1. Limits and Continuity

1.1 Computing Limits

1. $\lim _{x \rightarrow 1} x^{2}+3 x-5$
2. $\lim _{x \rightarrow 0} \frac{x+1}{x^{2}+3 x}$
$\cdot \lim _{x \rightarrow 1} f(x)=2, \quad \lim _{x \rightarrow 10} f(x)=1, \quad f(1)=1 / 5$
$\cdot \lim _{x \rightarrow 1} g(x)=0, \quad \lim _{x \rightarrow 10} g(x)=\pi, \quad g(10)=\pi$
3. $\lim _{x \rightarrow 1} f(x)^{g(x)}$
4. $\lim _{x \rightarrow 1} f(x) g(x)$

Evaluate the given limits
3. $\lim _{x \rightarrow-1} \frac{x^{2}+8 x+7}{x^{2}+6 x+5}$
4. $\lim _{x \rightarrow 2} f(x)$, where
$f(x)=\left\{\begin{array}{rr}x+2 & x \leq 2 \\ 3 x-5 & x>2\end{array}\right.$
5. $\lim _{x \rightarrow 0} f(x)$, where
$f(x)=\left\{\begin{array}{cc}\cos x & x \leq 0 \\ x^{2}+3 x+1 & x>0\end{array}\right.$

In the following exercises, use the following information to evaluate the given limit, when possible. If it is not possible to determine the limit, state why not.

- $\lim _{x \rightarrow 9} f(x)=6, \quad \lim _{x \rightarrow 6} f(x)=9, \quad f(9)=6$
$\bullet \lim _{x \rightarrow 9} g(x)=3, \quad \lim _{x \rightarrow 6} g(x)=3, \quad g(6)=9$

6. $\lim _{x \rightarrow 9}\left(\frac{f(x)-2 g(x)}{g(x)}\right)$
7. $\lim _{x \rightarrow 9} g(f(x))$
8. $\lim _{x \rightarrow 6} g(f(f(x)))$

In the following exercises, use the following information to evaluate the given limit, when possible. If it is not possible to determine the limit, state why not.
11. $\lim _{x \rightarrow \pi / 4} \cos x \sin x$
12. $\lim _{x \rightarrow 0} \ln x$
13. $\lim _{x \rightarrow \pi / 6} \csc x$
14. $\lim _{x \rightarrow \pi} \frac{x^{2}+3 x+5}{5 x^{2}-2 x-3}$
15. $\lim _{x \rightarrow 6} \frac{x^{2}-4 x-12}{x^{2}-13 x+42}$
16. $\lim _{x \rightarrow 2} \frac{x^{2}+6 x-16}{x^{2}-3 x+2}$
17. $\lim _{x \rightarrow-2} \frac{x^{2}-5 x-14}{x^{2}+10 x+16}$

1.2 Graphical Limits

(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(d) $f(1)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(e) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(f) $\lim _{x \rightarrow 0^{+}} f(x)$
1.

(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(d) $f(1)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(e) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(f) $\lim _{x \rightarrow 0^{+}} f(x)$
2.
(a) $\lim _{x \rightarrow-1^{-}} f(x)$
(e) $\lim _{x \rightarrow 1^{-}} f(x)$
(b) $\lim _{x \rightarrow-1^{+}} f(x)$
(f) $\lim _{x \rightarrow 1^{+}} f(x)$
(c) $\lim _{x \rightarrow-1} f(x)$
(g) $\lim _{x \rightarrow 1} f(x)$
(d) $f(-1)$
(h) $f(1)$

