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1. Motivation

Recent advances of deep learning lead to great success
of image and video super-resolution (SR) methods that are
based on convolutional neural networks (CNN). For video
SR, advanced algorithms have been proposed to exploit
the temporal correlation between low-resolution (LR) video
frames, and/or to super-resolve a frame with multiple LR
frames [3, 8, 9, 11]. These methods pursue higher quality
of super-resolved frames, where the quality is usually mea-
sured frame by frame in e.g. PSNR. However, as mentioned
in [6], frame-wise quality may not reveal the consistency
between frames. If an algorithm is applied to each frame in-
dependently (which is the case of most previous methods),
the algorithm may cause temporal inconsistency, which can
be observed as flickering. It is a natural requirement to im-
prove both frame-wise fidelity and between-frame consis-
tency, which are termed spatial quality and temporal qual-
ity, respectively. Then we may ask, is a method optimized
for spatial quality also optimized for temporal quality? Can
we optimize the two quality metrics jointly? In short, we
want to understand the relationship between spatial quality
and temporal quality, in the context of video SR.

2. Experiments and Analyses

Dataset. We use the HMDB51 dataset, which is a col-
lection of real-world videos and was widely used for action
recognition research [5]. The dataset includes 6,766 video
clips that belong to 51 action categories. The dataset pro-
vides three training/testing splits. We use split1 as a rep-
resentative. We down-sample the video clips by a factor
of 4 using bicubic interpolation, and then super-resolve the
video clips with different methods.

Compared methods. As a naive baseline we use bicubic
interpolation to up-sample. We test four image SR methods:
VDSR [4], RCAN [15], SRGAN [7], and ESRGAN [13],
where we super-resolve each frame independently. We test
four video SR methods: SPMC [11], DUF [3], SoSR, and
ToSR. SoSR and ToSR are proposed by ourselves as new
video SR methods for facilitating action recognition rather

than for PSNR [14]. All the compared methods, excluding
bicubic, are based on CNN. For each method we use the
pretrained model provided by the corresponding authors.
It is worth noting that the compared methods use different
training data, but none of the training data has overlap with
HMDB51.

Spatial quality metrics. For spatial quality, we con-
sider MSE and SSIM. They are calculated by comparing
the super-resolved videos against the original videos frame
by frame. For each frame, MSE and SSIM are calculated
on RGB and luma component, respectively. Then, they are
averaged over each video and then over the entire test set.
Moreover, we consider the quality not only at the signal
level, but also at the semantic level. We use a pretrained ac-
tion recognition network, TSN [12], to evaluate the action
recognition accuracy based on the super-resolved videos.
Our used TSN model is trained with HMDB51 split1 train-
ing set. TSN is a two-stream network, so for spatial quality
we use its spatial stream, i.e. action recognition based on
the frames.

Temporal quality metrics. For temporal quality, we use
the warping error proposed in [6], which is calculated for a
super-resolved video V :
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where T is the number of frames. Vt and Vt+1 are two con-
secutive frames in the video. N is the number of pixels per
frame, and p denotes each pixel. Mt is a mask standing for
whether each pixel is occluded or not. V w

t+1 is a warped
frame, i.e. V w

t+1(p) = Vt+1(p+Ft→t+1(p)), where Ft→t+1

is the optical flow from Vt to Vt+1. Optical flow is calcu-
lated by Flownet2.0 [2]. Occlusion mask is estimated by
[10]. In addition, we use the temporal stream of TSN [12]
to evaluate the action recognition accuracy based on the op-
tical flows extracted from the super-resolved videos.



Figure 1. Evaluation results with different spatial and temporal quality metrics, including MSE, 1−SSIM, warping error, recognition error
rate in spatial/temporal stream. In each plot, the bottomleft corner is the best. In the third plot, error rates of HR videos are shown for
reference.

Figure 2. Performance of our SR method trained with 2 and different β values. The horizontal axis is shown in logarithmic scale.

Results. Figure 1 displays the evaluation results of the
spatial and temporal quality metrics for each method. For
spatial quality, the relative trends of MSE and SSIM are al-
most consistent, so we analyze the MSE. Of these methods,
DUF, RCAN, and VDSR are optimized for MSE. We can
find that in terms of MSE, DUF is the best and VDSR is
the worst among the three, and all the three are far better
than bicubic. However, in terms of warping error, DUF is
the worst and VDSR is the best among the three. Indeed,
bicubic performs the best among all the compared methods
in terms of warping error! This can be understood, since
bicubic tends to generate oversmooth frames, which have
less temporal inconsistency. To improve spatial quality, ad-
vanced SR methods try to add details into the frames, but
take the risk of producing flickering artifacts. This seems
to indicate a tradeoff between spatial and temporal qual-
ity. Moreover, we look at the spatial/temporal quality met-
rics evaluated by recognition accuracy. The best methods in
the spatial stream, SoSR and ESRGAN, all use adversarial
loss in their training. However, these methods perform the
worst in the temporal stream. These methods also lead to
very high warping error. This seems another evidence of the
spatial-temporal tradeoff. It is worth noting that the tradeoff
is only to some extent. DUF with 52 layers is consistently
better than DUF with 16 layers, ESRGAN is consistently
better than SRGAN, in every considered metric. The con-

sistently better performance is achieved at the cost of much
increased network complexity.

Joint Optimization of Spatial and Temporal. We ex-
tend the ToSR method, where we use a siamese network to
super-resolve two consecutive frames simultaneously. We
use the following loss function:

L = α‖Ît − It‖2F + α‖Ît+1 − It+1‖2F + βEwarp(Ît, Ît+1)
(2)

where I and Î denote HR and SR frames. Ewarp(Ît, Ît+1)
is similar to that defined in (1), except that the mask is de-
fined asMt(p) = exp(−50[It(p)−Iwt+1(p)]

2) [6]. We con-
duct experiments with fixed α = 0.5 and variable β. The
results are shown in Figure 2. As β increases, warping error
decreases monotonously, but MSE or 1−SSIM increases;
error rate in the spatial stream increases, but error rate in
the temporal stream decreases to some extent. In summary,
it seems a difficulty to optimize the spatial and temporal
quality metrics simultaneously.

3. Conclusion
In [1], it was proved that minimizing distortion and opti-

mizing perceptual naturalness can be contradictory, which
was named perception-distortion tradeoff. Similarly, our
empirical results imply a tradeoff between spatial and tem-
poral in video SR. We are seeking a theoretical proof.
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