companies.	Because	the	bars	run	horizontally,	vertical	grid	lines

are	appropriate	here.	Data	source:	Yahoo	Finance

Grid	 lines	 that	 run	 perpendicular	 to	 the	 key	 variable	 of	 interest	 tend	 to	 be	 the
most	useful.

For	 bar	 graphs	 such	 as	Figure	23.11,	Tufte	 (2001)	 recommends	 to	 draw	white
grid	lines	on	top	of	the	bars	instead	of	dark	grid	lines	underneath	(Figure	23.12).
These	 white	 grid	 lines	 have	 the	 effect	 of	 separating	 the	 bars	 into	 distinct
segments	 of	 equal	 length.	 I'm	 of	 two	 minds	 on	 this	 style.	 On	 the	 one	 hand,
research	 into	 human	 perception	 suggests	 that	 breaking	 bars	 into	 discrete
segments	 helps	 the	 reader	 to	 perceive	 bar	 lengths	 (Haroz,	 Kosara,	 and
Franconeri	 2015).	 On	 the	 other	 hand,	 to	 my	 eye	 the	 bars	 look	 like	 they	 are
falling	 apart	 and	 don't	 form	 a	 clear	 visual	 unit.	 In	 fact,	 I	 used	 this	 style
purposefully	 in	Figure	6.10	 to	visually	separate	stacked	bars	 representing	male
and	 female	 passengers.	 Which	 effect	 dominates	 may	 depend	 on	 the	 specific
choices	 of	 bar	 width,	 distance	 between	 bars,	 and	 thickness	 of	 the	 white	 grid
lines.	 Thus,	 if	 you	 intend	 to	 use	 this	 style,	 I	 encourage	 you	 to	 vary	 these
parameters	until	you	have	a	figure	that	creates	the	desired	visual	effect.



Figure	23.12:	Percent	increase	in	stock	price	from	June	2012	to	June	2017,	for
four	major	tech	companies.	White	grid	lines	on	top	of	bars	can	help	the	reader
perceive	the	relative	lengths	of	the	bars.	At	the	same	time,	they	can	also	create
the	perception	that	the	bars	are	falling	apart.	Data	source:	Yahoo	Finance

I	would	 like	 to	point	out	another	downside	of	Figure	23.12.	 I	had	 to	move	 the
percentage	 values	 outside	 the	 bars,	 because	 the	 labels	 didn't	 fit	 into	 the	 final
segments	 of	 several	 of	 the	 bars.	However,	 this	 choice	 inappropriately	 visually
elongates	the	bars	and	should	be	avoided	whenever	possible.

Background	 grids	 along	 both	 axis	 directions	 are	 most	 appropriate	 for	 scatter
plots	where	there	is	no	primary	axis	of	interest.	Figure	23.2	at	the	beginning	of
this	chapter	provides	an	example.	When	a	figure	has	a	full	background	grid,	axis
lines	are	generally	not	needed	(Figure	23.2).

23.3	Paired	data

For	 figures	where	 the	 relevant	 comparison	 is	 the	x	 =	y	 line,	 such	 as	 in	 scatter
plots	 of	 paired	 data,	 I	 prefer	 to	 draw	 a	 diagonal	 line	 rather	 than	 a	 grid.	 For
example,	 consider	 Figure	 23.13,	 which	 compares	 gene	 expression	 levels	 in	 a
mutant	 virus	 to	 the	 non-mutated	 (wild-type)	 variant.	 By	 drawing	 the	 diagonal
line,	we	can	see	immediately	which	genes	are	expressed	higher	or	lower	in	the



mutant	relative	to	the	wild	type.	The	same	observation	is	much	harder	to	make
when	 the	 figure	 has	 a	 background	 grid	 and	 no	 diagonal	 line	 (Figure	 23.14).
Thus,	 even	 though	Figure	23.14	 looks	pleasing,	 I	 label	 it	 as	bad.	 In	particular,
gene	10A,	which	clearly	has	a	reduced	expression	level	in	the	mutant	relative	to
the	wild-type	(Figure	23.13),	does	not	visually	stand	out	in	Figure	23.14.

Figure	23.13:	Gene	expression	levels	in	a	mutant	bacteriophage	T7	relative	to
wild-type.	Gene	expression	levels	are	measured	by	mRNA	abundances,	in

transcripts	per	million	(TPM).	Each	dot	corresponds	to	one	gene.	In	the	mutant
bacteriophage	T7,	the	promoter	in	front	of	gene	9	was	deleted,	and	this	resulted
in	reduced	mRNA	abundances	of	gene	9	as	well	as	the	neighboring	genes	8	and

10A	(highlighted).	Data	source:	Paff	et	al.	(2018)



Figure	23.14:	Gene	expression	levels	in	a	mutant	bacteriophage	T7	relative	to
wild-type.	By	plotting	this	dataset	against	a	background	grid,	instead	of	a

diagonal	line,	we	are	obscuring	which	genes	are	higher	or	lower	in	the	mutant
than	in	the	wild-type	bacteriophage.	Data	source:	Paff	et	al.	(2018)

Of	course	we	could	take	the	diagonal	line	from	Figure	23.13	and	add	it	on	top	of
the	background	grid	of	Figure	23.14,	to	ensure	that	the	relevant	visual	reference
is	present.	However,	 the	 resulting	 figure	 is	getting	quite	busy	 (Figure	23.15).	 I
had	 to	 make	 the	 diagonal	 line	 darker	 so	 it	 would	 stand	 out	 against	 the
background	 grid,	 but	 now	 the	 data	 points	 almost	 seem	 to	 fade	 into	 the
background.	We	could	ameliorate	this	issue	by	making	the	data	points	larger	or
darker,	but	all	considered	I'd	rather	choose	Figure	23.13.



Figure	23.15:	Gene	expression	levels	in	a	mutant	bacteriophage	T7	relative	to
wild-type.	This	figure	combines	the	background	grid	from	Figure	23.14	with	the
diagonal	line	from	Figure	23.13.	In	my	opinion,	this	figure	is	visually	too	busy
compared	to	Figure	23.13,	and	I	would	prefer	Figure	23.13.	Data	source:	Paff	et

al.	(2018)

23.4	Summary

Both	 overloading	 a	 figure	with	 non-data	 ink	 and	 excessively	 erasing	 non-data
ink	can	result	 in	poor	figure	design.	We	need	to	find	a	healthy	medium,	where
the	 data	 points	 are	 the	main	 emphasis	 of	 the	 figure	while	 sufficient	 context	 is
provided	about	what	data	 is	 shown,	where	 the	points	 lie	 relative	 to	each	other,
and	what	they	mean.

With	respect	to	backgrounds	and	background	grids,	there	is	no	one	choice	that	is
preferable	 in	all	contexts.	 I	 recommend	 to	be	 judicious	about	grid	 lines.	Think
carefully	 about	which	 specific	grid	or	guide	 lines	 are	most	 informative	 for	 the
plot	you	are	making,	and	then	only	show	those.	I	prefer	minimal,	light	grids	on	a
white	background,	since	white	is	the	default	neutral	color	on	paper	and	supports



nearly	 any	 foreground	 color.	However,	 a	 shaded	background	 can	help	 the	 plot
appear	 as	 a	 single	 visual	 entity,	 and	 this	 may	 be	 particularly	 useful	 in	 small
multiples	 plots.	 Finally,	 we	 have	 to	 consider	 how	 all	 these	 choices	 relate	 to
visual	 branding	 and	 identity.	 Many	 magazines	 and	 websites	 like	 to	 have	 an
immediately	recognizable	in-house	style,	and	a	shaded	background	and	specific
choice	of	background	grid	can	help	create	a	unique	visual	identity.

##	Warning:	package	'colorspace'	was	built	under	R	version	3.5.3

##	Warning:	package	'ggplot2'	was	built	under	R	version	3.5.3

##	Warning:	package	'dplyr'	was	built	under	R	version	3.5.3



24	Use	larger	axis	labels
If	you	 take	away	only	one	single	 lesson	 from	 this	book,	make	 it	 this	one:	Pay
attention	to	your	axis	labels,	axis	tick	labels,	and	other	assorted	plot	annotations.
Chances	 are	 they	are	 too	 small.	 In	my	experience,	nearly	 all	 plot	 libraries	 and
graphing	 softwares	 have	 poor	 defaults.	 If	 you	 use	 the	 default	 values,	 you're
almost	certainly	making	a	poor	choice.

For	example,	consider	Figure	24.1.	I	see	figures	like	this	all	 the	time.	The	axis
labels,	axis	tick	labels,	and	legend	labels	are	all	incredibly	small.	We	can	barely
see	them,	and	we	may	have	to	zoom	into	the	page	to	read	the	annotations	in	the
legend.

Figure	24.1:	Percent	body	fat	versus	height	in	professional	male	Australian
athletes.	(Each	point	represents	one	athlete.)	This	figure	suffers	from	the
common	affliction	that	the	text	elements	are	way	too	small	and	are	barely

legible.	Data	source:	Telford	and	Cunningham	(1991)

A	 somewhat	 better	 version	 of	 this	 figure	 is	 shown	 as	 Figure	 24.2.	 I	 think	 the
fonts	 are	 still	 too	 small,	 and	 that's	 why	 I	 have	 labeled	 the	 figure	 as	 ugly.



However,	we	 are	moving	 in	 the	 right	 direction.	 This	 figure	might	 be	 passable
under	some	circumstances.	My	main	criticism	here	is	not	so	much	that	the	labels
aren't	 legible	as	 that	 the	 figure	 is	not	balanced;	 the	 text	elements	are	 too	small
compared	to	the	rest	of	the	figure.

Figure	24.2:	Percent	body	fat	versus	height	in	male	athletes.	This	figure	is	an
improvement	over	Figure	24.1,	but	the	text	elements	remain	too	small	and	the

figure	is	not	balanced.	Data	source:	Telford	and	Cunningham	(1991)

The	 next	 figure	 uses	 the	 default	 settings	 I'm	 applying	 throughout	 this	 book.	 I
think	it	is	well	balanced,	the	text	is	clearly	visible,	and	it	fits	with	the	overall	size
of	the	figure.



Figure	24.3:	Percent	body	fat	versus	height	in	male	athletes.	All	figure	elements
are	appropriately	scaled.	Data	source:	Telford	and	Cunningham	(1991)

Importantly,	 we	 can	 overdo	 it	 and	 make	 the	 labels	 too	 big	 (Figure	 24.4).
Sometimes	we	need	big	labels,	for	example	if	the	figure	is	meant	to	be	reduced
in	size,	but	 the	various	elements	of	 the	figure	(in	particular,	 label	 text	and	plot
symbols)	need	to	fit	together.	In	Figure	24.4,	the	points	used	to	visualize	the	data
are	 too	 small	 relative	 to	 the	 text.	 Once	 we	 fix	 this	 issue,	 the	 figure	 becomes
acceptable	again	(Figure	24.5).



Figure	24.4:	Percent	body	fat	versus	height	in	male	athletes.	The	text	elements
are	fairly	large,	and	their	size	may	be	appropriate	if	the	figure	is	meant	to	be

reproduced	at	a	very	small	scale.	However,	the	figure	overall	is	not	balanced;	the
points	are	too	small	relative	to	the	text	elements.	Data	source:	Telford	and

Cunningham	(1991)



Figure	24.5:	Percent	body	fat	versus	height	in	male	athletes.	All	figure	elements
are	sized	such	that	the	figure	is	balanced	and	can	be	reproduced	at	a	small	scale.

Data	source:	Telford	and	Cunningham	(1991)

You	may	look	at	Figure	24.5	and	find	everything	too	big.	However,	keep	in	mind
that	it	is	meant	to	be	scaled	down.	Scale	the	figure	down	so	that	it	is	only	an	inch
or	 two	 in	width,	 and	 it	 looks	 just	 fine.	 In	 fact,	 at	 that	 scaling	 this	 is	 the	 only
figure	in	this	chapter	that	looks	good.

Always	look	at	scaled-down	versions	of	your	figures	to	make	sure	the	axis	labels
are	appropriately	sized.

I	think	there	is	a	simple	psychological	reason	for	why	we	routinely	make	figures
whose	axis	labels	are	too	small,	and	it	relates	to	large,	high-resolution	computer
monitors.	We	routinely	preview	figures	on	the	computer	screen,	and	often	we	do
so	 while	 the	 figure	 takes	 up	 a	 large	 amount	 of	 space	 on	 the	 screen.	 In	 this
viewing	mode,	even	comparatively	small	 text	 seems	perfectly	 fine	and	 legible,
and	large	text	can	seem	awkward	and	overpowering.	In	fact,	if	you	take	the	first
figure	 from	 this	 chapter	 and	magnify	 it	 to	 the	 point	 where	 it	 fills	 your	 entire
screen,	 you	 will	 likely	 think	 that	 it	 looks	 just	 fine.	 The	 solution	 is	 to	 always
make	sure	 that	you	 look	at	your	 figures	at	a	 realistic	print	size.	You	can	either
zoom	out	so	they	are	only	three	to	five	inches	in	width	on	your	screen,	or	you
can	go	 to	 the	other	 side	of	your	 room	and	check	whether	 the	 figure	 still	 looks
good	from	a	substantial	distance.

##	Warning:	package	'colorspace'	was	built	under	R	version	3.5.3

##	Warning:	package	'ggplot2'	was	built	under	R	version	3.5.3

##	Warning:	package	'dplyr'	was	built	under	R	version	3.5.3

##	Warning:	package	'forcats'	was	built	under	R	version	3.5.3

##	Warning:	package	'ggridges'	was	built	under	R	version	3.5.3



25	Avoid	line	drawings
Whenever	 possible,	 visualize	 your	 data	 with	 solid,	 colored	 shapes	 rather	 than
with	 lines	 that	outline	 those	 shapes.	Solid	 shapes	are	more	easily	perceived	as
coherent	objects,	are	less	likely	to	create	visual	artifacts	or	optical	illusions,	and
do	 more	 immediately	 convey	 amounts	 than	 do	 outlines.	 In	 my	 experience,
visualizations	using	 solid	 shapes	 are	both	 clearer	 and	more	pleasant	 to	 look	 at
than	equivalent	versions	 that	use	 line	drawings.	Thus,	 I	avoid	 line	drawings	as
much	as	possible.	However,	I	want	to	emphasize	that	this	recommendation	does
not	supersede	the	principle	of	proportional	ink	(Chapter	17).

Line	 drawings	 have	 a	 long	 history	 in	 the	 field	 of	 data	 visualization	 because
throughout	 most	 of	 the	 20th	 century,	 scientific	 visualizations	 were	 drawn	 by
hand	and	had	 to	be	 reproducible	 in	black-and-white.	This	precluded	 the	use	of
areas	filled	with	solid	colors,	including	solid	gray-scale	fills.	Instead,	filled	areas
were	 sometimes	 simulated	 by	 applying	 hatch,	 cross-hatch,	 or	 stipple	 patterns.
Early	plotting	software	imitated	the	hand-drawn	simulations	and	similarly	made
extensive	 use	 of	 line	 drawings,	 dashed	 or	 dotted	 line	 patterns,	 and	 hatching.
While	 modern	 visualization	 tools	 and	 modern	 reproduction	 and	 publishing
platforms	 have	 none	 of	 the	 earlier	 limitations,	many	 plotting	 applications	 still
default	 to	 outlines	 and	 empty	 shapes	 rather	 than	 filled	 areas.	 To	 raise	 your
awareness	of	this	issue,	here	I'll	show	you	several	examples	of	the	same	figures
drawn	with	both	lines	and	filled	shapes.