1.4 Limits with Infinity

$$
f(x)=\frac{1}{(x+1)^{2}}
$$

(a) $\lim _{x \rightarrow-1^{-}} f(x)$
3.
$f(x)=\left\{\begin{array}{cc}1-\cos ^{2} x & x<a \\ \sin ^{2} x & x \geq a\end{array}\right.$
(a) $\lim _{x \rightarrow a^{-}} f(x)$
(c) $\lim _{x \rightarrow a} f(x)$
(b) $\lim _{x \rightarrow a^{+}} f(x)$
(d) $f(a)$
(b) $\lim _{x \rightarrow-1^{+}} f(x)$
4.
$f(x)=\left\{\begin{array}{rl}x^{2} & x<2 \\ x+1 & x=2 \\ -x^{2}+2 x+4 & x>2\end{array}\right.$
(a) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(b) $\lim _{x \rightarrow 2^{+}} f(x)$
(d) $f(2)$
5.
$f(x)=\left\{\begin{array}{cc}\frac{|x|}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$
1.
(a) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $f(0)$

$$
f(x)=\frac{1}{e^{x}+1}
$$

(a) $\lim _{x \rightarrow-\infty} f(x)$
(c) $\lim _{x \rightarrow 0^{-}} f(x)$
(b) $\lim _{x \rightarrow \infty} f(x)$
(d) $\lim _{x \rightarrow 0^{+}} f(x)$

2.

$$
f(x)=\cos (x)
$$

Challenge Questions

(a) $\lim _{x \rightarrow-\infty} f(x)$
(b) $\lim _{x \rightarrow \infty} f(x)$

3.

Numerically compute the following limits:
4. $\lim _{x \rightarrow \infty} f(x)=\frac{x^{2}-1}{x^{2}-x-6}$
5. $\lim _{x \rightarrow \infty} f(x)=\frac{x^{2}-11 x+30}{x^{3}-4 x^{2}-3 x+18}$

Identify the horizontal and vertical asymptotes (if any) of the given function
6. $f(x)=\frac{2 x^{2}-2 x-4}{x^{2}+x-20}$
7. $f(x)=\frac{x^{2}+x-12}{7 x^{3}-14 x^{2}-21 x}$
8. $f(x)=\frac{x^{2}-9}{9 x+27}$

Evaluate the given limit:
9. $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x^{2}+1}{x-5}$
10. $\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x^{2}+1}{x^{2}-5}$
10. $\lim _{x \rightarrow 0} \frac{x^{2}+\sin 3 x}{2 x+\tan 2 x}$

1.6 Continuity

A graph of a function f is given along with a value a. Determine if f is continuous at a; if it is not, state why it is not.
1.

2.
 is n.
(a) $a=-2$
(b) $a=0$
(c) $a=2$

4.

In the following problems, determine if f is continuous at the indicated values. If not, explain why.
5.

$$
f(x)=\left\{\begin{array}{cl}
1 & x=0 \\
\frac{\sin x}{x} & x>0
\end{array}\right.
$$

(a) $x=0$
(b) $x=\pi$
6.

$$
f(x)=\left\{\begin{array}{rl}
\frac{x^{2}+5 x+4}{x^{2}+3 x+2} & x \neq-1 \\
3 & x=-1
\end{array}\right.
$$

(a) $x=-1$
(b) $x=10$

Give the intervals on which the given function is continuous:
7. $f(x)=x^{2}-3 x+9$
8. $g(x)=\sqrt{4-x^{2}}$
9. $f(t)=\sqrt{5 t^{2}-30}$
10. $g(x)=\frac{1}{1+x^{2}}$
11. $g(s)=\ln s$
12. $f(k)=\sqrt{1-e^{k}}$

1.7 Intermediate Value Theorem

1. Let f be continuous on $[1,5]$ where $f(1)=-2$ and $f(5)$ $=-10$. Does a value $1<\mathrm{c}<5$ exist such that $f(\mathrm{c})=$ -9 ? Why/why not?
2. Let f be continuous on $[-1,1]$ where $f(-1)=-10$ and $f(1)=10$. Does a value $-1<\mathrm{c}<1$ exist such that $f(\mathrm{c})$ $=11$? Why/why not?

Challenge Questions

3. Give an interval for x, the solution to the equation $\cos x=x$, using the Intermediate Value Theorem.
4. Show that the equation $2^{x}=x+3$ has a solution in the interval $2<x<3$.
