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Summary

Geological / geophysical interpretation of seismic survey commonly requires segmenting a seismic image into
different layers/sequences, highlighting certain geobodies, or picking different horizon surfaces, for multiple
purposes including, but not limited to, earth model building, velocity model building, stratigraphic analysis, etc. The
traditional approach requires the interpreter significant amount of effort to interact with computer and label the data.

We demonstrated an innovative workflow for seismic image/sequence/geobody segmentation and horizon picking,
where a key aspect is that, it requires much less labels and hence significantly reduce interpreter’'s workload.
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Summary

Geological / geophysical interpretation of seismic survey commonly requires segmenting a seismic
image into different layers/sequences, highlighting certain geobodies, or picking different horizon
surfaces, for multiple purposes including, but not limited to, earth model building, velocity model
building, stratigraphic analysis, etc. The traditional approach requires the interpreter significant amount
of effort to interact with computer and label the data.

We demonstrated an innovative workflow for seismic image/sequence/geobody segmentation and
horizon picking, where a key aspect is that, it requires much less labels and hence significantly reduce
interpreter’s workload.
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Seismic image segmentation, geobody segmentation, stratigraphic sequence interpretation and horizon
picking from seismic data is fundamentally important for subsurface interpretation and reservoir
characterization with the objective to generate the most geologically sound annotation and earth model.
Several types of human-computer interactions are involved in the workflow, such as highlighting object,
picking surfaces, seed point selections, etc. It requires interpreter’s special knowhow and significant
turnaround time to perform the tasks.

Introduction

A typical example is automatic horizon tracking: interpreter picks a pixel/voxel as seed point and the
program will automatically track the horizon that is connected to the seed point based on the lateral
continuity of seismic signals such as amplitude, gradient, etc (e.g., Leggett et al. 1996; Yu et al. 2008).
When the seismic survey contains relatively complex geological structures or when the signature of the
horizon is weak (Di et al. 2018), which is not uncommon, manual pixel/voxel-wise labelling of horizon
is required. Overall, this approach is time consuming and requires a skilled interpreter to finish the task.
Moreover, the output of such an approach are horizon surfaces instead of sequence/geobody which can
be directly used by interpreter to build earth model. Post processing is required to further segment the
seismic cube into sequence/geobody from the horizon surfaces.

We presented a machine learning based method for seismic segmentation and horizon picking, which
could simplify the human-computer interaction, and reduce the interpreter’s effort to build earth models.

Methodology

Modern machine learning methods, especially neural networks (NN), having amply demonstrated their
potential by addressing challenging problems in fields such as computer vision (Long 2015,
Ronneberger 2015, Badrinarayanan 2017), could potentially be applied to automate various arduous
steps for earth model building. However, since it is costly to obtain sufficient well-balanced and
accurately labelled seismic data, development of NN based applications for robust horizon
interpretation have been curtailed. Unsupervised learning, such as clustering and autoencoders, doesn’t
require input labels as training data. However, special regularizations and prior information has to be
incorporated in the training in order to achieve satisfactory results (Zeiler 2011, Kallenberg 2016). By
combining unsupervised learning and supervised learning, we demonstrated a novel machine learning
based methodology for seismic image/sequence/geobody segmentation and horizon picking, where a
key aspect is that, it requires a very small amount of labels to train the NN model and thereby allow the
interpreter to build seismic earth models with significantly less effort.

The presented methodology requires input labels (training data for supervised learning) to be pixel-wise
categorical labels selectively marked on seismic inline and/or crossline slices. It requires a very small
percent of seismic slices to be labelled. Interpreter can provide such input labels in the format of
bounding boxes, scribble lines or paint-brush swaths. Labels could have different sizes and shapes: they
could be in the shape of straight lines, curved lines, cross lines, triangle, rectangle, polygons, circles, or
any convenient shape which the interpreter can easily draw to cover the target sequence/geobody.
Interpreter’s input label can also be trace-wise labels where, on single or multiple seismic traces, pixels
are picked to separate two stratigraphic sequences above and below. The interval between such labelled
seismic traces, as well as the density of the lines/paint-brush labels could vary depending on the
complexity of the underlying geology. Finally, complete pixel-wise labelling of the entire inline or
crossline image can be another option for interpreter as a complement of the above methods. Deep
neural networks, with special training procedures, can utilize this small labelled dataset to perform
seismic image/sequence segmentation and horizon picking across the entire seismic survey.
Furthermore, the interpreter can iteratively finetune the result by providing addition input based on the
NN model performance and/or geological complexities discovered. As an example, Figure 1 illustrates
different types of labels which interpreter can mark on a seismic inline/crossline slice using a mouse.

