

Innovation in Offshore Site Investigation

Gary Li (Fugro) & Dr. Vickie Kong (GEO)

Outline

1st - Gary Li (Fugro)

- Background of nearshore and shallow site investigation
- Modern over-water investigation practice
- Free-fall technology development
- Evaluation of shear strength properties of seabed sediments

2nd – Vickie Kong (GEO)

- Development of novel site investigation tools
- Pipe-soil interaction
- Numerical modelling (LDFE) and centrifuge testing
- In-situ testing SMARTPIPE

Background / Challenge of Marine SI

- Challenging environment (both equipment and testing)
- Weather sensitive
- Distance away from land and water depth
- Improvement of traditional vessel-based drilling tools
- Development of technology to overcome challenging environment
 - Robotic seafloor system
 - Free-fall samplers and penetrometers
- Robustness data capture and data interpretation are crucial
- R&D to improve understanding of acquired data

ISO 19901-8:2014 Marine Soil Investigations

Deployment modes for marine soil investigation

P Looijen and J Peuchen (2017) – Seabed Investigation by a Novel Hybrid of Vessel-based and Seafloor-based Drilling Techniques, International Conference of Offshore Site Investigation and Geotechnics, Society for Underwater Technology, London

Type 1 - Seabed Mode

Type 1 - Seabed Mode

Shallow seabed penetrometer testing

Fugro's SmartSurf module for shallow sampling and penetrometer tests

Randolph, M.F. (2016) – New tools and directions in offshore site investigation, Geotechnical and Geophysical Site Characterisation 5 – Lehane, Acosta-Martinez & Kelly (Eds), 2016, Australia Geomechanics Society, Sydney, Australia

- TUGRO

Types 2 - 4 – Jack-up and Vessel Drilling Modes

Top drive power swivel

Motion compensator

Line tensioner

Moonpool

5" API drill string

Seabed reaction/re-entry frame

Type 4 - Downhole mode

Type 5 – Seafloor based drilling

- Water depth : 150 4,000 m
- Maximum penetration depth: 150 m bsf
- Drilling and sampling of 73 mm diameter sample
- Wireline CPT and vane

Offshore Innovative Development – (between Types 4 & 5)

Hybrid Seabed Frame – Fugro Seadevil ™

- Vessel-based or seabed drilling (using rotary actuator)
 - drill pipe connected to vessel through heave compensator; full suite of downhole tool available
- Alternative sample / CPT pushed from seabed frame

P Looijen and J Peuchen (2017) – Seabed Investigation by a Novel Hybrid of Vessel-based and Seafloor-based Drilling Techniques, International Conference of Offshore Site Investigation and Geotechnics, Society for Underwater Technology, London

Free Fall Penetrometer

-Fugro

Combined dynamic and static penetration testing

- Fugro Seadart: free-falling device containing jackable cone penetrometer
- Cone protrudes during free-fall, is then penetrated further under static control

J Peuchen, P Looijen and N Stark (2017) – Offshore Characterisation of Extremely Soft Sediments by Free Fall Penetrometer, International Conference of Offshore Site Investigation and Geotechnics, Society for Underwater Technology, London

Combined dynamic and static penetration testing

Free Fall Penetrometer

Young, A.G., Bernard, B.B., Remmes, B.D., Babb, L.V. and Brooks, J.M. (2011). "CPT Stinger" - an innovative method to obtain CPT data. Proc. Offshore Technology Conf., Houston, USA. Paper OTC21569.

35

Free Fall Penetrometers – Centrifuge Model Testing

- Dynamic tip resistance 30 to 50% greater than static resistance
- Difference increase with increasing impact velocity at seabed
- Sleeve friction is more complex, with higher differences between dynamic and static
- RIGSS (Remote Intelligent Geot. Seabed Survey) JIP is currently underway at UWA

Chow, S.H., O'Loughlin, C.D., White, D.J. & Randolph, M.F. 2017. An extended interpretation of the free-fall piezocone test in clay. Géotechnique, 67(12): 1090–1103.

Evaluating shear strength properties

Mayne and Peuchen (2018) – Evaluation of CPT N_{kt} cone factor for undrained strength of clays

	No. sites N	No. data n	Regressions		-Factor	
Clay Group			Slope m	Coef. ^a		Mean B_q
Offshore NC-LOC	17	115	0.0812	0.980	12.32	0.51
Onshore NC-LOC	30	191	0.0833	0.867	12.00	0.53
Sensitive NC-LOC ^b	5	43	0.0968	0.507	10.33	0.84
OC Intact	5	36	0.0737	0.862	13.57	0.49
OC Fissured°	5	22	0.0445	0.393	22.47	-0.01
All Clays	62	407	0.0750	0.923	13.33	0.55

Statistical

Mayne, P.W. & Peuchen, J. (2018) – Evaluation of CPTU $N_{\rm kt}$ cone factor for undrained strength of clays, Cone Penetration Testing 2018 – Hicks, Pisano & Peuchen (Eds), Delft University of Technology, the Netherlands

