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1st— Gary Li (Fugro)

= Background of nearshore and shallow site investigation

= Modern over-water investigation practice

= Free-fall technology development

= Evaluation of shear strength properties of seabed sediments

2"d — Vickie Kong (GEO)

= Development of novel site investigation tools

= Pipe-soil interaction

= Numerical modelling (LDFE) and centrifuge testing
= In-situ testing SMARTPIPE
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Background / Challenge of Marine Sl

= Challenging environment (both equipment and testing)
= Weather sensitive

= Distance away from land and water depth

= Improvement of traditional vessel-based drilling tools

= Development of technology to overcome challenging environment
= Robotic seafloor system

= Free-fall samplers and penetrometers
= Robustness data capture and data interpretation are crucial

= R&D to improve understanding of acquired data
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ISO 19901-8:2014 Marine Soil Investigations

Deployment modes for marine soil investigation
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Seabed Mode Jack-up and permanent Downhole Mode Hybrid Mode  Seafloor based

based structures

P Looijen and J Peuchen (2017) — Seabed Investigation by a Novel Hybrid of Vessel-based and Seafloor-based Drilling Techniques, International Conference of Offshore Site
Investigation and Geotechnics, Society for Underwater Technology, London
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Type 1 - Seabed Mode

[llustrative
not to scale!

T-bar Ball Cones
40 x 250mm  60-80 mm 33 to 5cm?
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Type 1 - Seabed Mode

Fugro’s SmartSurf module for shallow
sampling and penetrometer tests

Randolph, M.F. (2016) — New tools and directions in offshore site investigation, Geotechnical and Geophysical Site Characterisation 5 — Lehane, Acosta-Martinez & Kelly (Eds), 2016,
Australia Geomechanics Society, Sydney, Australia
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Types 2 - 4 — Jack-up and Vessel Drilling Modes

Top drive power
swivel

Motion
compensator

Line tensioner

Moonpool

5" API drill string

Seabed
reaction/re-entry
frame
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Type 4 - Downhole mode
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Type 5 — Seafloor based drilling

Water depth : 150 - 4,000 m

Drilling and sampling of 73 mm
diameter sample

Wireline CPT and vane
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LIFT WIRE

DRILL PIPE

ENTRY - FUNNEL
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= Vessel-based or seabed drilling (using rotary actuator)
= drill pipe connected to vessel through heave compensator; full suite of downhole tool available

= Alternative sample / CPT pushed from seabed frame

P Looijen and J Peuchen (2017) — Seabed Investigation by a Novel Hybrid of Vessel-based and Seafloor-based Drilling Techniques, International Conference of Offshore Site
Investigation and Geotechnics, Society for Underwater Technology, London
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Free Fall Penetrometer
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Combined dynamic and static penetration testing

= Fugro Seadart: free-falling device containing jackable cone penetrometer
= Cone protrudes during free-fall, is then penetrated further under static control

s & B

Fugro Seadart undergoing trials

i

J Peuchen, P Looijen and N Stark (2017) — Offshore Characterisation of Extremely Soft Sediments by Free Fall Penetrometer, International Conference of Offshore Site Investigation
and Geotechnics, Society for Underwater Technology, London
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Combined dynamic and static penetration testing

Descent Moment of Impact Static Push Retrieval
to seafloor triggering
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Free Fall Penetrometer

CPT — Stinger Cone Tip Resistance (MPa)
(Young et al 2011 — TDI-Brooks) o — "":'E "
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Young, A.G., Bernard, B.B., Remmes, B.D., Babb, L.V. and Brooks, J.M. (2011). “CPT Stinger” — an innovative method to obtain CPT data. Proc. Offshore Technology Conf.,
Houston, USA. Paper OTC21569.
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Free Fall Penetrometers — Centrifuge Model Testing
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= Dynamic tip resistance 30 to 50% greater than static resistance

= Difference increase with increasing impact velocity at seabed

= Sleeve friction is more complex, with higher differences between dynamic and static
= RIGSS (Remote Intelligent Geot. Seabed Survey) JIP is currently underway at UWA

