5. Applications of Integration

5.1 Average Value

Find the average value of the function on the given interval.

1. $f(x)=\sin x$ on $[0, \pi / 2]$
2. $y=x$ on $[0,4]$
3. $y=x^{3}$ on $[0,4]$

4. $g(t)=1 / t^{2}$ on $[1,10]$
5. Find the number k such that the average value of $f(x)$ $=x^{4}$ on the interval $[-k, k]$ is equal to 1 .

5.2 Area Between Curves

Find the area between the shaded region:

2.

3.
1.

4.

Find the total area enclosed by the functions f and g.
5. $f(x)=2 x^{2}+5 x-3, g(x)=x^{2}+4 x-1$
6. $f(x)=\sin x, g(x)=2 x / \pi$
7. $f(x)=x, g(x)=\sqrt{x}$
8. $f(x)=\cos x, g(x)=\sin x$ (only include the area over one period)

Compute the following areas by using:
(a) An integral over $d x$
(b) An integral over $d y$

9.

1.

2.

3.
1.

2.

(Note: Only setup the integral for this one)

Use the shell method to find the volume of the solid created when the shaded region is revolved around the x-axis.

3.

5.5 Volumes using Cross-Sectional Areas

Find the following volumes by finding the cross-sectional areas and integrating.

A right circular cone with height of 10 and base radius of 5 .
1.

A right triangular cone with height of 10 and whose base is a right, isosceles triangle with side length 4.
2.

3. Consider the following region on the interval $[0,1]$.

Find the volume if the cross-sectional areas
perpendicular to the x -axis are:
a) Squares
b) Isosceles Right Triangles
c) Semispheres
d) Equilateral Triangles