- TUGRO

Evaluating shear strength properties

Summary from past studies

- Lunne et al (2005) recommended N_{kt} = 12
- Low et al (2010) $-8.6 \le N_{kt} \le 15.3$ (average 11.9) for offshore clay
- Mayne et al (2010) recommended $N_{kt} = 11.8$ for soft to firm clay
- Low et al (2010) recommended N_{kt} = 13.6 (different shearing modes, 10.6 ≤ N_{kt} ≤ 17.4)
- Low et al (2010) reported N_{kt} = 13.3 (field vane shear with a range 10.8 ≤ N_{kt} ≤ 19.9)
- Mayne and Peuchen (2018) $-N_{kt} = 10.3 22.5$ (for various soil types)

$$N_{kt} = 10.5 - 4.6 \times ln(B_q + 0.1)$$

Wang et al (2015) – reported an N_{kt} = 10.5 with VST

Author recommendations

- Cone factor, N_{kt} can be corelated with theoretical, experimental and statistical relationship
- Obtaining site specific correlation requires selective laboratory testing on high quality samples and field vane shear test
- Good understanding of the effects of sample disturbance
- Database and experiences are highly valuable for assessing N_{kt}

Introduction

 Development of Novel Site Investigation Tools for Offshore Geotechnical Problems

- Soil Characterization
 - CPT
 - Alternative to CPT

- Pipe-Soil Interaction
 - Numerical modelling (LDFE)
 - Centrifuge Testing
 - In-situ testing SMARTPIPE

Penetration Test

CPT

- Specification (36 mm Dia., 60 deg tip)
- Penetration at 20mm/s
- q_c , u, $f_s \rightarrow$ soil characterisation

Evaluation of soil strength

Alternative to CPT

Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005, September). Challenges of offshore geotechnical engineering. In *Proceedings of the international conference on soil mechanics and geotechnical engineering* (Vol. 16, No. 1, p. 123). AA Balkema Publishers.

Full Flow Penetrometer

- Plasticity solutions, in a form of bearing capacity factor
 - Cylinder (1984)
 - Sphere (2000)
- Laboratory testing

Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005, September). Challenges of offshore geotechnical engineering. In *Proceedings of the international conference on soil mechanics and geotechnical engineering* (Vol. 16, No. 1, p. 123). AA Balkema Publishers.

http://www.soilmanagementindia.com/shallow-foundation/bearing-capacity-of-soil/bearing-capacity-of-the-soil-7-theories-soil-engineering/14439

- Published data showed that the cone N_{kt} (= q_{net}/s_u) and N∆u (= (u₂ - u₀)/s_u) factors are influenced by the rigidity index (I_r = G/s_u) of the soil.
- In contrast, full-flow penetrometer N_{T-bar} (= q_{T-bar}/s_u) and N_{ball} (= q_{ball}/s_u) factors are less dependent on secondary soil characteristics, apart from a slight effect of strength anisotropy (for soil with a strength sensitivity ≤ 8).

- Frontal Area =10 x Shaft Area
- Resolution better measurement of soft clay (either onshore or offshore)

- Cyclic full flow penetration test
- Remoulded s_u, sensitivity
- Facilitate correction for error in zero load reading and error in net penetration resistance calculation

T-bar Penetrometer

- Developed for strength measurement in centrifuge sample
- First used in offshore environment in 1996
- Plane-strain condition

Ball Penetrometer

- First used in offshore environment in 2003
- Axisymmetric condition

Pipe-Soil Interaction

- Pipeline resting on seabed/inside trench
- Installation load, operation load (lateral, axial)
- Bearing failure, sliding failure
- Yes, it is a geotechnical problem!

(a) Thermal lateral buckling of a seabed pipeline (plan view)

(a) Submarine slide loading of a seabed pipeline (plan view)

(c) Large-amplitude lateral pipe movement

Figure 1 Problem definition

Pipe-Soil Interaction

- SAFEBUCK Joint Industry Project
- Numerical Modelling
 - Wish-in-place
 - LDFE
- Centrifuge Testing
 - Load test
 - PIV
- In-situ Testing
 - SMARTPIPE

Pipe-Soil Interaction – Numerical Modelling

Lateral Buckling - LDFE

Fig. 7. Pipe embedment during lateral displacement (R = 5.26).

Fig. 8. Lateral load-displacement response (R = 5.26).

Lateral Buckling - Centrifuge Test

- Model pipe
- Load-displacement relations based on reconstituted soil

Lateral Buckling – PIV Test in Centrifuge

Failure Mechanisms

Lateral Buckling – Failure Mechanism

SMARTPIPE

- Jointly developed by BP, University of Cambridge and Fugro
- A newly developed instrument
 - Section of model pipe (~225mm Dia)
 - PPT, LVDT, Inclinometer, T-bar, video
 - Static and cyclic axial and lateral load
 - Operate up to 2,500m water depth

White, D. J., Hill, A. J., Westgate, Z., & Ballard, J. C. (2010). Observations of pipe-soil response from the first deepwater deployment of the SMARTPIPE. In *Proc. 2nd Int. Symp. on Frontiers in Offshore Geotechnics, Perth* (pp. 851-856).

SMARTPIPE conti.

- "Large Scale" Model Test
- Part of Model Test (PIV centrifuge Test, Centrifuge Test, 1g Test)

SMARTPIPE Campaign – site supervision

- Monitor the fundamental soil responses
- Cyclic T-bar test to obtain the soil profile and basic parameters

Mini T-bar (1.5 m stroke)

My 'colleagues'

Summary

- Development of Novel Site Investigation Tools
 - Theoretical basis
 - Industry-driven
- New problems
 - Opportunities for Geotechnical Engineers!

Acknowledgement

Professor Mark Randolph – University of Western Australia

Professor Fraser Bransby – University of Western Australia (Fugro Chair)

Professor David White – University of Southampton

Professor Dong Wang – Ocean University of China (中国海洋大学)

Dr. Yue Yan – Tianjin University (天津大学)

Dr. Han Eng Low – Fugro, Perth

Joek Peuchen – Fugro, The Netherlands

Peter Looijen - Fugro, The Netherlands

Thank you!