Chow, S.H., O’Loughlin, C.D., White, D.J. & Randolph, M.F. 2017. An extended interpretation of the free-fall piezocone test in clay. Géotechnique, 67(12): 1090-1103.
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Evaluating shear strength properties
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Penetration Testing 2018 — Hicks, Pisano & Peuchen (Eds), Delft University of Technology, the Netherlands
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Evaluating shear strength properties

Summary from past studies

= Lunne et al (2005) — recommended N,; = 12
= Low et al (2010) — 8.6 < N, < 15.3 (average 11.9) for offshore clay
= Mayne et al (2010) — recommended N,, = 11.8 for soft to firm clay
= Low et al (2010) — recommended N,, = 13.6 (different shearing modes, 10.6 < N, < 17.4)
= Low et al (2010) — reported N,; = 13.3 (field vane shear with a range 10.8 £ N,; < 19.9)
= Mayne and Peuchen (2018) — N,, = 10.3 — 22.5 (for various soil types)
Ny = 10.5 — 4.6 x In(B, + 0.1)
= Wang et al (2015) — reported an N,; = 10.5 with VST

Author recommendations

= Cone factor, N,; can be corelated with theoretical, experimental and statistical relationship

= Obtaining site specific correlation requires selective laboratory testing on high quality
samples and field vane shear test

= Good understanding of the effects of sample disturbance

= Database and experiences are highly valuable for assessing N,
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Introduction

* Development of Novel Site Investigation Tools for Offshore
Geotechnical Problems

e Soil Characterization
e CPT
e Alternative to CPT

* Pipe-Soil Interaction
* Numerical modelling (LDFE)
e Centrifuge Testing
* |n-situ testing SMARTPIPE



Penetration Test

* CPT
 Specification (36 mm Dia., 60 deg tip)
* Penetration at 20mm/s
* g, U, f, =2 soil characterisation
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Evaluation of soil strength
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e o P - ratio etc. = No exact solution
shear fes tost .. .
neartest Empirical Factor (back-calc. from laboratory testing)
Failure Mode: Nkt = 10-20

Similar to driving a pile!
But what about other failure modes?

Lunne, T., Andersen, K. H., Low, H. E., Randolph, M. F., & Sjursen, M. (2011). Guidelines for offshore in situ testing and interpretation in deepwater soft clays. Canadian
geotechnical journal, 48(4), 543-556.



Alternative to CPT

Full Flow Penetrometer Illustrative
1 not to scale!

I
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Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005, September). Challenges of offshore geotechnical engineering. In Proceedings of the international
conference on soil mechanics and geotechnical engineering (Vol. 16, No. 1, p. 123). AA Balkema Publishers.




Full Flow Penetrometer

 Plasticity solutions, in a form of bearing capacity factor
* Cylinder (1984)
* Sphere (2000)

e Laboratory testing
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Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005, September). Challenges of
offshore geotechnical engineering. In Proceedings of the international conference on soil http://www.soilmanagementindia.com/shallow-foundation/bearing-capacity-of-
mechanics and geotechnical engineering (Vol. 16, No. 1, p. 123). AA Balkema Publishers. soil/bearing-capacity-of-the-soil-7-theories-soil-engineering/14439



Full Flow Penetrometer conti.

e Published data showed that
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Low, H. E., Lunne, T., Andersen, K. H., Sjursen, M. A., Li, X., & Randolph, M. F. (2010). Estimation of intact and remoulded undrained shear strengths from penetration tests in soft
clays. Géotechnique, 60(11), 843.



Full Flow Penetrometer conti.

 Frontal Area =10 x Shaft
Area

e Resolution - better
measurement of soft
clay (either onshore or
offshore)
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Full Flow Penetrometer conti.
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Full Flow Penetrometer conti.

Depth

Depth

* Cyclic full flow penetration
test

* Remoulded s, sensitivity

e Facilitate correction for
error in zero load reading
and error in net

penetration resistance
calculation
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T-bar Penetrometer

* Developed for strength measurement in centrifuge sample
* First used in offshore environment in 1996

* Plane-strain condition

~

smoitr'uon e rational—discharé:bf»oiI/new-russia-tdrkey-
offshore-pipeline-ro '

Randolph, M., Cassidy, M., Gourvenec, S., & Erbrich, C. (2005, September). Challenges of offshore geotechnical engineering. In Proceedings of the international
conference on soil mechanics and geotechnical engineering (Vol. 16, No. 1, p. 123). AA Balkema Publishers.