The	most	common	and	at	the	same	time	most	inappropriate	use	of	line	drawings
is	seen	in	histograms	and	bar	plots.	The	problem	with	bars	drawn	as	outlines	is
that	 it	 is	not	 immediately	apparent	which	side	of	any	given	 line	 is	 inside	a	bar
and	which	side	is	outside.	As	a	consequence,	 in	particular	when	there	are	gaps
between	bars,	we	end	up	with	a	confusing	visual	pattern	 that	detracts	from	the
main	message	of	the	figure	(Figure	25.1).	Filling	the	bars	with	a	light	color,	or
with	gray	if	color	reproduction	is	not	possible,	avoids	this	problem	(Figure	25.2).

(ref:titanic-ages-lines)	Histogram	of	the	ages	of	Titanic	passengers,	drawn	with
empty	bars.	The	empty	bars	create	a	confusing	visual	pattern.	In	the	center	of	the
histogram,	it	is	difficult	to	tell	which	parts	are	inside	of	bars	and	which	parts	are
outside.



Figure	25.1:	(ref:titanic-ages-lines)

Figure	25.2:	The	same	histogram	of	Figure	25.1,	now	drawn	with	filled	bars.
The	shape	of	the	age	distribution	is	much	more	easily	discernible	in	this

variation	of	the	figure.



Next,	 let's	 take	 a	 look	 at	 an	 old-school	 density	 plot.	 I'm	 showing	 density
estimates	for	the	sepal-length	distributions	of	three	species	of	iris,	drawn	entirely
in	black-and-white	as	a	line	drawing	(Figure	25.3).	The	distributions	are	shown
just	by	their	outlines,	and	because	the	figure	is	 in	black-and-white,	we're	using
different	 line	 styles	 to	 distinguish	 them.	 This	 figure	 has	 two	 main	 problems.
First,	 the	dashed	 line	styles	do	not	provide	a	clear	separation	between	 the	area
under	the	curve	and	the	area	above	it.	While	our	visual	system	is	quite	good	at
connecting	the	individual	 line	elements	 into	a	continuous	line,	 the	dashed	lines
nevertheless	look	porous	and	do	not	serve	as	a	strong	boundary	of	the	enclosed
area.	 Second,	 because	 the	 lines	 intersect	 and	 the	 areas	 they	 enclose	 are	 not
shaded,	it	is	difficult	to	segment	the	different	densities	from	the	six	distinct	shape
outlines.	This	effect	would	have	been	even	stronger	had	I	used	solid	rather	than
dashed	lines	for	all	three	distributions.

Figure	25.3:	Density	estimates	of	the	sepal	lengths	of	three	different	iris	species.
The	broken	line	styles	used	for	versicolor	and	virginica	detract	from	the

perception	that	the	areas	under	the	curves	are	distinct	from	the	areas	above	them.

We	can	attempt	 to	address	 the	problem	of	porous	boundaries	by	using	colored
lines	 rather	 than	dashed	 lines	 (Figure	25.4).	However,	 the	 density	 areas	 in	 the
resulting	 plot	 still	 have	 little	 visual	 presence.	 Overall,	 I	 find	 the	 version	 with
filled	areas	(Figure	25.5)	the	most	clear	and	intuitive.	It	is	important,	however,	to
make	 the	filled	areas	partially	 transparent,	so	 that	 the	complete	distribution	for



each	species	is	visible.

Figure	25.4:	Density	estimates	of	the	sepal	lengths	of	three	different	iris	species.
By	using	solid,	colored	lines	we	have	solved	the	problem	of	Figure	25.3	that	the
areas	below	and	above	the	lines	seem	to	be	connected.	However,	we	still	don't

have	a	strong	sense	of	the	size	of	the	area	under	each	curve.



Figure	25.5:	Density	estimates	of	the	sepal	lengths	of	three	different	iris	species,
shown	as	partially	transparent	shaded	areas.

Line	 drawings	 also	 arise	 in	 the	 context	 of	 scatter	 plots,	 when	 different	 point
types	are	drawn	as	open	circles,	triangles,	crosses,	etc.	As	an	example,	consider
Figure	 25.6.	 The	 figure	 contains	 a	 lot	 of	 visual	 noise,	 and	 the	 different	 point
types	 do	 not	 strongly	 separate	 from	 each	 other.	Drawing	 the	 same	 figure	with
solidly	colored	shapes	addresses	this	issue	(Figure	25.7).

Figure	25.6:	City	fuel	economy	versus	engine	displacement,	for	cars	with	front-
wheel	drive	(FWD),	rear-wheel	drive	(RWD),	and	all-wheel	drive	(4WD).	The
different	point	styles,	all	black-and-white	line-drawn	symbols,	create	substantial

visual	noise	and	make	it	difficult	to	read	the	figure.



Figure	25.7:	City	fuel	economy	versus	engine	displacement.	By	using	both
different	colors	and	different	solid	shapes	for	the	different	drive-train	variants,
this	figure	clearly	separates	the	drive-train	variants	while	remaining	reproducible

in	gray	scale	if	needed.

I	 strongly	 prefer	 solid	 points	 over	 open	 points,	 because	 the	 solid	 points	 have
much	more	visual	presence.	The	argument	that	I	sometimes	hear	in	favor	of	open
points	is	that	they	help	with	overplotting,	since	the	empty	areas	in	the	middle	of
each	 point	 allow	 us	 to	 see	 other	 points	 that	 may	 be	 lying	 underneath.	 In	 my
opinion,	 the	 benefit	 from	 being	 able	 to	 see	 overplotted	 points	 does	 not,	 in
general,	 outweigh	 the	detriment	 from	 the	 added	visual	 noise	of	 open	 symbols.
There	 are	 other	 approaches	 for	 dealing	 with	 overplotting,	 see	 Chapter	 18	 for
some	suggestions.

Finally,	 let's	 consider	 boxplots.	 Boxplots	 are	 commonly	 drawn	 with	 empty
boxes,	as	in	Figure	25.8.	I	prefer	a	light	shading	for	the	box,	as	in	Figure	25.9.
The	 shading	 separates	 the	 box	more	 clearly	 from	 the	 plot	 background,	 and	 it
helps	in	particular	when	we're	showing	many	boxplots	right	next	to	each	other,
as	is	the	case	in	Figures	25.8	and	25.9.	In	Figure	25.8,	the	large	number	of	boxes
and	 lines	 can	 again	 create	 the	 illusion	 of	 background	 areas	 outside	 of	 boxes
being	actually	on	the	inside	of	some	other	shape,	just	as	we	saw	in	Figure	25.1.



This	problem	is	eliminated	in	Figure	25.9.	I	have	sometimes	heard	the	critique
that	shading	the	inside	of	the	box	gives	too	much	weight	to	the	center	50%	of	the
data,	but	I	don't	buy	that	argument.	It	 is	inherent	to	the	boxplot,	shaded	box	or
not,	 to	give	more	weight	 to	 the	center	50%	of	 the	data	 than	 to	 the	 rest.	 If	you
don't	 want	 this	 emphasis,	 then	 don't	 use	 a	 boxplot.	 Instead,	 use	 a	 violin	 plot,
jittered	points,	or	a	sina	plot	(Chapter	9).

Figure	25.8:	Distributions	of	daily	mean	temperatures	in	Lincoln,	Nebraska,	in
2016.	Boxes	are	drawn	in	the	traditional	way,	without	shading.



Figure	25.9:	Distributions	of	daily	mean	temperatures	in	Lincoln,	Nebraska,	in
2016.	By	giving	the	boxes	a	light	gray	shading,	we	can	make	them	stand	out

better	against	the	background.



26	Don't	go	3D
3D	plots	are	quite	popular,	in	particular	in	business	presentations	but	also	among
academics.	They	are	also	almost	always	inappropriately	used.	It	is	rare	that	I	see
a	3D	plot	that	couldn't	be	improved	by	turning	it	into	a	regular	2D	figure.	In	this
chapter,	I	will	explain	why	3D	plots	have	problems,	why	they	generally	are	not
needed,	and	in	what	limited	circumstances	3D	plots	may	be	appropriate.

26.1	Avoid	gratuitous	3D

Many	visualization	softwares	enable	you	to	spruce	up	your	plots	by	turning	the
plots'	graphical	elements	into	three-dimensional	objects.	Most	commonly,	we	see
pie	charts	turned	into	disks	rotated	in	space,	bar	plots	turned	into	columns,	and
line	 plots	 turned	 into	 bands.	 Notably,	 in	 none	 of	 these	 cases	 does	 the	 third
dimension	convey	any	actual	data.	3D	is	used	simply	to	decorate	and	adorn	the
plot.	I	consider	this	use	of	3D	as	gratuitous.	It	is	unequivocally	bad	and	should
be	erased	from	the	visual	vocabulary	of	data	scientists.

The	 problem	with	 gratuitous	 3D	 is	 that	 the	 projection	 of	 3D	 objects	 into	 two
dimensions	 for	 printing	 or	 display	 on	 a	monitor	 distorts	 the	 data.	 The	 human
visual	system	tries	to	correct	for	this	distortion	as	it	maps	the	2D	projection	of	a
3D	 image	 back	 into	 a	 3D	 space.	 However,	 this	 correction	 can	 only	 ever	 be
partial.	 As	 an	 example,	 let's	 take	 a	 simple	 pie	 chart	 with	 two	 slices,	 one
representing	25%	of	the	data	and	one	75%,	and	rotate	this	pie	in	space	(Figure
26.1).	As	we	change	the	angle	at	which	we're	looking	at	the	pie,	the	size	of	the
slices	seems	to	change	as	well.	In	particular,	the	25%	slice,	which	is	located	in
the	front	of	the	pie,	looks	much	bigger	than	25%	when	we	look	at	the	pie	from	a
flat	angle	(Figure	26.1a).



Figure	26.1:	The	same	3D	pie	chart	shown	from	four	different	angles.	Rotating	a
pie	into	the	third	dimension	makes	pie	slices	in	the	front	appear	larger	than	they
really	are	and	pie	slices	in	the	back	appear	smaller.	Here,	in	parts	(a),	(b),	and
(c),	the	blue	slice	corresponding	to	25%	of	the	data	visually	occupies	more	than
25%	of	the	area	representing	the	pie.	Only	part	(d)	is	an	accurate	representation

of	the	data.

Similar	 problems	 arise	 for	 other	 types	 of	 3D	 plot.	 Figure	 26.2	 shows	 the
breakdown	of	Titanic	passengers	by	class	and	gender	using	3D	bars.	Because	of
the	way	the	bars	are	arranged	relative	to	the	axes,	the	bars	all	look	shorter	than
they	actually	are.	For	example,	 there	were	322	passengers	total	 traveling	in	1st
class,	yet	Figure	26.2	suggests	that	the	number	was	less	than	300.	This	illusion
arises	because	the	columns	representing	the	data	are	 located	at	a	distance	from
the	two	back	surfaces	on	which	the	gray	horizontal	lines	are	drawn.	To	see	this
effect,	consider	extending	any	of	the	bottom	edges	of	one	of	the	columns	until	it
hits	 the	 lowest	gray	 line,	which	 represents	0.	Then,	 imagine	doing	 the	same	 to
any	of	the	top	edges,	and	you'll	see	that	all	columns	are	taller	than	they	appear	at



first	glance.	(See	Figure	6.10	in	Chapter	6	for	a	more	reasonable	2D	version	of
this	figure.)

(ref:titanic-3d)	Numbers	of	female	and	male	passengers	on	the	Titanic	traveling
in	1st,	2nd,	and	3rd	class,	shown	as	a	3D	stacked	bar	plot.	The	total	numbers	of
passengers	 in	 1st,	 2nd,	 and	 3rd	 class	 are	 322,	 279,	 and	 711,	 respectively	 (see
Figure	6.10).	Yet	 in	 this	plot,	 the	1st	 class	bar	appears	 to	 represent	 fewer	 than
300	passengers,	the	3rd	class	bar	appears	to	represent	fewer	than	700	passengers,
and	the	2nd	class	bar	seems	to	be	closer	to	210--220	passengers	than	the	actual
279	passengers.	Furthermore,	the	3rd	class	bar	visually	dominates	the	figure	and
makes	the	number	of	passengers	in	3rd	class	appear	larger	than	it	actually	is.

Figure	26.2:	(ref:titanic-3d)

26.2	Avoid	3D	position	scales

While	visualizations	with	gratuitous	3D	can	easily	be	dismissed	as	bad,	it	is	less
clear	what	to	think	of	visualizations	using	three	genuine	position	scales	(x,	y,	and
z)	to	represent	data.	In	this	case,	the	use	of	the	third	dimension	serves	an	actual



purpose.	Nevertheless,	the	resulting	plots	are	frequently	difficult	to	interpret,	and
in	my	mind	they	should	be	avoided.

Consider	a	3D	scatter	plot	of	fuel	efficiency	versus	displacement	and	power	for
32	cars.	We	have	seen	this	dataset	previously	in	Chapter	2,	Figure	2.5.	Here,	we
plot	displacement	along	 the	x	 axis,	power	along	 the	y	 axis,	 and	 fuel	 efficiency
along	the	z	axis,	and	we	represent	each	car	with	a	dot	(Figure	26.3).	Even	though
this	3D	visualization	is	shown	from	four	different	perspectives,	it	 is	difficult	to
envision	how	exactly	the	points	are	distributed	in	space.	I	find	part	(d)	of	Figure
26.3	 particularly	 confusing.	 It	 almost	 seems	 to	 show	 a	 different	 dataset,	 even
though	nothing	has	changed	other	than	the	angle	from	which	we	look	at	the	dots.



Figure	26.3:	Fuel	efficiency	versus	displacement	and	power	for	32	cars	(1973–
74	models).	Each	dot	represents	one	car,	and	the	dot	color	represents	the	number
of	cylinders	of	the	car.	The	four	panels	(a)--(d)	show	exactly	the	same	data	but

use	different	perspectives.	Data	source:	Motor	Trend,	1974.

The	 fundamental	problem	with	 such	3D	visualizations	 is	 that	 they	 require	 two
separate,	successive	data	transformations.	The	first	transformation	maps	the	data



from	the	data	space	into	the	3D	visualization	space,	as	discussed	in	Chapters	2
and	3	in	the	context	of	position	scales.	The	second	one	maps	the	data	from	the
3D	 visualization	 space	 into	 the	 2D	 space	 of	 the	 final	 figure.	 (This	 second
transformation	obviously	does	not	occur	 for	visualizations	 shown	 in	 a	 true	3D
environment,	such	as	when	shown	as	physical	sculptures	or	3D-printed	objects.
My	primary	objection	here	is	 to	3D	visualizations	shown	on	2D	displays.)	The
second	 transformation	 is	 non-invertible,	 because	 each	 point	 on	 the	 2D	display
corresponds	 to	 a	 line	 of	 points	 in	 the	 3D	 visualization	 space.	 Therefore,	 we
cannot	uniquely	determine	where	in	3D	space	any	particular	data	point	lies.