81st EAGE Conference & Exhibition 2019
3-6 June 2019, London, UK



81ST CONFERENCE + EXHIBITION

RN

(a) (b) (c) (d)
Figure 1 Possible format of input labels. a) paint-brush labels; b) scribble-lines labels with variety of
shapes, ¢) trace-wise labels on seismic traces at sequence boundaries; d) fully-labelled slices.

There are two stages involved in this workflow: unsupervised feature learning/extraction stage and
supervised learning stage. The output of unsupervised feature learning/extraction, combined with
interpreter’s input labels, will become the input of supervised learning stage. During unsupervised
feature learning the deep network identifies a comprehensive feature set from seismic data in
unsupervised manner (without interpreter’s input). The supervised learning stage involves training the
deep network with the output features obtained from the first stage and interpreter’s input labels. The
unsupervised learning stage is typically formulated for simple tasks which can be computationally
automated and does not require any special effort on part of the interpreter.

Various machine learning method may be applied in the unsupervised learning stage to extract features
from seismic data. Some examples are: autoencoder, self-learning, dynamic filtering, Bayesian based
methods, etc.

During the supervised learning stage, one or more slices from inline or crossline direction may be picked
by the interpreter to create input labels in an above-noted format. The slices used to generate labels may
be selected in a manner so as to provide samples of patterns occurring in the seismic cube. The deep
NN will be trained on all the input labels from selected slices.

The trained CNN model will be applied to predict the pixel-wise categorical classes for the remaining
unlabelled seismic cube. If input labels provided in supervised learning stage include slices from both
inline and crossline direction, predictions will be generated on both direction and final output will be
calculated based on merging predictions from both direction. Figure 2 illustrates the proposed training
and prediction workflow.
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Figure 2 Training and prediction workflow that combined unsupervised and supervised learning.

Example I

In this example we demonstrate the application of using paint-brush labels to train the NN model and
predict the sequence segmentation on the slices that the NN model has never seen. The data set include
160 inline, 1856 crossline and 448 time slices. Paint-brush labels were applied on inline slice 0, 80 and
160 and these three slices were input to NN models for training. After the training was completed, the
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NN model was applied to predict on these slices as well as the slices that the network has never seen.
Figure 3 shows training and prediction process, input labels and prediction results on inline 0, 40, 80,
120 and 160.
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Figure 3 Example I results. First row: schematics of how training and prediction were performed.
Paint-brush labels were input on three inline slices (inline 0, 80 and 160) and the neural network was
trained on these slices. Prediction was made on inline 0, 40, 80, 120, and 160, Second row: Input labels
on inline 0, 80 and 160, Third row: Predictions on inline 0, 80 and 160, Forth row: Predictions on

inline 40 and 120.

Example 11

Then we provide one example for seismic sequence interpretation using trace-wise labels. The testing
seismic cube include 1665 inlines, 2751 crosslines, and 1400 time slices. 4 inlines (#333, 750, 1246,
and 1624) and 3 crosslines (#740, 1300, and 2224) are manually labelled for training NN models.
Finally, the sequence volume is generated by applying the trained NN model to the entire seismic
survey. Figure 4 demonstrates the prediction of 10 sequences on two vertical slices (Inline #1300and
Crossline #1400). The important seismic features are clearly delineated from the prediction slices,
particularly the pinch-out in the top area and the faulting in the bottom area, both of which are consistent
with the manual interpretation from experienced interpreters.

Conclusion
Modern machine learning method, especially deep neural network, with its capability to address

complex computer vision problem, could potentially find its application in seismic interpretation. By
combining the advantage of unsupervised and supervised learning, we demonstrated that a deep neural
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network based approach can significantly reduce interpreters' effort on seismic image segmentation and
stratigraphic interpretation.

IL333 IL750 IL1246 XL2224

(Trace labels) (Trace [abels) (Trace labels) (Trace labels)

XL1400 IL1300
(Prediction slice) (Prediction slice)

Figure 4 Example Il results of predicting 10 sequences in two vertical slices, with the trace-wise labels
marked as dots. Note the good delineation of the pinch-out in the top area and the faulting in the bottom
area. Colours are randomly assigned for the sole purpose of visualization.
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