Ball Penetrometer

* First used in offshore environment in 2003

e Axisymmetric condition




Pipe-Soil Interaction

* Pipeline resting on seabed/inside trench
* Installation load, operation load (lateral, axial)
* Bearing failure, sliding failure

* Yes, it is a geotechnical problem!

=t M

{a) Thermal lateral buckling of a seabed pipeline (plan view)

)

(a) Submarine slide loading of a seabed pipeline (plan view)

(o) Large-amplitude lateral pipe movement

Figure 1 Problem definition



Pipe-Soil Interaction

SAFEBUCK Joint Industry Project

Numerical Modelling
e Wish-in-place
 LDFE

Centrifuge Testing
* Load test
* PIV

In-situ Testing
* SMARTPIPE

Jayson, D., Delaporte, P., Alber,t J.-P., Prevost, M.E., Bruton, D., Sinclair, F., 2008.
Offshore Pipeline Technology, OPT, Amsterdam

Greater Plutonio project—subsea flowline design and performance. In: Proceedings of the Conference on



Pipe-Soil Interaction — Numerical Modelling

ABAQUS




Lateral Buckling — LDFE

Fig. 7. Pipe embedment during lateral displacement (R = 5.26).
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Wang, D., White, D. J., & Randolph, M. F. (2010). Large-deformation finite element analysis of pipe penetration and large-amplitude lateral displacement. Canadian Geotechnical
Journal, 47(8), 842-856.



Lateral Buckling - Centrifuge Test

* Model pipe

* Load-displacement relations
based on reconstituted soil

— No over-penetration

— Initial embedment = 0.15D
— Initial embedment = 0.30D
— Initial embedment = 0.45D

T T T T T
2 3 4 5 6 7




Lateral Buckling — PIV Test in Centrifuge

* Failure Mechanisms

Dingle, H. R. C., White, D. J., & Gaudin, C. (2008). Mechanisms of pipe embedment and lateral breakout on soft clay. Canadian Geotechnical Journal, 45(5), 636-652.




Lateral Buckling — Failure Mechanism

LDFE Centrifuge test
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SMARTPIPE

* Jointly developed by BP, University of Cambridge and Fugro

* A newly developed instrument

* Section of model pipe (¥225mm Dia)
* PPT, LVDT, Inclinometer, T-bar, video
» Static and cyclic axial and lateral load |
* Operate up to 2,500m water depth =) == A B

INSTRUMENTED
PIPE SECTION
DEPLOYABLE MUDMATS
AND DETACHABLE SKIRTS A
MINI T-BAR

White, D. J., Hill, A. J., Westgate, Z., & Ballard, J. C. (2010). Observations of pipe-soil response from the first deepwater deployment of the SMARTPIPE. In Proc. 2nd Int.
Symp. on Frontiers in Offshore Geotechnics, Perth (pp. 851-856).

Hill, A. J., & Jacob, H. (2008, January). In-situ measurement of pipe-soil interaction in deep water. In Offshore Technology Conference. Offshore Technology Conference.



SMARTPIPE conti.

» “Large Scale” Model Test
* Part of Model Test (PIV centrifuge Test, Centrifuge Test, 1g Test)

Randolph, M. F., Gaudin, C., Gourvenec, S. M., White, D. J., Boylan, N., & Cassidy, M. J. (2011). Recent advances in offshore geotechnics for deep water oil and gas developments.
Ocean Engineering, 38(7), 818-834.



SMARTPIPE Campaign — site supervision

* Monitor the fundamental soil responses

e Cyclic T-bar test to obtain the soil profile and basic
parameters




My ‘colleagues’




Summary

* Development of Novel Site Investigation Tools
* Theoretical basis
* Industry-driven

* New problems
e Opportunities for Geotechnical Engineers!
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