Our	visual	system	nevertheless	attempts	 to	 invert	 the	3D	to	2D	transformation.
However,	this	process	is	unreliable,	fraught	with	error,	and	highly	dependent	on
appropriate	 cues	 in	 the	 image	 that	 convey	 some	 sense	of	 three-dimensionality.
When	we	remove	these	cues	the	inversion	becomes	entirely	impossible.	This	can
be	 seen	 in	Figure	26.4,	which	 is	 identical	 to	Figure	26.3	 except	 all	 depth	 cues
have	been	 removed.	The	 result	 is	 four	 random	arrangements	of	points	 that	we
cannot	 interpret	at	all	and	 that	aren't	even	easily	 relatable	 to	each	other.	Could
you	 tell	 which	 points	 in	 part	 (a)	 correspond	 to	 which	 points	 in	 part	 (b)?	 I
certainly	cannot.



Figure	26.4:	Fuel	efficiency	versus	displacement	and	power	for	32	cars	(1973–
74	models).	The	four	panels	(a)--(d)	correspond	to	the	same	panels	in	Figure
26.3,	only	that	all	grid	lines	providing	depth	cues	have	been	removed.	Data

source:	Motor	Trend,	1974.

Instead	 of	 applying	 two	 separate	 data	 transformations,	 one	 of	 which	 is	 non-
invertible,	 I	 think	 it	 is	generally	better	 to	 just	apply	one	appropriate,	 invertible



transformation	and	map	the	data	directly	into	2D	space.	It	is	rarely	necessary	to
add	 a	 third	 dimension	 as	 a	 position	 scale,	 since	 variables	 can	 also	 be	mapped
onto	 color,	 size,	 or	 shape	 scales.	 For	 example,	 in	 Chapter	 2,	 I	 plotted	 five
variables	of	the	fuel-efficency	dataset	at	once	yet	used	only	two	position	scales
(Figure	2.5).

Here,	I	want	to	show	two	alternative	ways	of	plotting	exactly	the	variables	used
in	Figure	26.3.	First,	 if	we	primarily	care	about	 fuel	efficiency	as	 the	response
variable,	we	can	plot	it	twice,	once	against	displacement	and	once	against	power
(Figure	26.5).	Second,	if	we	are	more	interested	in	how	displacement	and	power
relate	to	each	other,	with	fuel	efficiency	as	a	secondary	variable	of	interest,	we
can	plot	power	versus	displacement	and	map	fuel	efficiency	onto	the	size	of	the
dots	(Figure	26.6).	Both	figures	are	more	useful	and	less	confusing	than	Figure
26.3.

Figure	26.5:	Fuel	efficiency	versus	displacement	(a)	and	power	(b).	Data	source:
Motor	Trend,	1974.



Figure	26.6:	Power	versus	displacement	for	32	cars,	with	fuel	efficiency
represented	by	dot	size.	Data	source:	Motor	Trend,	1974.

You	may	wonder	whether	 the	 problem	with	 3D	 scatter	 plots	 is	 that	 the	 actual
data	 representation,	 the	 dots,	 do	 not	 themselves	 convey	 any	 3D	 information.
What	 happens,	 for	 example,	 if	 we	 use	 3D	 bars	 instead?	 Figure	 26.7	 shows	 a
typical	dataset	that	one	might	visualize	with	3D	bars,	the	mortality	rates	in	1940
Virginia	stratified	by	age	group	and	by	gender	and	housing	location.	We	can	see
that	 indeed	 the	3D	bars	help	us	 interpret	 the	plot.	 It	 is	unlikely	 that	one	might
mistake	 a	 bar	 in	 the	 foreground	 for	 one	 in	 the	 background	 or	 vise	 versa.
Nevertheless,	the	problems	discussed	in	the	context	of	Figure	26.2	exist	here	as
well.	It	is	difficult	to	judge	exactly	how	tall	the	individual	bars	are,	and	it	is	also
difficult	 to	 make	 direct	 comparisons.	 For	 example,	 was	 the	 mortality	 rate	 of
urban	females	in	the	65--69	age	group	higher	or	lower	than	that	of	urban	males
in	the	60--64	age	group?



Figure	26.7:	Mortality	rates	in	Virginia	in	1940,	visualized	as	a	3D	bar	plot.
Mortality	rates	are	shown	for	four	groups	of	people	(urban	and	rural	females	and
males)	and	five	age	categories	(50--54,	55--59,	60--64,	65--69,	70--74),	and	they
are	reported	in	units	of	deaths	per	1000	persons.	This	figure	is	labeled	as	"bad"

because	the	3D	perspective	makes	the	plot	difficult	to	read.	Data	source:
Molyneaux,	Gilliam,	and	Florant	(1947)

In	 general,	 it	 is	 better	 to	 use	 Trellis	 plots	 (Chapter	 21)	 instead	 of	 3D
visualizations.	 The	 Virginia	 mortality	 dataset	 requires	 only	 four	 panels	 when
shown	 as	 Trellis	 plot	 (Figure	 26.8).	 I	 consider	 this	 figure	 clear	 and	 easy	 to
interpret.	It	is	immediately	obvious	that	mortality	rates	were	higher	among	men
than	among	women,	and	also	that	urban	males	seem	to	have	had	higher	mortality
rates	 than	 rural	 males	 whereas	 no	 such	 trend	 is	 apparent	 for	 urban	 and	 rural
females.



Figure	26.8:	Mortality	rates	in	Virginia	in	1940,	visualized	as	a	Trellis	plot.
Mortality	rates	are	shown	for	four	groups	of	people	(urban	and	rural	females	and
males)	and	five	age	categories	(50--54,	55--59,	60--64,	65--69,	70--74),	and	they

are	reported	in	units	of	deaths	per	1000	persons.	Data	source:	Molyneaux,
Gilliam,	and	Florant	(1947)

26.3	Appropriate	use	of	3D	visualizations

Visualizations	using	3D	position	scales	can	sometimes	be	appropriate,	however.
First,	 the	 issues	described	 in	 the	preceding	 section	 are	of	 lesser	 concern	 if	 the
visualization	is	interactive	and	can	be	rotated	by	the	viewer,	or	alternatively,	if	it
is	 shown	 in	a	VR	or	augmented	 reality	environment	where	 it	 can	be	 inspected
from	multiple	angles.	Second,	even	if	the	visualization	isn't	interactive,	showing
it	slowly	rotating,	rather	than	as	a	static	image	from	one	perspective,	will	allow
the	viewer	to	discern	where	in	3D	space	different	graphical	elements	reside.	The
human	brain	is	very	good	at	reconstructing	a	3D	scene	from	a	series	of	images
taken	from	different	angles,	and	the	slow	rotation	of	the	graphic	provides	exactly
these	images.

Finally,	it	makes	sense	to	use	3D	visualizations	when	we	want	to	show	actual	3D



objects	 and/or	 data	mapped	 onto	 them.	 For	 example,	 showing	 the	 topographic
relief	of	a	mountainous	island	is	a	reasonable	choice	(Figure	26.9).	Similarly,	if
we	 want	 to	 visualize	 the	 evolutionary	 sequence	 conservation	 of	 a	 protein
mapped	onto	 its	 structure,	 it	makes	sense	 to	show	 the	structure	as	a	3D	object
(Figure	26.10).	In	either	case,	however,	these	visualizations	would	still	be	easier
to	interpret	if	they	were	shown	as	rotating	animations.	While	this	is	not	possible
in	traditional	print	publications,	it	can	be	done	easily	when	posting	figures	on	the
web	or	when	giving	presentations.



Figure	26.9:	Relief	of	the	Island	of	Corsica	in	the	Mediterranean	Sea.	Data
source:	Copernicus	Land	Monitoring	Service



Figure	26.10:	Patterns	of	evolutionary	variation	in	a	protein.	The	colored	tube
represents	the	backbone	of	the	protein	Exonuclease	III	from	the	bacterium

Escherichia	coli	(Protein	Data	Bank	identifier:	1AKO).	The	coloring	indicates
the	evolutionary	conservation	of	the	individual	sites	in	this	protein,	with	dark

coloring	indicating	conserved	amino	acids	and	light	coloring	indicating	variable
amino	acids.	Data	source:	Marcos	and	Echave	(2015)
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27	Understanding	the	most	commonly
used	image	file	formats
Anybody	who	 is	making	 figures	 for	 data	 visualization	will	 eventually	 have	 to
know	a	few	things	about	how	figures	are	stored	on	the	computer.	There	are	many
different	 image	 file	 formats,	 and	 each	 has	 its	 own	 set	 of	 benefits	 and
disadvantages.	 Choosing	 the	 right	 file	 format	 and	 the	 right	 workflow	 can
alleviate	many	figure-preparation	headaches.

My	 own	 preference	 is	 to	 use	 pdf	 for	 high-quality	 publication-ready	 files	 and
generally	 whenever	 possible,	 png	 for	 online	 documents	 and	 other	 scenarios
where	bitmap	graphics	are	required,	and	jpeg	as	the	final	resort	if	 the	png	files
are	 too	 large.	 In	 the	following,	 I	explain	 the	key	differences	between	these	file
formats	and	their	respective	benefits	and	drawbacks.

27.1	Bitmap	and	vector	graphics

The	most	important	difference	between	the	various	graphics	formats	is	whether
they	 are	 bitmap	 or	 vector	 (Table	 27.1).	 Bitmaps	 or	 raster	 graphics	 store	 the
image	as	a	grid	of	individual	points	(called	pixels),	each	with	a	specified	color.
By	 contrast,	 vector	 graphics	 store	 the	 geometric	 arrangement	 of	 individual
graphical	elements	in	the	image.	Thus,	a	vector	image	contains	information	such
as	"there's	a	black	line	from	the	top	left	corner	to	the	bottom	right	corner,	and	a
red	line	from	the	bottom	left	corner	to	the	top	right	corner,"	and	the	actual	image
is	recreated	on	the	fly	as	it	is	displayed	on	screen	or	printed.

Table	27.1:	Commonly	used	image	file	formats
Acronym Name Type Application
pdf Portable	Document	Format vector general	purpose
eps Encapsulated	PostScript vector general	purpose,	outdated;	use	pdf
svg Scalable	Vector	Graphics vector online	use

png
Portable	Network
Graphics bitmap optimized	for	line	drawings



jpeg Joint	Photographic	Experts
Group

bitmap optimized	for	photographic
images

tiff Tagged	Image	File	Format bitmap print	production,	accurate	colorreproduction

raw Raw	Image	File bitmap digital	photography,	needs	post-processing

gif Graphics	Interchange
Format bitmap outdated	for	static	figures,	Ok	foranimations

Vector	 graphics	 are	 also	 called	 "resolution-independent,"	 because	 they	 can	 be
magnified	to	arbitrary	size	without	losing	detail	or	sharpness.	See	Figure	27.1	for
a	demonstration.

Figure	27.1:	Illustration	of	the	key	difference	between	vector	graphics	and
bitmaps.	(a)	Original	image.	The	black	square	indicates	the	area	we	are

magnifying	in	parts	(b)	and	(c).	(b)	Increasing	magnification	of	the	highlighted
area	from	part	(a)	when	the	image	has	been	stored	as	a	bitmap	graphic.	We	can
see	how	the	image	becomes	increasingly	pixelated	as	we	zoom	in	further.	(c)
Increasing	magnification	of	a	vector	representation	of	the	image.	The	image

maintains	perfect	sharpness	at	arbitrary	magnification	levels.

Vector	graphics	have	two	downsides	that	can	and	often	do	cause	trouble	in	real-
world	applications.	First,	because	vector	graphics	are	redrawn	on	the	fly	by	the
graphics	 program	with	which	 they	 are	 displayed,	 it	 can	 happen	 that	 there	 are
differences	in	how	the	same	graphic	looks	in	two	different	programs,	or	on	two
different	computers.	This	problem	occurs	most	frequently	with	text,	for	example
when	the	required	font	is	not	available	and	the	rendering	software	substitutes	a



different	font.	Font	substitutions	will	typically	allow	the	viewer	to	read	the	text
as	intended,	but	the	resulting	image	rarely	looks	good.	There	are	ways	to	avoid
these	problems,	such	as	outlining	or	embedding	all	fonts	 in	a	pdf	file,	but	 they
may	require	special	software	and/or	special	technical	knowledge	to	achieve.	By
contrast,	bitmap	images	will	always	look	the	same.

Second,	 for	 very	 large	 and/or	 complex	 figures,	 vector	 graphics	 can	 grow	 to
enormous	file	sizes	and	be	slow	to	render.	For	example,	a	scatter	plot	of	millions
of	data	points	will	contain	the	x	and	y	coordinates	of	every	individual	point,	and
each	point	needs	to	be	drawn	when	the	image	is	rendered,	even	if	points	overlap
and/or	are	hidden	by	other	graphical	elements.	As	a	consequence,	the	file	may	be
many	megabytes	 in	 size,	 and	 it	may	 take	 the	 rendering	 software	 some	 time	 to
display	the	figure.	When	I	was	a	postdoc	in	the	early	2000s,	I	once	created	a	pdf
file	that	at	the	time	took	almost	an	hour	to	display	in	the	Acrobat	reader.	While
modern	computers	are	much	faster	and	rendering	times	of	many	minutes	are	all
but	 unheard	 of	 these	 days,	 even	 a	 rendering	 time	 of	 a	 few	 seconds	 can	 be
disruptive	if	you	want	to	embed	your	figure	into	a	larger	document	and	your	pdf
reader	grinds	to	a	halt	every	time	you	display	the	page	with	that	one	offending
figure.	Of	course,	on	 the	 flip	side,	 simple	 figures	with	only	a	small	number	of
elements	 (a	 few	data	points	and	some	 text,	 say)	will	often	be	much	smaller	as
vector	graphics	than	as	bitmaps,	and	the	viewing	software	may	even	render	such
figures	faster	than	it	would	the	corresponding	bitmap	images.

27.2	Lossless	and	lossy	compression	of	bitmap
graphics

Most	 bitmap	 file	 formats	 employ	 some	 form	 of	 data	 compression	 to	 keep	 file
sizes	manageable.	There	are	two	fundamental	types	of	compression:	lossless	and
lossy.	Lossless	compression	guarantees	 that	 the	compressed	 image	 is	pixel-for-
pixel	 identical	 to	 the	 original	 image,	whereas	 lossy	 compression	 accepts	 some
image	degradation	in	return	for	smaller	file	sizes.

To	understand	when	using	either	lossless	or	lossy	compression	is	appropriate,	it
is	 helpful	 to	 have	 a	 basic	 understanding	 of	 how	 these	 different	 compression
algorithms	 work.	 Let's	 first	 consider	 lossless	 compression.	 Imagine	 an	 image
with	a	black	background,	where	large	areas	of	the	image	are	solid	black	and	thus
many	 black	 pixels	 appear	 right	 next	 to	 each	 other.	 Each	 black	 pixel	 can	 be
represented	by	three	zeroes	 in	a	row:	0	0	0,	representing	zero	intensities	 in	 the



red,	green,	and	blue	color	channels	of	the	image.	The	areas	of	black	background
in	 the	 image	 correspond	 to	 thousands	 of	 zeros	 in	 the	 image	 file.	Now	 assume
somewhere	 in	 the	 image	 are	 1000	 consecutive	 black	 pixels,	 corresponding	 to
3000	zeros.	Instead	of	writing	out	all	these	zeros,	we	could	store	simply	the	total
number	of	zeros	we	need,	e.g.	by	writing	3000	0.	In	this	way,	we	have	conveyed
the	exact	same	information	with	only	two	numbers,	 the	count	(here,	3000)	and
the	 value	 (here,	 0).	Over	 the	 years,	many	 clever	 tricks	 along	 these	 lines	 have
been	 developed,	 and	 modern	 lossless	 image	 formats	 (such	 as	 png)	 can	 store
bitmap	 data	 with	 impressive	 efficiency.	 However,	 all	 lossless	 compression
algorithms	 perform	 best	 when	 images	 have	 large	 areas	 of	 uniform	 color,	 and
therefore	Table	27.1	lists	png	as	optimized	for	line	drawings.

Photographic	images	rarely	have	multiple	pixels	of	identical	color	and	brightness
right	next	to	each	other.	Instead	they	have	gradients	and	other	somewhat	regular
patterns	 on	 many	 different	 scales.	 Therefore,	 lossless	 compression	 of	 these
images	often	doesn't	work	very	well,	and	lossy	compression	has	been	developed
as	an	alternative.	The	key	 idea	of	 lossy	compression	 is	 that	 some	details	 in	an
image	 are	 too	 subtle	 for	 the	 human	 eye,	 and	 those	 can	 be	 discarded	 without
obvious	 degradation	 in	 the	 image	 quality.	 For	 example,	 consider	 a	 gradient	 of
1000	pixels,	each	with	a	slightly	different	color	value.	Chances	are	the	gradient
will	 look	 nearly	 the	 same	 if	 it	 is	 drawn	 with	 only	 200	 different	 colors	 and
coloring	every	five	adjacent	pixels	in	the	exact	same	color.

The	most	widely	used	lossy	image	format	is	jpeg	(Table	27.1),	and	indeed	many
digital	 cameras	 output	 images	 as	 jpeg	 by	 default.	 Jpeg	 compression	 works
exceptionally	well	for	photographic	images,	and	huge	reductions	in	file	size	can
often	be	 obtained	with	 very	 little	 degradation	 in	 image	quality.	However,	 jpeg
compression	 fails	 when	 images	 contain	 sharp	 edges,	 such	 as	 created	 by	 line
drawings	 or	 by	 text.	 In	 those	 cases,	 jpeg	 compression	 can	 result	 in	 very
noticeable	artifacts	(Figure	27.2).

(ref:jpeg-example)	 Illustration	 of	 jpeg	 artifacts.	 (a)	 The	 same	 image	 is
reproduced	 multiple	 times	 using	 increasingly	 severe	 jpeg	 compression.	 The
resulting	file	size	is	shown	in	red	text	above	each	image.	A	reduction	in	file	size
by	a	factor	of	10,	from	432KB	in	the	original	image	to	43KB	in	the	compressed
image,	results	in	only	minor	perceptible	reduction	in	image	quality.	However,	a
further	reduction	in	file	size	by	a	factor	of	2,	to	a	mere	25KB,	leads	to	numerous
visible	artifacts.	(b)	Zooming	in	to	the	most	highly	compressed	image	reveals	the
various	compression	artifacts.	Photo	credit:	Claus	O.	Wilke



Figure	27.2:	(ref:jpeg-example)

Even	if	jpeg	artifacts	are	sufficiently	subtle	that	they	are	not	immediately	visible
to	 the	 naked	 eye	 they	 can	 cause	 trouble,	 for	 example	 in	 print	 production.
Therefore,	 it	 is	 a	 good	 idea	 to	 avoid	 the	 jpeg	 format	 whenever	 possible.	 In
particular,	you	should	avoid	it	for	images	containing	line	drawings	or	text,	as	is
the	case	for	data	visualizations	or	screen	shots.	The	appropriate	format	for	those
images	is	png	or	tiff.	I	use	the	jpeg	format	exclusively	for	photographic	images.
And	if	an	image	contains	both	photographic	elements	and	line	drawings	or	text,
you	should	still	use	png	or	tiff.	The	worst	case	scenario	with	those	file	formats	is



that	your	 image	 files	grow	 large,	whereas	 the	worst	 case	 scenario	with	 jpeg	 is
that	your	final	product	looks	ugly.

27.3	Converting	between	image	formats

It	is	generally	possible	to	convert	any	image	format	into	any	other	image	format.
For	example,	on	a	Mac,	you	can	open	an	image	with	Preview	and	then	export	to
a	number	of	different	formats.	In	this	process,	though,	important	information	can
get	 lost,	 and	 information	 is	never	 regained.	For	 example,	 after	 saving	a	vector
graphic	 into	 a	 bitmap	 format,	 e.g.	 a	 pdf	 file	 as	 a	 jpeg,	 the	 resolution
independence	 that	 is	 a	 key	 feature	 of	 the	 vector	 graphic	 has	 been	 lost.
Conversely,	saving	a	jpeg	image	into	a	pdf	file	does	not	magically	turn	the	image
into	a	vector	graphic.	The	image	will	still	be	a	bitmap	image,	just	stored	inside
the	pdf	file.	Similarly,	converting	a	jpeg	file	into	a	png	file	does	not	remove	any
artifacts	that	may	have	been	introduced	by	the	jpeg	compression	algorithm.

It	 is	 therefore	 a	 good	 rule	 of	 thumb	 to	 always	 store	 the	 original	 image	 in	 the
format	 that	maintains	maximum	 resolution,	 accuracy,	 and	 flexibility.	Thus,	 for
data	visualizations,	either	create	your	figure	as	pdf	and	then	convert	into	png	or
jpg	when	necessary,	or	alternatively	store	as	high-resolution	png.	Similarly,	 for
images	 that	 are	 only	 available	 as	 bitmaps,	 such	 as	 digital	 photographs,	 store
them	 in	 a	 format	 that	 doesn't	 use	 lossy	 compression,	 or	 if	 that	 can't	 be	 done,
compress	 as	 little	 as	 possible.	Also,	 store	 the	 image	 in	 as	 high	 a	 resolution	 as
possible,	and	downscale	when	needed.
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28	Choosing	the	right	visualization
software
Throughout	this	book,	I	have	purposefully	avoided	one	critical	question	of	data
visualization:	How	do	we	actually	generate	our	 figures?	What	 tools	 should	we
use?	This	question	can	generate	heated	discussions,	as	many	people	have	strong
emotional	 bonds	 to	 the	 specific	 tools	 they	 are	 familiar	with.	 I	 have	often	 seen
people	vigorously	defend	their	own	preferred	tools	 instead	of	 investing	time	to
learn	 a	 new	 approach,	 even	 if	 the	 new	 approach	 has	 objective	 benefits.	And	 I
will	 say	 that	 sticking	 with	 the	 tools	 you	 know	 is	 not	 entirely	 unreasonable.
Learning	 any	 new	 tool	 will	 require	 time	 and	 effort,	 and	 you	 will	 have	 to	 go
through	a	painful	transition	period	where	getting	things	done	with	the	new	tool	is
much	more	difficult	 than	 it	was	with	 the	old	 tool.	Whether	going	 through	 this
period	is	worth	the	effort	can	usually	only	be	evaluated	in	retrospect,	after	one
has	made	the	investment	to	learn	the	new	tool.	Therefore,	regardless	of	the	pros
and	cons	of	different	 tools	and	approaches,	 the	overriding	principle	 is	 that	you
need	to	pick	a	tool	that	works	for	you.	If	you	can	make	the	figures	you	want	to
make,	without	excessive	effort,	then	that's	all	that	matters.

The	best	 visualization	 software	 is	 the	 one	 that	 allows	you	 to	make	 the	 figures
you	need.

Having	said	this,	I	do	think	there	are	general	principles	we	can	use	to	assess	the
relative	 merits	 of	 different	 approaches	 to	 producing	 visualizations.	 These
principles	roughly	break	down	by	how	reproducible	the	visualizations	are,	how
easy	it	is	to	rapidly	explore	the	data,	and	to	what	extent	the	visual	appearance	of
the	output	can	be	tweaked.

28.1	Reproducibility	and	repeatability

In	the	context	of	scientific	experiments,	we	refer	to	work	as	reproducible	if	the
overarching	scientific	 finding	of	 the	work	will	 remain	unchanged	 if	a	different
research	 group	 performs	 the	 same	 type	 of	 study.	 For	 example,	 if	 one	 research
group	 finds	 that	 a	 new	 pain	 medication	 reduces	 perceived	 headache	 pain
significantly	 without	 causing	 noticeable	 side	 effects	 and	 a	 different	 group



subsequently	 studies	 the	 same	medication	on	a	different	patient	group	and	has
the	same	findings,	then	the	work	is	reproducible.	By	contrast,	work	is	repeatable
if	 very	 similar	 or	 identical	measurements	 can	 be	 obtained	 by	 the	 same	 person
repeating	 the	 exact	 same	measurement	 procedure	 on	 the	 same	 equipment.	 For
example,	 if	 I	weigh	my	dog	 and	 find	 she	weighs	 41	 lbs	 and	 then	 I	weigh	her
again	 on	 the	 same	 scales	 and	 find	 again	 that	 she	 weighs	 41	 lbs,	 then	 this
measurement	is	repeatable.

With	minor	modifications,	we	can	apply	these	concepts	to	data	visualization.	A
visualization	 is	 reproducible	 if	 the	 plotted	 data	 are	 available	 and	 any	 data
transformations	that	may	have	been	applied	are	exactly	specified.	For	example,
if	you	make	a	figure	and	then	send	me	the	exact	data	that	you	plotted,	then	I	can
prepare	 a	 figure	 that	 looks	 substantially	 similar.	 We	 may	 be	 using	 slightly
different	 fonts	 or	 colors	 or	 point	 sizes	 to	 display	 the	 same	 data,	 so	 the	 two
figures	may	not	be	exactly	identical,	but	your	figure	and	mine	convey	the	same
message	 and	 therefore	 are	 reproductions	 of	 each	 other.	 A	 visualization	 is
repeatable,	on	 the	other	hand,	 if	 it	 is	possible	 to	recreate	 the	exact	same	visual
appearance,	 down	 to	 the	 last	 pixel,	 from	 the	 raw	 data.	 Strictly	 speaking,
repeatability	requires	that	even	if	there	are	random	elements	in	the	figure,	such
as	jitter	(Chapter	18),	those	elements	were	specified	in	a	repeatable	way	and	can
be	regenerated	at	a	future	date.	For	random	data,	repeatability	generally	requires
that	 we	 specify	 a	 particular	 random	 number	 generator	 for	 which	 we	 set	 and
record	a	seed.

Throughout	 this	 book,	we	have	 seen	many	 examples	 of	 figures	 that	 reproduce
but	 don't	 repeat	 other	 figures.	 For	 example,	 Chapter	 25	 shows	 several	 sets	 of
figures	where	all	figures	in	each	set	show	the	same	data	but	each	figure	in	each
set	 looks	somewhat	different.	Similarly,	Figure	28.1a	 is	a	 repeat	of	Figure	9.7,
down	 to	 the	 random	 jitter	 that	was	 applied	 to	 each	data	point,	whereas	Figure
28.1b	is	only	a	reproduction	of	that	figure.	Figure	28.1b	has	different	jitter	than
Figure	 9.7,	 and	 it	 also	 uses	 a	 sufficiently	 different	 visual	 design	 that	 the	 two
figures	 look	 quite	 distinct,	 even	 if	 they	 clearly	 convey	 the	 same	 information
about	the	data.



Figure	28.1:	Repeat	and	reproduction	of	a	figure.	Part	(a)	is	a	repeat	of	Figure
9.7.	The	two	figures	are	identical	down	to	the	random	jitter	that	was	applied	to
each	point.	By	contrast,	part	(b)	is	a	reproduction	but	not	a	repeat.	In	particular,

the	jitter	in	part	(b)	differs	from	the	jitter	in	part	(a)	or	in	Figure	9.7.

Both	 reproducibility	 and	 repeatability	 can	 be	 difficult	 to	 achieve	 when	 we're
working	with	interactive	plotting	software.	Many	interactive	programs	allow	you
to	 transform	 or	 otherwise	 manipulate	 the	 data	 but	 don't	 keep	 track	 of	 every
individual	 data	 transformation	 you	 perform,	 only	 of	 the	 final	 product.	 If	 you
make	 a	 figure	 using	 this	 kind	 of	 a	 program,	 and	 then	 somebody	 asks	 you	 to
reproduce	 the	 figure	 or	 create	 similar	 one	with	 a	 different	 data	 set,	 you	might
have	 difficulty	 to	 do	 so.	During	my	 years	 as	 a	 postdoc	 and	 a	 young	 assistant
professor,	I	used	an	interactive	program	for	all	my	scientific	visualizations,	and
this	exact	issue	happened	to	me	several	times.	For	example,	I	had	made	several
figures	for	a	scientific	manuscript.	When	I	wanted	to	revise	the	manuscript	a	few
months	 later	 and	 needed	 to	 reproduce	 a	 slightly	 altered	 version	 of	 one	 of	 the
figures,	I	realized	that	I	wasn't	quite	sure	anymore	how	I	had	made	the	original
figure	 in	 the	 first	 place.	 This	 experience	 has	 taught	 me	 to	 stay	 away	 from
interactive	programs	as	much	as	possible.	I	now	make	figures	programmatically,
by	 writing	 code	 (scripts)	 that	 generates	 the	 figures	 from	 the	 raw	 data.
Programmatically	 generated	 figures	 will	 generally	 be	 repeatable	 by	 anybody
who	 has	 access	 to	 the	 generating	 scripts	 and	 the	 programming	 language	 and
specific	libraries	used.

28.2	Data	exploration	versus	data	presentation

There	are	two	distinct	phases	of	data	visualization,	and	they	have	very	different
requirements.	The	first	 is	data	exploration.	Whenever	you	start	working	with	a



new	dataset,	you	need	to	look	at	it	from	different	angles	and	try	various	ways	of
visualizing	 it,	 just	 to	develop	an	understanding	of	 the	dataset's	key	features.	 In
this	 phase,	 speed	 and	 efficiency	 are	 of	 the	 essence.	 You	 need	 to	 try	 different
types	 of	 visualizations,	 different	 data	 transformations,	 and	 different	 subsets	 of
the	data.	The	faster	you	can	iterate	through	different	ways	of	looking	at	the	data,
the	more	you	will	explore,	and	the	higher	the	likelihood	that	you	will	notice	an
important	 feature	 in	 the	 data	 that	 you	 might	 otherwise	 have	 overlooked.	 The
second	phase	is	data	presentation.	You	enter	it	once	you	understand	your	dataset
and	 know	 what	 aspects	 of	 it	 you	 want	 to	 show	 to	 your	 audience.	 The	 key
objective	in	this	phase	is	to	prepare	a	high-quality,	publication-ready	figure	that
can	be	printed	in	an	article	or	book,	included	in	a	presentation,	or	posted	on	the
internet.

In	 the	 exploration	 stage,	 whether	 the	 figures	 you	 make	 look	 appealing	 is
secondary.	It's	fine	if	the	axis	labels	are	missing,	the	legend	is	messed	up,	or	the
symbols	 are	 too	 small,	 as	 long	 as	 you	 can	 evaluate	 the	various	patterns	 in	 the
data.	What	is	critical,	however,	is	how	easy	it	is	for	you	to	change	how	the	data
are	shown.	To	truly	explore	the	data,	you	should	be	able	to	rapidly	move	from	a
scatter	plot	to	overlapping	density	distribution	plots	to	boxplots	to	a	heatmap.	In
Chapter	2,	we	have	discussed	how	all	visualizations	consist	of	mappings	 from
data	 onto	 aesthetics.	 A	 well-designed	 data	 exploration	 tool	 will	 allow	 you	 to
easily	 change	 which	 variables	 are	 mapped	 onto	 which	 aesthetics,	 and	 it	 will
provide	a	wide	range	of	different	visualization	options	within	a	single	coherent
framework.	 In	 my	 experience,	 however,	 many	 visualization	 tools	 (and	 in
particular	libraries	for	programmatic	figure	generation)	are	not	set	up	in	this	way.
Instead,	 they	 are	 organized	 by	 plot	 type,	 where	 each	 different	 type	 of	 plot
requires	 somewhat	different	 input	data	 and	has	 its	 own	 idiosyncratic	 interface.
Such	tools	can	get	in	the	way	of	efficient	data	exploration,	because	it's	difficult
to	remember	how	all	the	different	plot	types	work.	I	encourage	you	to	carefully
evaluate	whether	your	visualization	software	allows	for	rapid	data	exploration	or
whether	it	tends	to	get	in	the	way.	If	it	more	frequently	tends	to	get	in	the	way,
you	may	benefit	from	exploring	alternative	visualization	options.

Once	we	have	determined	how	exactly	we	want	to	visualize	our	data,	what	data
transformations	 we	 want	 to	 make,	 and	 what	 type	 of	 plot	 to	 use,	 we	 will
commonly	want	 to	prepare	 a	high-quality	 figure	 for	 publication.	At	 this	 point,
we	have	several	different	avenues	we	can	pursue.	First,	we	can	finalize	the	figure
using	 same	 software	 platform	we	 used	 for	 initial	 exploration.	 Second,	we	 can
switch	platform	to	one	that	provides	us	finer	control	over	the	final	product,	even



if	that	platform	makes	it	harder	to	explore.	Third,	we	can	produce	a	draft	figure
with	 a	 visualization	 software	 and	 then	 manually	 post-process	 with	 an	 image
manipulation	or	illustration	program	such	as	Photoshop	or	Illustrator.	Fourth,	we
can	manually	redraw	the	entire	figure	from	scratch,	either	with	pen	and	paper	or
using	an	illustration	program.

All	 these	 avenues	 are	 reasonable.	 However,	 I	 would	 like	 to	 caution	 against
manually	sprucing	up	figures	in	routine	data	analysis	pipelines	or	for	scientific
publications.	Manual	steps	in	the	figure	preparation	pipeline	make	repeating	or
reproducing	 a	 figure	 inherently	 difficult	 and	 time-consuming.	 And	 in	 my
experience	 from	working	 in	 the	 natural	 sciences,	we	 rarely	make	 a	 figure	 just
once.	Over	the	course	of	a	study,	we	may	redo	experiments,	expand	the	original
dataset,	 or	 repeat	 an	 experiment	 several	 times	with	 slightly	 altered	 conditions.
I've	 seen	 it	 many	 times	 that	 late	 in	 the	 publication	 process,	 when	 we	 think
everything	is	done	and	finalized,	we	end	up	introducing	a	small	modification	to
how	we	analyze	our	data,	and	consequently	all	figures	have	to	be	redrawn.	And
I've	 also	 seen,	 in	 similar	 situations,	 that	 a	 decision	 is	 made	 not	 to	 redo	 the
analysis	or	not	to	redraw	the	figures,	either	due	to	the	effort	involved	or	because
the	people	who	had	made	the	original	figure	have	moved	on	and	aren't	available
anymore.	 In	 all	 these	 scenarios,	 an	 unnecessarily	 complicated	 and	 non-
reproducible	 data	 visualization	 pipeline	 interferes	 with	 producing	 the	 best
possible	science.

Having	 said	 this,	 I	 have	 no	 principled	 concern	 about	 hand-drawn	 figures	 or
figures	 that	 have	 been	 manually	 post-processed,	 for	 example	 to	 change	 axis
labels,	add	annotations,	or	modify	colors.	These	approaches	can	yield	beautiful
and	 unique	 figures	 that	 couldn't	 easily	 be	 made	 in	 any	 other	 way.	 In	 fact,	 as
sophisticated	 and	 polished	 computer-generated	 visualizations	 are	 becoming
increasingly	 commonplace,	 I	 observe	 that	manually	 drawn	 figures	 are	making
somewhat	of	a	 resurgence	 (see	Figure	28.2	 for	an	example).	 I	 think	 this	 is	 the
case	 because	 such	 figures	 represent	 a	 unique	 and	 personalized	 take	 on	 what
might	otherwise	be	a	somewhat	sterile	and	routine	presentation	of	data.



Figure	28.2:	After	the	introduction	of	next-gen	sequencing	methods,	the
sequencing	cost	per	genome	has	declined	much	more	rapidly	than	predicted	by

Moore's	law.	This	hand-drawn	figure	reproduces	a	widely	publicized
visualization	prepared	by	the	National	Institutes	of	Health.	Data	source:	National

Human	Genome	Research	Institute

28.3	Separation	of	content	and	design

A	 good	 visualization	 software	 should	 allow	 you	 to	 think	 separately	 about	 the
content	and	the	design	of	your	figures.	By	content,	I	refer	to	the	specific	data	set
shown,	 the	 data	 transformations	 applied	 (if	 any),	 the	 specific	 mappings	 from
data	onto	aesthetics,	the	scales,	the	axis	ranges,	and	the	type	of	plot	(scatter	plot,
line	plot,	bar	plot,	boxplot,	 etc.).	Design,	on	 the	other	hand,	describes	 features
such	as	the	foreground	and	background	colors,	font	specifications	(e.g.	font	size,
face,	and	family),	symbol	shapes	and	sizes,	the	placement	of	legends,	axis	ticks,
axis	 titles,	and	plot	 titles,	and	whether	or	not	 the	figure	has	a	background	grid.
When	I	work	on	a	new	visualization,	I	usually	determine	first	what	the	contents
should	 be,	 using	 the	 kind	 of	 rapid	 exploration	 described	 in	 the	 previous
subsection.	Once	the	contents	is	set,	I	may	tweak	the	design,	or	more	likely	I	will
apply	 a	 pre-defined	 design	 that	 I	 like	 and/or	 that	 gives	 the	 figure	 a	 consistent
look	in	the	context	of	a	larger	body	of	work.

In	 the	 software	 I	 have	 used	 for	 this	 book,	 ggplot2,	 separation	 of	 content	 and
design	 is	 achieved	 via	 themes.	 A	 theme	 specifies	 the	 visual	 appearance	 of	 a



figure,	and	 it	 is	easy	 to	 take	an	existing	figure	and	apply	different	 themes	 to	 it
(Figure	 28.3).	 Themes	 can	 be	 written	 by	 third	 parties	 and	 distributed	 as	 R
packages.	Through	this	mechanism,	a	thriving	ecosystem	of	add-on	themes	has
developed	 around	 ggplot2,	 and	 it	 covers	 a	 wide	 range	 of	 different	 styles	 and
application	 scenarios.	 If	 you're	 making	 figures	 with	 ggplot2,	 you	 can	 almost
certainly	find	an	existing	theme	that	satisfies	your	design	needs.

Figure	28.3:	Number	of	unemployed	persons	in	the	U.S.	from	1970	to	2015.	The
same	figure	is	displayed	using	four	different	ggplot2	themes:	(a)	the	default
theme	for	this	book;	(b)	the	default	theme	of	ggplot2,	the	plotting	software	I

have	used	to	make	all	figures	in	this	book;	(c)	a	theme	that	mimicks
visualizations	shown	in	the	Economist;	(d)	a	theme	that	mimicks	visualizations
shown	by	FiveThirtyEight.	FiveThirtyEight	often	foregos	axis	labels	in	favor	of
plot	titles	and	subtitles,	and	therefore	I	have	adjusted	the	figure	accordingly.

Data	source:	U.S.	Bureau	of	Labor	Statistics

Separation	 of	 content	 and	 design	 allows	 data	 scientists	 and	 designers	 to	 each



focus	on	what	they	do	best.	Most	data	scientists	are	not	designers,	and	therefore
their	 primary	 concern	 should	 be	 the	 data,	 not	 the	 design	 of	 a	 visualization.
Likewise,	most	designers	are	not	data	scientists,	and	they	should	be	able	provide
a	 unique	 and	 appealing	 visual	 language	 for	 figures	 without	 having	 to	 worry
about	specific	data,	appropriate	 transformations,	and	so	on.	The	same	principle
of	separating	content	and	design	has	long	been	followed	in	the	publishing	world
of	books,	magazines,	newspapers,	 and	websites,	where	writers	provide	content
but	not	 layout	or	design.	Layout	and	design	are	created	by	a	separate	group	of
people	who	specialize	in	this	area	and	who	ensure	that	the	publication	appears	in
a	visually	consistent	and	appealing	style.	This	principle	is	logical	and	useful,	but
it	is	not	yet	that	widespread	in	the	data	visualization	world.

In	summary,	when	choosing	your	visualization	software,	think	about	how	easily
you	 can	 reproduce	 figures	 and	 redo	 them	with	 updated	 or	 otherwise	 changed
datasets,	 whether	 you	 can	 rapidly	 explore	 different	 visualizations	 of	 the	 same
data,	 and	 to	 what	 extent	 you	 can	 tweak	 the	 visual	 design	 separately	 from
generating	 the	 figure	 content.	Depending	 on	 your	 skill	 level	 and	 comfort	with
programming,	it	may	be	beneficial	to	use	different	visualization	tools	at	the	data
exploration	and	the	data	presentation	stages,	and	you	may	prefer	to	do	the	final
visual	 tweaking	 interactively	 or	 by	 hand.	 If	 you	 have	 to	 make	 figures
interactively,	 in	 particular	with	 a	 software	 that	 does	 not	 keep	 track	 of	 all	 data
transformations	 and	 visual	 tweaks	 you	 have	 applied,	 consider	 taking	 careful
notes	on	how	you	make	each	figure,	so	that	all	your	work	remains	reproducible.

##	Warning:	package	'colorspace'	was	built	under	R	version	3.5.3

##	Warning:	package	'ggplot2'	was	built	under	R	version	3.5.3

##	Warning:	package	'dplyr'	was	built	under	R	version	3.5.3

##	Warning:	package	'lubridate'	was	built	under	R	version	3.5.3

##	Warning:	package	'forcats'	was	built	under	R	version	3.5.3

##	Warning:	package	'tidyr'	was	built	under	R	version	3.5.3



29	Telling	a	story	and	making	a	point
Most	data	visualization	is	done	for	the	purpose	of	communication.	We	have	an
insight	about	a	dataset,	and	we	have	a	potential	audience,	and	we	would	like	to
convey	our	insight	to	our	audience.	To	communicate	our	insight	successfully,	we
will	have	to	present	the	audience	with	a	clear	and	exciting	story.	The	need	for	a
story	may	seem	disturbing	 to	 scientists	and	engineers,	who	may	equate	 it	with
making	things	up,	putting	a	spin	on	things,	or	overselling	results.	However,	this
perspective	misses	the	important	role	that	stories	play	in	reasoning	and	memory.
We	get	excited	when	we	hear	a	good	story,	and	we	get	bored	when	the	story	is
bad	or	when	there	is	none.	Moreover,	any	communication	creates	a	story	in	the
audience's	minds.	If	we	don't	provide	a	clear	story	ourselves,	then	our	audience
will	make	one	up.	In	the	best-case	scenario,	the	story	they	make	up	is	reasonably
close	to	our	own	view	of	the	material	presented.	However,	it	can	be	and	often	is
much	worse.	The	made-up	story	could	be	"this	is	boring,"	"the	author	is	wrong,"
or	"the	author	is	incompetent."

Your	goal	 in	 telling	a	story	should	be	 to	use	 facts	and	 logical	 reasoning	 to	get
your	 audience	 interested	 and	 excited.	 Let	 me	 tell	 you	 a	 story	 about	 the
theoretical	 physicist	 Stephen	 Hawking.	 He	 was	 diagnosed	 with	 motor	 neuron
disease	 at	 age	 21---one	 year	 into	 his	 PhD---and	 was	 given	 two	 years	 to	 live.
Hawking	did	not	accept	this	predicament	and	started	pouring	all	his	energy	into
doing	 science.	 Hawking	 ended	 up	 living	 to	 be	 76,	 became	 one	 of	 the	 most
influential	 physicists	 of	 his	 time,	 and	 did	 all	 of	 his	 seminal	work	while	 being
severely	disabled.	I'd	argue	that	this	is	a	compelling	story.	It's	also	entirely	fact-
based	and	true.

29.1	What	is	a	story?

Before	we	can	discuss	strategies	for	turning	visualizations	into	stories,	we	need
to	understand	what	a	story	actually	is.	A	story	is	a	set	of	observations,	facts,	or
events,	 true	 or	 invented,	 that	 are	 presented	 in	 a	 specific	 order	 such	 that	 they
create	an	emotional	reaction	 in	 the	audience.	The	emotional	reaction	 is	created
through	the	build-up	of	tension	at	 the	beginning	of	 the	story	followed	by	some
type	of	resolution	towards	the	end	of	the	story.	We	refer	to	the	flow	from	tension
to	resolution	also	as	the	story	arc,	and	every	good	story	has	a	clear,	identifiable



arc.

Experienced	writers	 know	 that	 there	 are	 standard	 patterns	 for	 storytelling	 that
resonate	 with	 how	 humans	 think.	 For	 example,	 we	 can	 tell	 a	 story	 using	 the
Opening--Challenge--Action--Resolution	format.	In	fact,	this	is	the	format	I	used
for	 the	 Hawking	 story	 in	 the	 previous	 subsection.	 I	 opened	 the	 story	 by
introducing	 the	 topic,	 the	 physicist	 Stephen	 Hawking.	 Next	 I	 presented	 the
challenge,	 the	 diagnosis	 of	 motor	 neuron	 disease	 at	 age	 21.	 Then	 came	 the
action,	 his	 fierce	 dedication	 to	 science.	 Finally	 I	 presented	 the	 resolution,	 that
Hawking	led	a	long	and	successful	life	and	ended	up	becoming	one	of	the	most
influential	physicists	of	his	 time.	Other	story	 formats	are	also	commonly	used.
Newspaper	 articles	 frequently	 follow	 the	 Lead--Development--Resolution
format	or,	even	shorter,	just	Lead--Development,	where	the	lead	gives	away	the
main	point	up	 front	and	 the	subsequent	material	provides	 further	details.	 If	we
wanted	 to	 tell	 the	 Hawking	 story	 in	 this	 format,	 we	 might	 start	 out	 with	 a
sentence	 such	 as	 "The	 influential	 physicist	 Stephen	 Hawking,	 who
revolutionized	our	understanding	of	black	holes	and	of	cosmology,	outlived	his
doctors'	 prognosis	 by	 53	 years	 and	 did	 all	 of	 his	most	 influential	 work	while
being	severely	disabled."	This	is	the	lead.	In	the	development,	we	could	follow
up	with	a	more	 in-depth	description	of	Hawking's	 life,	 illness,	and	devotion	 to
science.	 Yet	 another	 format	 is	 Action--Background--Development--Climax--
Ending,	which	develops	the	story	a	little	more	rapidly	than	Opening--Challenge-
-Action--Resolution	but	not	as	rapidly	as	Lead--Development.	In	this	format,	we
might	 open	 with	 a	 sentence	 such	 as	 "The	 young	 Stephen	 Hawking,	 facing	 a
debilitating	disability	and	the	prospect	of	an	early	death,	decided	to	pour	all	his
efforts	into	his	science,	determined	to	make	his	mark	while	he	still	could."	The
purpose	 of	 this	 format	 is	 to	 draw	 in	 the	 audience	 and	 to	 create	 an	 emotional
connection	early	on,	but	without	immediately	giving	away	the	final	resolution.

My	goal	in	this	chapter	is	not	to	describe	these	standard	forms	of	story	telling	in
more	detail.	There	are	excellent	resources	that	cover	this	material.	For	scientists
and	 analysts,	 I	 particularly	 recommend	 Schimel	 (2011).	 Instead,	 I	 want	 to
discuss	 how	 we	 can	 bring	 data	 visualizations	 into	 the	 story	 arc.	 Most
importantly,	we	need	to	realize	that	a	single	(static)	visualization	will	rarely	tell
an	 entire	 story.	 A	 visualization	 may	 illustrate	 the	 opening,	 the	 challenge,	 the
action,	or	the	resolution,	but	it	is	unlikely	to	convey	all	these	parts	of	the	story	at
once.	To	tell	a	complete	story,	we	will	usually	need	multiple	visualizations.	For
example,	when	 giving	 a	 presentation,	we	may	 first	 show	 some	 background	 or
motivational	material,	then	a	figure	that	creates	a	challenge,	and	eventually	some



other	figure	that	provides	the	resolution.	Likewise,	in	a	research	paper,	we	may
present	 a	 sequence	 of	 figures	 that	 jointly	 create	 a	 convincing	 story	 arc.	 It	 is,
however,	also	possible	to	condense	an	entire	story	arc	into	a	single	figure.	Such	a
figure	 must	 contain	 a	 challenge	 and	 a	 resolution	 at	 the	 same	 time,	 and	 it	 is
comparable	to	a	story	arc	that	starts	with	a	lead.

To	provide	a	concrete	example	of	 incorporating	figures	 into	stories,	 I	will	now
tell	 a	 story	on	 the	basis	of	 two	 figures.	The	 first	 creates	 the	 challenge	 and	 the
second	 serves	 as	 the	 resolution.	 The	 context	 of	 my	 story	 is	 the	 growth	 of
preprints	 in	 the	 biological	 sciences	 (see	 also	 Chapter	 13).	 Preprints	 are
manuscripts	 in	 draft	 form	 that	 scientists	 share	 with	 their	 colleagues	 before
formal	 peer	 review	 and	 official	 publication.	 Scientists	 have	 been	 sharing
manuscript	drafts	for	as	long	as	scientific	manuscripts	have	existed.	However,	in
the	 early	 1990s,	with	 the	 advent	 of	 the	 internet,	 physicists	 realized	 that	 it	was
much	 more	 efficient	 to	 store	 and	 distribute	 manuscript	 drafts	 in	 a	 central
repository.	They	invented	the	preprint	server,	a	web	server	where	scientists	can
upload,	download,	and	search	for	manuscript	drafts.

The	preprint	server	physicists	developed	and	still	use	today	is	called	arXiv.org.
Shortly	 after	 it	 was	 established,	 arXiv.org	 started	 to	 branch	 out	 and	 become
popular	 in	 related	 quantitative	 fields,	 including	 mathematics,	 astronomy,
computer	science,	statistics,	quantitative	finance,	and	quantitative	biology.	Here,
I	 am	 interested	 in	 the	 preprint	 submissions	 to	 the	 quantitative	 biology	 (q-bio)
section	of	arXiv.org.	The	number	of	submissions	per	month	grew	exponentially
from	 2007	 to	 late	 2013,	 but	 then	 the	 growth	 suddenly	 stopped	 (Figure	 29.1).
Something	must	have	happened	in	late	2013	that	radically	changed	the	landscape
in	preprint	submissions	for	quantitative	biology.	What	caused	this	drastic	change
in	submission	growth?



Figure	29.1:	Growth	in	monthly	submissions	to	the	quantitative	biology	(q-bio)
section	of	the	preprint	server	arXiv.org.	A	sharp	transition	in	the	rate	of	growth
can	be	seen	around	2014.	While	growth	was	rapid	up	to	2014,	almost	no	growth
occurred	from	2014	to	2018.	Note	that	the	y	axis	is	logarithmic,	so	a	linear

increase	in	y	corresponds	to	exponential	growth	in	preprint	submissions.	Data
source:	Jordan	Anaya,	http://www.prepubmed.org/

I	will	 argue	 that	 late	 2013	marks	 the	 point	 in	 time	when	 preprints	 took	 off	 in
biology,	 and	 ironically	 this	 caused	 the	 q-bio	 archive	 to	 slow	 its	 growth.	 In
November	2013,	 the	biology-specific	preprint	 server	bioRxiv	was	 launched	by
Cold	Spring	Harbor	Laboratory	(CSHL)	Press.	CSHL	Press	is	a	publisher	that	is
highly	 respected	 among	 biologists.	 The	 backing	 of	 CSHL	 Press	 helped
tremendously	 with	 the	 acceptance	 of	 preprints	 in	 general	 and	 bioRxiv	 in
particular	 among	 biologists.	 The	 same	 biologists	 that	 would	 have	 been	 quite
suspicious	of	arXiv.org	were	much	more	comfortable	with	bioRxiv.	As	a	result
bioRxiv	quickly	gained	acceptance	among	biologists,	to	a	degree	that	arXiv	had
never	managed.	In	fact,	soon	after	its	launch,	bioRxiv	started	experiencing	rapid,
exponential	 growth	 in	 monthly	 submissions,	 and	 the	 slowdown	 in	 q-bio
submissions	 exactly	 coincides	 with	 the	 start	 of	 this	 exponential	 growth	 in
bioRxiv	(Figure	29.2).	It	appears	to	be	the	case	that	many	quantitative	biologists
who	otherwise	might	have	deposited	a	preprint	with	q-bio	decided	to	deposit	it
with	bioRxiv	instead.

http://www.prepubmed.org/


Figure	29.2:	The	leveling	off	of	submission	growth	to	q-bio	coincided	with	the
introduction	of	the	bioRxiv	server.	Shown	are	the	growth	in	monthly

submissions	to	the	q-bio	section	of	the	general-purpose	preprint	server	arxiv.org
and	to	the	dedicated	biology	preprint	server	bioRxiv.	The	bioRxiv	server	went
live	in	November	2013,	and	its	submission	rate	has	grown	exponentially	since.	It
seems	likely	that	many	scientists	who	otherwise	would	have	submitted	preprints

to	q-bio	chose	to	submit	to	bioRxiv	instead.	Data	source:	Jordan	Anaya,
http://www.prepubmed.org/

This	 is	 my	 story	 about	 preprints	 in	 biology.	 I	 purposefully	 told	 it	 with	 two
figures,	even	though	the	first	(Figure	29.1)	is	fully	contained	within	the	second
(Figure	29.2).	 I	 think	 this	story	has	 the	strongest	 impact	when	broken	 into	 two
pieces,	and	this	is	how	I	would	present	it	in	a	talk.	However,	Figure	29.2	alone
can	be	used	to	tell	the	entire	story,	and	the	single-figure	version	might	be	more
suitable	to	a	medium	where	the	audience	can	be	expected	to	have	short	attention
span,	such	as	in	a	social	media	post.

29.2	Make	a	figure	for	the	generals

For	the	remainder	of	this	chapter,	I	will	discuss	strategies	for	making	individual
figures	and	sets	of	figures	that	help	your	audience	to	connect	with	your	story	and
remain	 engaged	 throughout	 your	 entire	 story	 arc.	 First,	 and	most	 importantly,

http://www.prepubmed.org/


you	 need	 to	 show	 your	 audience	 figures	 they	 can	 actually	 understand.	 It	 is
entirely	possible	to	follow	all	the	recommendations	I	have	provided	throughout
this	 book	 and	 still	 prepare	 figures	 that	 confuse.	When	 this	 happens,	 you	may
have	 fallen	victim	 to	 two	common	misconceptions;	 first,	 that	 the	audience	can
see	your	figures	and	immediately	infer	the	points	you	are	trying	to	make;	second,
that	the	audience	can	rapidly	process	complex	visualizations	and	understand	the
key	trends	and	relationships	that	are	shown.	Neither	of	these	assumptions	is	true.
We	need	to	do	everything	we	can	to	help	our	readers	understand	the	meaning	of
our	visualizations	and	see	the	same	patterns	in	the	data	that	we	see.	This	usually
means	 less	 is	 more.	 Simplify	 your	 figures	 as	 much	 as	 possible.	 Remove	 all
features	 that	 are	 tangential	 to	 your	 story.	 Only	 the	 important	 points	 should
remain.	I	refer	to	this	concept	as	"making	a	figure	for	the	generals."

For	several	years,	I	was	in	charge	of	a	large	research	project	funded	by	the	U.S.
Army.	 For	 our	 annual	 progress	 reports,	 I	 was	 instructed	 by	 the	 program
managers	 to	 not	 include	 a	 lot	 of	 figures.	And	 any	 figure	 I	 did	 include	 should
show	 very	 clearly	 how	 our	 project	 was	 succeeding.	 A	 general,	 the	 program
managers	 told	me,	 should	 be	 able	 to	 look	 at	 each	 figure	 and	 immediately	 see
how	what	we	were	doing	was	 improving	upon	or	 exceeding	prior	 capabilities.
Yet	when	my	colleagues	who	were	part	 of	 this	 project	 sent	me	 figures	 for	 the
annual	 progress	 report,	 many	 of	 the	 figures	 did	 not	 meet	 this	 criterion.	 The
figures	usually	were	overly	complex,	were	labeled	in	confusing,	technical	terms,
or	did	not	make	any	obvious	point	at	all.	Most	scientists	are	not	trained	to	make
figures	for	the	generals.

Never	assume	your	audience	can	rapidly	process	complex	visual	displays.

Some	might	hear	this	story	and	conclude	that	the	generals	are	not	very	smart	or
just	 not	 that	 into	 science.	 I	 think	 that's	 exactly	 the	wrong	 take-home	message.
The	 generals	 are	 simply	 very	 busy.	 They	 can't	 spend	 30	 minutes	 trying	 to
decipher	a	cryptic	figure.	When	they	give	millions	of	dollars	of	taxpayer	funds	to
scientists	to	do	basic	research,	the	least	they	can	expect	in	return	is	a	handful	of
clear	 demonstrations	 that	 something	 worthwhile	 and	 interesting	 was
accomplished.	 This	 story	 should	 also	 not	 be	 misconstrued	 as	 being	 about
military	funding	in	particular.	The	generals	are	a	metaphor	for	anybody	you	may
want	 to	 reach	with	 your	 visualization.	 It	 can	 be	 a	 scientific	 reviewer	 for	 your
paper	or	grant	proposal,	it	can	be	a	newspaper	editor,	or	it	can	be	your	supervisor
or	your	supervisor's	boss	at	the	company	you're	working.	If	you	want	your	story
to	 come	 across,	 you	 need	 to	 make	 figures	 that	 are	 appropriate	 for	 all	 these



generals.

The	 first	 thing	 that	will	 get	 in	 the	way	of	making	 a	 figure	 for	 the	generals	 is,
ironically,	the	ease	with	which	modern	visualization	software	allows	us	to	make
sophisticated	data	visualizations.	With	nearly	limitless	power	of	visualization,	it
becomes	tempting	to	keep	piling	on	more	dimensions	of	data.	And	in	fact,	I	see	a
trend	in	the	world	of	data	visualization	to	make	the	most	complex,	multi-faceted
visualizations	possible.	These	visualizations	may	look	very	impressive,	but	they
are	 unlikely	 to	 convey	 a	 clear	 story.	 Consider	 Figure	 29.3,	 which	 shows	 the
arrival	delays	for	all	flights	departing	out	of	the	New	York	City	area	in	2013.	I
suspect	it	will	take	you	a	while	to	process	this	figure.

Figure	29.3:	Mean	arrival	delay	versus	distance	from	New	York	City.	Each	point
represents	one	destination,	and	the	size	of	each	point	represents	the	number	of
flights	from	one	of	the	three	major	New	York	City	airports	(Newark,	JFK,	or
LaGuardia)	to	that	destination	in	2013.	Negative	delays	imply	that	the	flight
arrived	early.	Solid	lines	represent	the	mean	trends	between	arrival	delay	and

distance.	Delta	has	consistently	lower	arrival	delays	than	other	airlines,
regardless	of	distance	traveled.	American	has	among	the	lowest	delays,	on
average,	for	short	distances,	but	has	among	the	highest	delays	for	longer

distances	traveled.	This	figure	is	labeled	as	"bad"	because	it	is	overly	complex.



Most	readers	will	find	it	confusing	and	will	not	intuitively	grasp	what	it	is	the
figure	is	showing.	Data	source:	U.S.	Dept.	of	Transportation,	Bureau	of

Transportation	Statistics.

I	 think	 the	most	 important	 feature	 of	 Figure	 29.3	 is	 that	 American	 and	Delta
have	the	shortest	arrival	delays.	This	insight	is	much	better	conveyed	in	a	simple
bar	graph	(Figure	29.4).	Therefore,	Figure	29.4	 is	 the	correct	 figure	 to	show	if
the	 story	 is	 about	 arrival	 delays	 of	 airlines,	 even	 if	making	 that	 graph	 doesn't
challenge	your	data	visualization	 skills.	And	 if	 you're	 then	wondering	whether
these	 airlines	 have	 small	 delays	 because	 they	 don't	 fly	 that	much	 out	 of	New
York	City,	you	could	present	a	second	bar	graph	highlighting	that	both	American
and	Delta	are	major	carriers	 in	 the	New	York	City	area	 (Figure	29.5).	Both	of
these	two	bar	graphs	discard	the	distance	variable	shown	in	Figure	29.3.	This	is
Ok.	We	don't	need	to	visualize	data	dimensions	that	are	tangential	to	our	story,
even	 if	we	 have	 them	 and	 even	 if	we	 could	make	 a	 figure	 that	 showed	 them.
Simple	and	clear	is	better	than	complex	and	confusing.

Figure	29.4:	Mean	arrival	delay	for	flights	out	of	the	New	York	City	area	in
2013,	by	airline.	American	and	Delta	have	the	lowest	mean	arrival	delays	of	all

airlines	flying	out	of	the	New	York	City	area.	Data	source:	U.S.	Dept.	of
Transportation,	Bureau	of	Transportation	Statistics.



Figure	29.5:	Number	of	flights	out	of	the	New	York	City	area	in	2013,	by	airline.
Delta	and	American	are	fourth	and	fifths	largest	carrier	by	flights	out	of	the	New

York	City	area.	Data	source:	U.S.	Dept.	of	Transportation,	Bureau	of
Transportation	Statistics.

When	you're	trying	to	show	too	much	data	at	once	you	may	end	up	not	showing
anything.

29.3	Build	up	towards	complex	figures

Sometimes,	however,	we	do	want	to	show	more	complex	figures	that	contain	a
large	amount	of	information	at	once.	In	those	cases,	we	can	make	things	easier
for	our	readers	if	we	first	show	them	a	simplified	version	of	the	figure	before	we
show	 the	 final	 one	 in	 its	 full	 complexity.	 The	 same	 approach	 is	 also	 highly
recommended	for	presentations.	Never	jump	straight	to	a	highly	complex	figure;
first	show	an	easily	digestible	subset.

This	 recommendation	 is	 particularly	 relevant	 if	 the	 final	 figure	 is	 a	 small
multiples	 plot	 (Chapter	 21)	 showing	 a	 grid	 of	 subplots	 with	 similar	 structure.
The	 full	 grid	 is	 much	 easier	 to	 digest	 if	 the	 audience	 has	 first	 seen	 a	 single
subplot	 by	 itself.	 For	 example,	 Figure	 29.6	 shows	 the	 aggregate	 numbers	 of
United	Airlines	departures	out	of	Newark	Airport	(EWR)	in	2013,	broken	down



by	 weekday.	 Once	 we	 have	 seen	 and	 digested	 this	 figure,	 seeing	 the	 same
information	for	ten	airlines	and	three	airports	at	once	is	much	easier	to	process
(Figure	29.7).

Figure	29.6:	United	Airlines	departures	out	of	Newark	Airport	(EWR)	in	2013,
by	weekday.	Most	weekdays	show	approximately	the	same	number	of

departures,	but	there	are	fewer	departures	on	weekends.	Data	source:	U.S.	Dept.
of	Transportation,	Bureau	of	Transportation	Statistics.

Figure	29.7:	Departures	out	of	airports	in	the	New	York	city	area	in	2013,	broken
down	by	airline,	airport,	and	weekday.	United	Airlines	and	ExpressJet	make	up



most	of	the	departures	out	of	Newark	Airport	(EWR),	JetBlue,	Delta,	American,
and	Endeavor	make	up	most	of	the	departures	out	of	JFK,	and	Delta,	American,

Envoy,	and	US	Airways	make	up	most	of	the	departures	out	of	LaGuardia
(LGA).	Most	but	not	all	airlines	have	fewer	departures	on	weekends	than	during

the	work	week.	Data	source:	U.S.	Dept.	of	Transportation,	Bureau	of
Transportation	Statistics.

29.4	Make	your	figures	memorable

Simple	and	clean	figures	such	as	simple	bar	plots	have	the	advantage	that	 they
avoid	 distractions,	 are	 easy	 to	 read,	 and	 let	 your	 audience	 focus	 on	 the	 most
important	 points	 you	want	 to	 bring	 across.	However,	 the	 simplicity	 can	 come
with	a	disadvantage:	Figures	can	end	up	 looking	generic.	They	don't	have	any
features	that	stand	out	and	make	them	memorable.	If	I	showed	you	ten	bargraphs
in	quick	succession	you'd	have	a	hard	 time	keeping	 them	apart	and	afterwards
remembering	what	they	showed.	For	example,	if	you	take	a	quick	look	at	Figure
29.8,	 you	 will	 notice	 the	 visual	 similarity	 to	 Figure	 29.5,	 which	 I	 discussed
earlier	in	this	chapter.	However,	the	two	figures	have	nothing	in	common	other
than	 they	 are	 bar	 charts.	 Figure	 29.5	 showed	 the	 number	 of	 flights	 out	 of	 the
New	York	City	area	by	airline,	whereas	Figure	29.8	shows	the	most	popular	pets
in	 U.S.	 households.	 Neither	 figure	 has	 any	 element	 that	 helps	 you	 intuitively
perceive	what	topic	the	figure	covers,	and	therefore	neither	figure	is	particularly
memorable.

Figure	29.8:	Number	of	households	having	one	or	more	of	the	most	popular	pets:



dogs,	cats,	fish,	or	birds.	This	bar	graph	is	perfectly	clear	but	not	necessarily
particularly	memorable.	The	"cats"	column	has	been	highlighted	solely	to	create
visual	similarity	with	Figure	29.5.	Data	source:	2012	U.S.	Pet	Ownership	&
Demographics	Sourcebook,	American	Veterinary	Medical	Association

Research	 on	 human	 perception	 shows	 that	more	 visually	 complex	 and	 unique
figures	are	more	memorable	(Bateman	et	al.	2010;	Borgo	et	al.	2012).	However,
visual	uniqueness	and	complexity	do	not	 just	affect	memorability,	as	 they	may
hinder	a	person's	ability	 to	get	a	quick	overview	of	 the	 information	or	make	 it
difficult	to	distinguish	small	differences	in	values.	At	the	extreme,	a	figure	could
be	highly	memorable	but	utterly	confusing.	Such	a	figure	would	not	be	a	good
data	visualization,	even	if	it	works	well	as	a	stunning	piece	of	art.	At	the	other
extreme,	figures	may	be	very	clear	but	forgettable	and	boring,	and	those	figures
may	not	have	the	impact	we	might	hope	for	either.	In	general,	we	want	to	strike	a
balance	 between	 the	 two	 extremes	 and	make	 our	 figures	 both	memorable	 and
clear.	(The	intended	audience	matters	as	well,	however.	If	a	figure	is	intended	for
a	 technical	 scientific	 publication,	 we	 will	 generally	 worry	 less	 about
memorability	 than	 if	 the	 figure	 is	 intended	 for	 a	 broadly	 read	 newspaper	 or
blog.)

We	can	make	 a	 figure	more	memorable	 by	 adding	visual	 elements	 that	 reflect
features	of	the	data,	for	example	drawings	or	pictograms	of	the	things	or	objects
that	 the	dataset	 is	 about.	One	approach	 that	 is	 commonly	 taken	 is	 to	 show	 the
data	 values	 itself	 in	 the	 form	 of	 repeated	 images,	 such	 that	 each	 copy	 of	 an
image	corresponds	to	a	defined	amount	of	the	represented	variable.	For	example,
we	can	 replace	 the	bars	 in	Figure	29.8	with	 repeated	 images	of	a	dog,	a	cat,	a
fish,	and	a	bird,	drawn	to	a	scale	such	that	each	complete	animal	corresponds	to
five	million	housholds	 (Figure	29.9).	Thus,	visually,	Figure	29.9	 still	 functions
as	 a	 bar	 plot,	 but	we	 now	have	 added	 some	 visual	 complexity	 that	makes	 the
figure	 more	 memorable,	 and	 we	 have	 also	 shown	 the	 data	 using	 images	 that
directly	reflect	what	the	data	mean.	After	only	a	quick	glance	at	the	figure,	you
may	be	able	to	remember	that	there	were	many	more	dogs	and	cats	than	fish	or
birds.	Importantly,	in	such	visualizations,	we	want	to	use	the	images	to	represent
the	 data,	 rather	 than	 using	 images	 simply	 to	 adorn	 the	 visualization	 or	 to
annotate	 the	 axes.	 In	 psychological	 experiments,	 the	 latter	 choices	 tend	 to	 be
distracting	rather	than	helpful	(Haroz,	Kosara,	and	Franconeri	2015).



Figure	29.9:	Number	of	households	having	one	or	more	of	the	most	popular	pets,
shown	as	an	isotype	graph.	Each	complete	animal	represents	5	million

households	who	have	that	kind	of	pet.	Data	source:	2012	U.S.	Pet	Ownership	&
Demographics	Sourcebook,	American	Veterinary	Medical	Association

Visualizations	 such	 as	 Figure	 29.9	 are	 often	 called	 isotype	 plots.	 The	 word
isotype	was	introduced	as	an	acronym	of	International	System	Of	TYpographic
Picture	 Education,	 and	 strictly	 speaking	 it	 refers	 to	 logo-like	 simplified
pictograms	that	represent	objects,	animals,	plants,	or	people	(Haroz,	Kosara,	and
Franconeri	2015).	However,	I	 think	it	makes	sense	to	use	 the	term	isotype	plot
more	broadly	to	apply	to	any	type	of	visualization	where	repeated	copies	of	the
same	 image	are	used	 to	 indicate	 the	magnitude	of	a	value.	After	all,	 the	prefix
"iso"	means	"the	same"	and	"type"	can	mean	a	particular	kind,	class,	or	group.

29.5	Be	consistent	but	don't	be	repetitive

When	 discussing	 compound	 figures	 in	 Chapter	 21.2,	 I	 mentioned	 that	 it	 is
important	 to	use	a	consistent	visual	 language	 for	 the	different	parts	of	a	 larger
figure.	The	same	is	true	across	figures.	If	we	make	three	figures	that	are	all	part
of	one	larger	story,	 then	we	need	to	design	those	figures	so	they	look	like	they
belong	together.	Using	a	consistent	visual	language	does	not	mean,	however,	that
everything	 should	 look	 exactly	 the	 same.	On	 the	 contrary.	 It	 is	 important	 that
figures	describing	different	analyses	look	visually	distinct,	so	that	your	audience
can	easily	recognize	where	one	analysis	ends	and	another	one	starts.	This	is	best
achieved	 by	 using	 different	 visualization	 approaches	 for	 different	 parts	 of	 the



overarching	story.	If	you	have	used	a	bar	plot	already,	next	use	a	scatterplot,	or	a
boxplot,	 or	 a	 line	 plot.	 Otherwise,	 the	 different	 analyses	 will	 blur	 together	 in
your	audience's	mind,	and	they	will	have	a	hard	time	distinguishing	one	part	of
the	story	from	another.	For	example,	 if	we	re-design	Figure	21.8	from	Chapter
21.2	 so	 it	 uses	 only	 bar	 plots,	 the	 result	 is	 noticeable	 less	 distinct	 and	 more
confusing	(Figure	29.10).

Figure	29.10:	Physiology	and	body-composition	of	male	and	female	athletes.
Error	bars	indicate	the	standard	error	of	the	mean.	This	figure	is	overly

repetitive.	It	shows	the	same	data	as	Figure	21.8	and	it	uses	a	consistent	visual
language,	but	all	sub-figures	use	the	same	type	of	visualization	(bar	plot).	This
makes	it	difficult	for	the	reader	to	process	that	parts	(a),	(b),	and	(c)	show
entirely	different	results.	Data	source:	Telford	and	Cunningham	(1991)

When	 preparing	 a	 presentation	 or	 report,	 aim	 to	 use	 a	 different	 type	 of
visualization	for	each	distinct	analysis.



Sets	 of	 repetitive	 figures	 are	 often	 a	 consequence	 of	 multi-part	 stories	 where
each	 part	 is	 based	 on	 the	 same	 type	 of	 raw	data.	 In	 those	 scenarios,	 it	 can	 be
tempting	 to	 use	 the	 same	 type	 of	 visualization	 for	 each	 part.	 However,	 in
aggregate,	 these	 figures	will	 not	 hold	 the	 audience's	 attention.	As	 an	 example,
let's	 consider	 a	 story	 about	 the	Facebook	 stock,	 in	 two	parts:	 (i)	 the	Facebook
stock	price	has	increased	rapidly	from	2012	to	2017;	(ii)	 the	price	increase	has
outpaced	that	of	other	large	tech	companies.	You	might	want	to	visualize	these
two	statements	with	two	figures	showing	stock	price	over	time,	as	demonstrated
in	Figure	29.11.	However,	while	Figure	29.11a	serves	a	clear	purpose	and	should
remain	as	is,	Figure	29.11b	is	at	the	same	time	repetitive	and	obscures	the	main
point.	We	don't	particularly	care	about	the	exact	temporal	evolution	of	the	stock
price	of	Alphabet,	Apple,	and	Microsoft,	we	just	want	to	highlight	 that	 it	grew
less	than	the	stock	price	of	Facebook.



Figure	29.11:	Growth	of	Facebook	stock	price	over	a	five-year	interval	and
comparison	with	other	tech	stocks.	(a)	The	Facebook	stock	price	rose	from

around	$25/share	in	mid-2012	to	$150/share	in	mid-2017.	(b)	The	prices	of	other
large	tech	companies	did	not	rise	comparably	over	the	same	time	period.	Prices
have	been	indexed	to	100	on	June	1,	2012	to	allow	for	easy	comparison.	This
figure	is	labeled	as	"ugly"	because	parts	(a)	and	(b)	are	repetitive.	Data	source:

Yahoo	Finance

I	would	 recommend	 to	 leave	part	 (a)	 as	 is	 but	 replace	part	 (b)	with	 a	bar	plot
showing	percent	increase	(Figure	29.12).	Now	we	have	two	distinct	figures	that
each	 make	 a	 unique,	 clear	 point	 and	 that	 work	 well	 in	 combination.	 Part	 (a)
allows	 the	 reader	 to	 get	 familiar	 with	 the	 raw,	 underlying	 data	 and	 part	 (b)
highlights	 the	 magnitude	 of	 the	 effect	 while	 removing	 any	 tangential
information.



Figure	29.12:	Growth	of	Facebook	stock	price	over	a	five-year	interval	and
comparison	with	other	tech	stocks.	(a)	The	Facebook	stock	price	rose	from

around	$25/share	in	mid-2012	to	$150/share	in	mid-2017,	an	increase	of	almost
450%.	(b)	The	prices	of	other	large	tech	companies	did	not	rise	comparably	over
the	same	time	period.	Price	increases	ranged	from	90%	to	240%.	Data	source:

Yahoo	Finance

Figure	29.12	highlights	a	general	principle	that	I	follow	when	preparing	sets	of
figures	to	tell	a	story:	I	start	with	a	figure	that	is	as	close	as	possible	to	showing
the	 raw	 data,	 and	 in	 subsequent	 figures	 I	 show	 increasingly	 more	 derived
quantities.	Derived	quantities	 (such	 as	 percent	 increases,	 averages,	 coefficients
of	 fitted	models,	 and	 so	 on)	 are	 useful	 to	 summarize	 key	 trends	 in	 large	 and
complex	datasets.	However,	because	they	are	derived	they	are	less	intuitive,	and



if	we	show	a	derived	quantity	before	we	have	shown	the	raw	data	our	audience
will	 find	 it	difficult	 to	 follow.	On	 the	 flip	 side,	 if	we	 try	 to	 show	all	 trends	by
showing	 raw	 data	 we	 will	 end	 up	 needing	 too	 many	 figures	 and/or	 being
repetitive.

How	many	figures	you	should	you	use	to	tell	your	story?	The	answer	depends	on
the	 publication	 venue.	 For	 a	 short	 blog	 post	 or	 tweet,	 make	 one	 figure.	 For
scientific	 papers,	 I	 recommend	 between	 three	 and	 six	 figures.	 If	 I	 have	many
more	than	six	figures	for	a	scientific	paper,	then	some	of	them	need	to	be	moved
into	an	appendix	or	supplementary	materials	section.	It	is	good	to	document	all
the	 evidence	 we	 have	 collected,	 but	 we	 must	 not	 wear	 out	 our	 audience	 by
presenting	 excessive	 numbers	 of	 mostly	 similar-looking	 figures.	 In	 other
contexts,	 a	 larger	 number	 of	 figures	 may	 be	 appropriate.	 However,	 in	 those
contexts,	we	will	usually	be	telling	multiple	stories,	or	an	overarching	story	with
subplots.	For	example,	if	I	am	asked	to	give	an	hour-long	scientific	presentation,
I	usually	aim	to	tell	three	distinct	stories.	Similarly,	a	book	or	thesis	will	contain
more	than	one	story,	and	in	fact	may	contain	one	story	per	chapter	or	section.	In
those	scenarios,	each	distinct	story-line	or	subplot	should	be	presented	with	no
more	 than	 three	 to	 six	 figures.	 In	 this	 book,	 you	 will	 find	 that	 I	 follow	 this
principle	 at	 the	 level	of	 sections	within	 chapter.	Each	 section	 is	 approximately
self-contained	and	will	typically	show	no	more	than	six	figures.



30	Annotated	bibliography
No	single	book	can	cover	everything	there	is	to	know	about	a	topic.	I	encourage
you	to	read	other	texts	on	data	visualization	to	deepen	your	understanding	and	to
develop	 your	 technical	 skills	 in	 making	 figures.	 Here,	 I	 provide	 a	 limited
selection	of	books	that	I	have	personally	found	interesting,	thought	provoking,	or
helpful.	Books	listed	in	Section	30.1	are	the	most	similar	in	scope	to	the	present
book,	and	may	provide	complementary	or	alternative	perspectives	on	the	topics	I
have	covered.	Books	listed	in	Section	30.2	address	the	important	topic	of	how	to
make	 visualizations	 using	 programming	 approaches	 and	 available	 software
libraries.	 The	 remaining	 sections	 list	 other	 books	 that	 will	 expand	 your
knowledge	 of	 data	 visualization	 and	 help	 you	 communicate	 with	 visuals	 and
data.

30.1	Thinking	about	data	and	visualization

The	following	books	discuss	the	thought	processes	and	decision	making	required
for	turning	data	into	visualizations.	They	serve	as	introductory	texts	into	how	to
choose	what	visualizations	to	make	and	what	pitfalls	to	look	out	for.

Alberto	Cairo.	"The	Truthful	Art."	New	Riders,	2016.
Excellent	 all-around	 introduction	 to	 data	 visualization,	 in	 particular	 for
journalists.	The	book	covers	many	important	concepts	of	data	visualization,
such	 as	 how	 to	 visualize	 distributions,	 trends,	 uncertainty,	 and	 maps.	 In
many	chapters,	 the	book	also	serves	as	an	introduction	to	basic	statistical
principles,	explaining	concepts	such	as	population,	sample,	and	confidence
level.

Stephen	Few.	"Show	Me	the	Numbers."	Analytics	Press,	2012.
A	book	about	data	visualization	for	 the	business	professional.	It	 is	similar
in	 scope	 and	 target	 audience	 to	 the	 book	 by	 Nussbaumer	 Knaflic	 (see
below).	 However,	 Few’s	 book	 contains	 more	 material	 and	 covers	 many
topics	in	more	depth.	At	the	same	time,	the	book	is	not	as	well	written	and
as	carefully	produced	as	the	Nussbaumer	Knaflic	book.

Cole	Nussbaumer	Knaflic.	 "Storytelling	with	Data."	 John	Wiley	&	 Sons,



2015.
A	 well	 written	 and	 carefully	 produced	 book	 on	 how	 to	 turn	 data	 into
visuals.	The	book’s	primary	audience	are	people	making	business	graphics,
and	 the	 book	 is	 excellent	 for	 the	 topics	 it	 covers.	 However,	 the	 book	 is
missing	many	topics	of	importance	to	scientists,	such	as	the	visualization	of
distributions,	trends,	or	uncertainty.

30.2	Programming	books

The	following	books	are	all	how-to	books	that	teach	programming	approaches	to
data	visualization.

Kieran	 Healy.	 "Data	 Visualization:	 A	 Practical	 Introduction."	 Princeton
University	Press,	2018.
Introduction	 to	 using	 ggplot2	 for	 data	 visualization.	 Recommended	 as
follow-up	 after	 Wickham	 and	 Grolemund's	 "R	 for	 Data	 Science"	 (see
below).

Scott	Murray.	"Interactive	Data	Visualization	for	the	Web:	An	Introduction
to	Designing	with	D3,	2nd	Edition."	O'Reilly	Media,	2017.
Introduction	 to	 making	 interactive	 online	 visualizations	 with	 D3,	 using
HTML,	CSS,	JavaScript,	and	SVG.

Jake	 VanderPlas.	 "Python	 Data	 Science	 Handbook:	 Essential	 Tools	 for
Working	with	Data."	O'Reilly	Media,	2016.
Introduction	 to	using	 the	programming	 language	Python	 for	data	science.
Has	extensive	material	on	data	visualization	using	Python's	Matplotlib	and
Seaborn.

Hadley	 Wickham,	 Garrett	 Grolemund.	 "R	 for	 Data	 Science."	 O'Reilly
Media,	2017.
All-around	 introduction	 to	 using	 the	 programming	 language	 R	 for	 data
science.	Contains	several	chapters	on	using	ggplot2	for	data	visualization.

30.3	Statistics	texts

Introductory	 texts	 in	 statistics	 will	 generally	 contain	 material	 on	 data
visualization,	 covering	 topics	 such	 as	 scatter	 plots,	 histograms,	 box	 plots,	 and



line	graphs.	There	are	many	such	texts	that	could	be	listed.	Here,	I	mention	just	a
few	recent	additions	that	are	worth	a	closer	look.

David	M.	Diez,	Christopher	D.	Barr,	Mine	Çetinkaya-Rundel.	"OpenIntro
Statistics,	3rd	Edition."	OpenIntro,	Inc.,	2015.
Open	 source	 introductory	 statistics	 text	 book.	 The	 entire	 book	 is	 freely
available,	as	are	the	LaTeX	files	and	R	code	used	to	compile	the	book	and
make	the	figures.

Susan	Holmes,	Wolfgang	Huber.	"Modern	Statistics	 for	Modern	Biology."
2018.
A	 statistics	 text	 that	 emphasizes	 computational	 tools	 needed	 for	 modern
biology.	The	entire	book	is	freely	available,	and	R	code	for	all	examples	is
provided.

30.4	Historical	texts

The	 books	 in	 this	 section	 are	 of	 interest	 primarily	 for	 historical	 reasons.	They
were	influential	at	the	time	of	their	publication,	but	similar	material	can	now	be
found	elsewhere	or	in	more	modern	form.

William	S.	Cleveland.	"Visualizing	Data."	Hobart	Press,	1993.
Companion	book	to	"The	Elements	of	Graphing	Data"	by	the	same	author
(see	below).	This	one	 is	more	mathematical	and	doesn't	 talk	about	human
perception.

William	 S.	 Cleveland.	 "The	 Elements	 of	 Graphing	 Data,	 2nd	 Edition."
Hobart	Press,	1994.
One	of	the	first	books	about	information	design	written	for	statisticians.	The
book	contains	many	examples	of	scatter	plots,	line	graphs,	histograms,	and
boxplots,	and	it	discusses	them	in	the	context	of	data	analysis	and	statistical
modeling.	It	also	popularized	the	Cleveland	dot	plot.

Edward	R.	Tufte.	"Envisioning	Information."	Graphics	Press,	1990.
This	book	popularized	the	concept	of	the	small	multiple.

Edward	 R.	 Tufte.	 "The	 Visual	 Display	 of	 Quantitative	 Information,	 2nd
Edition."	Graphics	Press,	2001.
First	published	in	1983,	this	book	has	been	highly	influential	in	the	field	of



data	 visualization.	 It	 introduced	 concepts	 such	 as	 chart	 junk,	 data-to-ink
ratio,	and	sparklines.	The	book	also	showed	the	first	slopegraph	(but	didn't
name	it).	However,	the	book	also	contains	numerous	recommendations	that
have	not	stood	the	test	of	time.	In	particular,	it	recommends	an	excessively
minimalistic	plot	design.

30.5	Books	on	broadly	related	topics

The	 following	 books	 are	 all	 broadly	 related	 to	 the	 topics	 of	 data	 visualization
and	effective	communication.

Joshua	Schimel.	"Writing	Science."	Oxford	University	Press,	2011.
Teaches	how	 to	write	 scientific	and	other	 technical	 topics	 in	an	engaging
way,	by	telling	a	story.	While	not	primarily	a	book	about	data	visualization,
this	 is	 an	 indispensable	 text	 for	 anybody	 who	 needs	 to	 write	 technical
articles	and/or	proposals.

Jonathan	 Schwabish.	 "Better	 Presentations."	 Columbia	 University	 Press,
2016.
Short	 and	 informative	 guide	 for	 making	 presentations.	 A	 must-read	 for
anybody	who	routinely	uses	slides	to	give	talks	or	presentations.

Maureen	C.	Stone.	"A	Field	Guide	to	Digital	Color."	A	K	Peters,	2003.
Comprehensive	 guide	 to	 how	 colors	 are	 captured,	 processed,	 and
reproduced	by	computers.

Colin	Ware.	"Information	Visualization,	 3rd	Edition."	Morgan	Kaufmann,
2012.
A	book	about	principles	of	visualization,	specifically	addressing	topics	such
as	how	the	human	visual	system	works	and	how	different	graphical	patterns
are	 perceived.	 The	 book	 covers	 many	 different	 visualization	 scenarios,
including	user	interfaces	and	virtual	worlds,	but	it	puts	comparatively	less
emphasis	on	visualizing	data	in	the	form	of	2D	figures.



Technical	notes
The	entire	book	was	written	in	R	Markdown,	using	the	bookdown,	rmarkdown,
and	knitr	packages.	All	figures	were	made	with	ggplot2,	with	the	help	of	add-on
packages	cowplot,	egg,	ggforce,	ggrepel,	ggridges,	sf,	 and	 treemapify.	 Color
manipulations	 were	 done	 with	 the	 colorspace	 and	 colorblindr	 packages.	 For
many	of	these	packages,	the	current	development	version	is	required	to	compile
all	parts	of	the	book.

The	 source	 code	 for	 the	 book	 is	 available	 here:
https://github.com/clauswilke/dataviz.	 The	 book	 also	 requires	 a	 supporting	 R
package,	 dviz.supp,	 whose	 code	 is	 available	 here:
https://github.com/clauswilke/dviz.supp.

The	book	was	last	compiled	using	the	following	environment:

##	R	version	3.5.1	(2018-07-02)

##	Platform:	x86_64-w64-mingw32/x64	(64-bit)

##	Running	under:	Windows	7	x64	(build	7601)	Service	Pack	1

##	

##	Matrix	products:	default

##	

##	locale:

##	[1]	LC_COLLATE=Spanish_Colombia.1252		LC_CTYPE=Spanish_Colombia.1252			

##	[3]	LC_MONETARY=Spanish_Colombia.1252	LC_NUMERIC=C																					

##	[5]	LC_TIME=Spanish_Colombia.1252				

##	

##	attached	base	packages:

##	[1]	stats					graphics		grDevices	utils					datasets		methods			base					

##	

##	other	attached	packages:

##		[1]	nycflights13_1.0.0	gapminder_0.3.0				RColorBrewer_1.1-2

##		[4]	gganimate_1.0.3				ungeviz_0.1.0						emmeans_1.3.4					

##		[7]	mgcv_1.8-24								nlme_3.1-137							broom_0.5.2							

##	[10]	tidybayes_1.1.0				maps_3.3.0									statebins_2.0.0			

##	[13]	sf_0.7-4											maptools_0.9-5					rgeos_0.4-3							

##	[16]	sp_1.3-1											ggspatial_1.0.3				geofacet_0.1.10			

##	[19]	plot3D_1.1.1							magick_2.0									hexbin_1.27.3					

##	[22]	treemapify_2.5.3			gridExtra_2.3						ggmap_3.0.0							

##	[25]	ggthemes_4.2.0					ggridges_0.5.1					ggrepel_0.8.1					

##	[28]	ggforce_0.2.2						patchwork_0.0.1				lubridate_1.7.4			

https://github.com/clauswilke/dataviz
https://github.com/clauswilke/dviz.supp


##	[31]	forcats_0.4.0						stringr_1.4.0						purrr_0.3.2							

##	[34]	readr_1.3.1								tidyr_0.8.3								tibble_2.1.1						

##	[37]	tidyverse_1.2.1				dviz.supp_0.1.0				dplyr_0.8.1							

##	[40]	colorblindr_0.1.0		ggplot2_3.1.1						colorspace_1.4-1		

##	[43]	cowplot_0.9.99				

##	

##	loaded	via	a	namespace	(and	not	attached):

##		[1]	rjson_0.2.20														class_7.3-14													

##		[3]	estimability_1.3										ggstance_0.3.1											

##		[5]	rstudioapi_0.10											farver_1.1.0													

##		[7]	ggfittext_0.7.0											svUnit_0.7-12												

##		[9]	mvtnorm_1.0-10												xml2_1.2.0															

##	[11]	knitr_1.23																polyclip_1.10-0										

##	[13]	jsonlite_1.6														png_0.1-7																

##	[15]	compiler_3.5.1												httr_1.4.0															

##	[17]	backports_1.1.4											assertthat_0.2.1									

##	[19]	Matrix_1.2-14													lazyeval_0.2.2											

##	[21]	cli_1.1.0																	tweenr_1.0.1													

##	[23]	prettyunits_1.0.2									htmltools_0.3.6										

##	[25]	tools_3.5.1															misc3d_0.8-4													

##	[27]	coda_0.19-2															gtable_0.3.0													

##	[29]	glue_1.3.1																Rcpp_1.0.1															

##	[31]	cellranger_1.1.0										imguR_1.0.3														

##	[33]	xfun_0.7																		strapgod_0.0.2.9000						

##	[35]	rvest_0.3.4															MASS_7.3-50														

##	[37]	scales_1.0.0														hms_0.4.2																

##	[39]	yaml_2.2.0																stringi_1.4.3												

##	[41]	e1071_1.7-1															RgoogleMaps_1.4.3								

##	[43]	rlang_0.3.4															pkgconfig_2.0.2										

##	[45]	bitops_1.0-6														geogrid_0.1.1												

##	[47]	evaluate_0.14													lattice_0.20-35										

##	[49]	tidyselect_0.2.5										plyr_1.8.4															

##	[51]	magrittr_1.5														bookdown_0.11												

##	[53]	R6_2.4.0																		generics_0.0.2											

##	[55]	DBI_1.0.0																	pillar_1.4.1													

##	[57]	haven_2.1.0															foreign_0.8-70											

##	[59]	withr_2.1.2															units_0.6-3														

##	[61]	modelr_0.1.4														crayon_1.3.4													

##	[63]	arrayhelpers_1.0-20160527	KernSmooth_2.23-15							

##	[65]	rmarkdown_1.13												jpeg_0.1-8															

##	[67]	progress_1.2.2												rnaturalearth_0.1.0						

##	[69]	grid_3.5.1																readxl_1.3.1													

##	[71]	digest_0.6.19													classInt_0.3-3											

##	[73]	xtable_1.8-4														munsell_0.5.0
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